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ABSTRACT

SOME APPLICATIONS OF A RESULT IN CONTROL
THEORY TO ECONOMIC PLANNING MODELS.

H.W. Gottinger

Recent results on necessary conditions for optimal control problems with
inequality constraints on the state variables have shown that, for a particular
class of problems, the optimal trajectory does not stay on fhe constraint
boundary for non-zero intervals of time.

These results are used in connection with discussing three models of econ-
omic planning taken from different areas. The first two examples consider
the problem of optimal employment in a planning context, they reveal the
property that the optimal solution is such that full employment is achieved
at most instantaneously and is not maintained for non-zero intervals of time.
The third example is concerned with the optimal investment and foreign
aid policies for a developing economy. An institutional constraint on the
stock of foreign debts may be derived from the 'debt-service' ratio. Contrary
to earlier results obtained from simpler models this constraint is binding

at most instantaneously along the optimal trajectory.



1. Introduction

Optimal control problems with inequality constraints on the state variables
have been the subject of much research in the past twenty years. Necessary
conditions of optimality for the first order case,l i.e. where the first time
derivative of the constraint contained the control variable explicitly, were
obtained by Gamkrelidze [1] in 1960. Later researchers extended these to the
general case where the order of the constraint, p, was greater than one. Recently,
Jacobson, Lele and Speyer [2] have obtained sharper results for this general
case, than those known heretofore. This reference also contains a brief history
of earlier research. A consequence of the new necessary conditions of optimality
is that, under certain conditions, problems with odd-ordered constraints - except
the case p = 1 - will not, in general, exhibit optimal trajectories with bound-
ary arcs over non-zero intervals of time, i.e. the optimal trajectory will at
most only touch the constraint boundary, b;t will not lie along it.

The significance of this result lies in the fact that, inasmuch as the
conditions under which it is valid are not overly stringent, it reveals, a priori,
considerable information as }egards the structure of the optimal solution. Such
information would be of particular qualitative value in problems of economic
policy. To this end, after presenting a brief summary of the relevant control-
theoretic results, we will consider three examples from economic planning.

Two of these examples deal with the problem of optimal employment; the third

is drawn from development planning.

2. Restatement of Results from Control Theory

We briefly summarize the results which we will be using from control theory.

The details are givem in [2], or [3].



For simplicity, the basic optimization problem which we consider is in
the form of Mayer-Bliss. There is, however, no loss of generality, so that
we are at liberty to apply these results to other formulations.

The basic problem is

(1) Maximize ®(x(T))

u

subject to
2)  x(B) = £(x(),u(t)); x(0) = x_
and the scalar state variable inequality constraint
(3) S(x(t)) <0 for all t ¢ [0,T].
Here

x — n—dimensional state-vector

u - scalar control variable

f - n-dimensional vector function

S - pth order state variable constraint

® ~ scalar function of the terminal state

=4,

The necessary conditions of optimality for the above problem are given by

the following theorem, the proofs of which and of the following theorems are

now quite standard (see [2] or [3]).

Theorem 1. The necessary conditions of optimality for the basic problem are
oH T
(4) el
o h
. 3 30
(5) A =% MT) = 5=
* g



where

(6) <0, S(x(t)) =0
n(t) =
0, S(x(t)) <0

is_a bounded function for t £ [0,T].

At junction points ti of boundary and interior arcs, the influence

functions A(t) may be discontinuous. The boundary conditions are
9S

(7 A(t—;) = () - vt (gg)ti
and

+ -
©) H(ED) = H(tD)

where v(ti) < 0. The Hamiltonian H used above, is definedbby
(9) 0= H(x,u,A) = nsS + KTf.

The assumptions made in the derivation of these necessary conditions are
given in [3]; the only noteworthy assumption is that

9 4P
[__.

(10) 0
at?

(S(x(t))]1 # 0

i.e. that along the‘constraint boundary small changes in control can be related
uniquely to small changés in the state variables; this is a common assumption
[3].

Before proceeding further, let us make the

Definition: The Hamiltonian H, is said to be regular along an extremal if it

possesses a unique maximum with respect to the control at every instant in time.
Note that the Hamiltonian H, is really H(x,u,A). The above definition requires
that for all t e [0,T], given the extremal trajectories (say) x(t), X(t), H(;,X,
u) have a unique maximum with respect to u(t). This does not exclude the

possibility of multiple, non-neighboring, extremals, along each of which the

Hamiltonian may still be regular i.e. does not exclude problems having multi-

maxima. So the imposition of regularity on the Hamiltonian is not a very



stringent requirement on the control problem.2

If now, we impose the additional restriction that the Hamiltonian be
regular, it can be shown [2] that the optimal control variable u, as well as
its p = 1 time derivatives must be continuous. Furthermore, a rather simple
expression can be obtained for the entry-point multiplier, v.
We have

Theorem 2. If the Hamiltonian is regular, S ¢ B _ l[O,T]3 and the extremal

2p

path has a boundary arc of non-zero length, then

- p1_ p-1
(11) DR LwT - (W
v(tl)=

+]2

2p-1_
(8)

where (*) denotes ( ) on the interior arc at the junction time t

1
This expression for the entry point multiplier is very significant. Note

that H;u < 0 (strengthened necessary condition for H to have a maximum) ,

p-1 _  p-1
[ (0 - (W

are continuous (therefore zero)

+]2 > 0, and as S and its time derivatives up to dzP—l/dtZP-%gs)

(12) 2p-1
(8)™> 0

in order for the trajectory to reach the boundary. This implies that

(13) v(t;) 20

for p odd. But v(tl) < 0 (necessary condition of optimality) and hence (13)

implies that for odd-order constrdints, the optimal trajectory will, at most,
L. Tl g

only touch the constraint boundary, provided (u) # (u) . Note that for

p =1, it can be shown that v(tl) = 0; thus for first order constraints

boundary arcs are possible.




3. Employment Model A

The first example deals with the imposition of a subsidy for employing
additional laborers where the marginal product of labor is already equal to
the minimum wage. Assume that the neo-classical theory of the firm holds; in
particular, that the long-run ratio of labor demanded to capital demanded may
be determined by differentiating the production function and setting the ratio
of the partial derivatives equal to the factor price ratio. The production
function 1IN this case is Cobb;Douglas with constant returns to scale (homogeneous
of degree one). Suppose further that the demand for capital is equated to the
capital actually used but that labor demanded and labor employed are not necess-
arily identical, then we may express the ratio of labor demanded to capital in

use by the equation

1 -
[6)

D _ 0. r
(14) B = =3 &
t

where (5-) is the interest wage ratio, D is the labor demanded, K is the value
of the capital stack in use, and o is the capital elasticity of the output.

The term on the r.h.s. of (14) must be pomplicated a bit when we allow
for the presence of government tax policies and subsidies, and the effect of
lagged responses to changes in the effective factor price ratio. Consider first
the tax adjustment coefficient for the interest rate. This coefficient is

defined by the equation

_@a-8
(15) b= )

where 8 is the amount of the investment tax credits and depreciation deductions
expressed as a percentage of the gross investment and u, is the tax rate on
capital income. A similar relationship may be defined for the wage adjustment

coefficient v. Here we assume that the firm does not pay a tax on the labor




it employs and :that the coefficient represents a subsidy for the employment
of additional laborers expressed as a percentage of the increment in the wage
bill. The effective interest-wage ratio g may then be expressed as

(16) g= O&

We wish to avoid specifying how factor prices are determined within the
model. Therefore, we shall define the change in the effective factoF— price

R ; s . . h .
ratio between time periods, g, as our control variable rather than (;ﬁ, i.e.

(17) g=u.

Brown and de Cani [4] and David and van de Klundert [5] have given reasons
why the response to changes in factor prices may be considerably greater in
the long-run, than in the short-run. The main point is that to introduce a new
technology with different factor proportions may require a new machine; on
existing machines, proportions may be fixed. Given that the lag structure is
one with geometrically declining weights,5 the equation for desired factor
proportions may be written as

©o

(18) D, _,l-a 3% B i
(K)t (—————a )i=0 (1 - )2 8oy

where A(0 <\ < 1) is the initial weight. As Koyck [6] has demonstrated, a
reduced form of this relationship may be obtained. Lag the equation one period,
multiply it through by A and then subtract the lagged equation from (18).

The procedure yields,

(19) D

_ 1-a D
@ = Q- VEED)g F A,

This first order difference equation may be approximated by the first order

differential equation. (For an alternative procedure, see Griliches [7]).



d D, _ 1 -a D
(20) EE(E) =m ( 5 )g -~ m2(§

(0 < m, 0 < m, < 1. In what follows all coefficients are positive constants,
unless otherwise stated).

There is a distinct difference between  the change in the effective
interest-wage ratio (Ag) and the final change in that ratio which equates
demand and supply for labor, (Ag*). In the short-rum, changes in the technical
labor requirements may produce a slow response from the supply side. There may
not be enough laborers with the requisite skills in times of excess demand, and
training may be necessary; in times of deficit demand, firms may retain their
skilled personnel. Also, the empirical evidence suggests that labor force
participation rates, while positively correlated with emplqyment, tend to lag
fluctuations in employment. Finally, tﬂe firms may anticipate a future change
in demand opposite to the one that has just occurred. Under these circumstances
they may concentrate on meating their demand for production workers and not
overhead personnel.

Rather than determine an equilibrating change in the effective interest-
wage ratio, we choose to represent these bottlenecks by an adjustment equation

+ L 0<p<1

(21) Lo = pID, - L] t-1

where Lt is the level of employment attained in period t. This is approxi-
mated by the first order differential equation

(22) d - -
dt(L) = nlD nzL.

The remaining dynamic equation concerns the growth of capital stock over
time. Given a Cobb-Douglas production function with constant returns to scale,

value added is given by

.kéﬁ) v, = k¥ Cl—a



where

(24) Ct = minimum [L(t),D(t)].

Suppose that saving is expressed as a constant proportion of value added,
then the capital accumulation equation is

(25) —j—t(K) = k%17 - ek

where s is the constant average propensity to save and § is the rate of dep-
reciation.

The state variable L(t) is constrained below by zero7 and above by the
full-employment ceiling (given exogenously) L(t); i.e.
(26) 0 < L(t) < Loy, te [0,T].

Finally, denoting the termination date by T, the rate of social discount
by Y, the control variable cost coefficient by o, we may write the welfare

functional which we wish to maximize, in the form

27 a_l-a

I= e - k% - ou?lde.
0

The first term in the welfare functional represents consumptiong; this is a
familiar component of aggregate welfare. But why, one may ask, is the control
variable costly? The answer is that changes in the control may be expensive
in the sense that risk may be increased and speculative behavior on the part
of the firm may result. (Perhaps the reason that "control cost" of this form
has not been used earlier is that models‘with high-order dynamics, where such
cost is appropriate, have been rarely considered in the literature on planning).
Gathering together the dynamics, along with the welfare functiomal (27)
and the state-variable inequality constraint (26), optimal employment is given

by the following maximization problem:



2 . t a_l-a 2
(28) Max J = [ e YE[(L - &)k%z" % - ou”]dt
0
subject to
(29) g=u
(30) D _ _l-a _ _ D
@ =m =D - 0,
(31) L=nD-n,L (1> nyg>n, > 0)
(32‘) ® —
k = g8

where glO is given by (24), and initial conditions on the state variables are

specified (T is fixed); and subject to the third order state constraint
(33) 0 < L(t) < L(t).

4. TEmployment Model B

Let us now turn to a situation in which the obstacle to fﬁll employment is
not a floor on the real wage but insufficient training of workers. Dobell and
Ho [9] have formﬁlated a model which deals with this set of circumstances. It
centers around a well-behaved production function with constant returns to scale
(34) V= F(K,W)
where K is the stock of machinery and W is the stock of trained workers. Denote
the flow of educational services by E, gross additions to machinery by M, and
consumption by C. Then according to Dobell and Ho [9] we may write
(35) V=M+C+E
as an accounting identity.

Dobell and Ho go on to argue that this identity may be used as a transfor-
mation surface. It implies that resources may be shifted instantaneously from
one form of production to another with no loss in the total value of services

rendered. However, time may be required for retraining of workers and for the
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restructuring or retirement of machines. Even in the case of an increment in
V, the planning authority would have to exert considerable control over vocational
choice and the bill of new machines to achieve a relationship independent of
past production.
‘ the
Let us remedy this lack of realism with a simple modification of /Dobell-
Ho model. Denote the ratio of educational services to total value added by

B :
z =3 Then postulate a relationship involving a delayed adjustment

(36) z, = p[zt - zt—l] tz.o 0 < ﬁ <1
where z? is the desired ratio of educational services to value added. We will
write zt as
37 zi = u
where,ul(t) is a control variable. Then, approximating (36) by a differential
equation, we have

(38) 2 = Wlul - 'rrzz

where 0 < nl <1, 0 < m, < 1.

‘Delays in the shifting of resources between machinery and consumption goods
production only complicate the problem without affecting the final result.
Therefore, in ;he case of machinery, neglecting depreciation, we may write
(39) K = M.

Dobell and Ho specifically mention that they neglect gestation lags in
the training of workers. Assuming that the rate of worker retirement is zero
(for simplicity), their equation for the level of educational services is

(40) Et = d(Wt+l = Wt)

where W is the level of employment. The ooefficient d they assume to be an
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. . ; 1.1 ;
increasing function of the employment rate. Let us make d a constant indep-

endent of the employment rate, and denote the desired change in the trained

labor force between periods t and t + 1 by

Et.

]

A

*
(41) i

Then, given a lag structure with geometrically declining weights, the change

in the trained labor force may be expressed as
(42) AWt = (1 - X))
Again, following [6], [7], this equation reduces to

-1 -
(43) M= S(L = ADE + Ay AW

1 1

We approximate this second order difference equation with the differential
equation

(44) W= UlE = UZW 0 < ul, U, <1

The dynamic equations for our system are (38), (39) and (44). For con-
venience, we will re-write these equations in a normalized form, assuming that

the total labor force grows at an exponential rate n (0 <n < 1) i.e.

nt

(45) L= Loe Lo= initial value
Define
w
(46) i =W
en Ty
L
M
(48) ) control variable
C _
(49) Vo °©
and
K W \
(50) F(=, 0) = — = f(kyw ),
L L L
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Then (38), (39) and (44) may be written as

(51) =T T T,z

(52) ko= -nk + v, £(k,w)

and |

(53) ; = ulzf(k,w) - (u2 + 2n)& - n(n + 1w

In addition to the full employment ceiling on w,
(54) 0<wx<1,

the identity (35) gives the following constraints on z and U3

(55) 0<z<1
(56) 0<u, <1
(57) 0 fu, tz 21 &

The welfare functional which we wish to maximize consists of the discounted
per capita consumption stream less penalty terms (which reflect our desire for
some stability in policy). Summarizing, optimal employment is obtained by

maximizing the welfare functional

(58) 7= ) taTE LYy - wzz)z " & - b(t))?dt

. [(1L -z - uz)f(k,w) - Ol(ﬂ

)

with the dynamics

(59) z = LRI PY

(60) ko= -nk + u,£(k,w0)

(61) w=y

and

(62) § = plzf(k,m) o (uz + 2n)y - n(n + Duw

and subject to the constraints

(63) 0 <uw

<1
(64) gzl
(65) Q< <41
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(66) 0O<u, +221 .,

2
Before going on to discuss the implications of this model along with those
of model A, we note the following:
(1) 'As the proportion of resources devoted to education changes there may
be increasing opportunity costs; thus a quadratic penalty is applied to z.
(ii) The penalty term —Oz(u2 - b(t))2 reflects our desire for a stable policy
of investment. Absence of such a term would lead to 'bang-bang' solutions;
such solutions are not economically very meaningful. The presence of the penalty
reflects the desire for some mean rate of machinery investment, b(t), and the
possibility of increasing opportunity costs when resources are shifted into
machines.
(iii) Some consideration should also be given to the terminal conditions
in both models A and B. We have not done so for this would not change our
qualitative results. This is, however, certainly a point to remember in

computing solutions.

5. Discussion of Models A and B
The constraints én the state variables representing the employment level
in both models A and B are third order (odd order). Before applying Theorem 2,
however, we must verify if the problems satisfy the conditions imposed therein.
In both models A and B, the Hamiltonians are regular. In model A, the term
¢(t) = min (D,L), does not prevent the application of Theorem 2, as shown in
Appendix I; we assume f(t) to be sufficiently differentiable. In model B,
the presence of copstraints on u, and z apart from thét on w, makes for added

complexity. We show in Appendix II that these constraints do not affect our

2
conclusions provided u 2).12

2 > 4n(l -
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With these preliminaries, we can now state our central result for both

problems: From Theorem 2 (and Appendix II) the characteristic of the optimal

employment path is that full employment is attained, at most, instantaneously,
i.e. full employment is not maintained for non-zero intervals of time.

Note that in model B, the cost of training has been assumed to remain
constant as the employment levei rises. By contrast, the example discussed by
Dobell and Ho in [9] does not exhibit full employment along the optimal trajec—
tory due to increasing training‘costs; whereas their constant training cost
model of [10] exhibits sustained full employment. In both our models A and B
it is the lag structure (i.e. the order of the constraint) alone that causes
sustained full employment to be non-optimal.

What are the policy implications of our two employment models? If the
problems were re-formulated so that I or w was controlled directly, the employ-
ment level would move to its upper bbund and stay there. Clearly, the integral
of the discounted consumption stream would be larger in the case of model A
{provided there is no control variable cost) than it is in the original case
with the third order constraint; for value added, and hence consumption, is
an everywhere increasing function of employment.

How effective the planning authorities can be in eliminating delays remains
unclear. But some possibilities do exist. One is subsidized on-the-job training.
Employment model B may depend too heavily on the assumption that a threshold
level of skill must be achieved before hiriﬁg can ‘be justified. On—the—job
training may be less efficient from a production standpoint, but it still affords
the possibility of optimal full employment. Training is conducted as part of
the education process; thus an instantaneous transfer of resources into education

may be plausible. Further, there is flexibility in the skill level required
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for employment. Whether or not it is optimal to substitute this scheme for

slower training procedures is still open to question.

6. A Model of Foreign Debt

In the study of develéping economies, it is interesting to evaluate the
optimal accumulation path of foreign debt over time. Here mounting interest
costs must be balanced against the increased capital accumulation and imporfs
which an inflow of foreign loans permits.

Our model centers around four dynamic equations. Let us first consider
the investment-demand equation.

Assume again that total value added is given by a Cobb-Douglas production
function with constant returns to scale. The price of traded-and domestically
produced goods is the same. The level of empléyment is constant, and the units
in which labor is expressed may be normalized to equal one. Then, following
the principles of optimality for the firm, the desired level of capital stock
Kt may be derived from the condition that the value of the marginal product of
capital should be equal to the rental price of capital; for a Cobb-Douglas
production function this gives:

(67) K& = 2

where z, is the real rate of interest multiplied by a tax adjustment coefficient
like the one in (15), and o 1is the capital elasticity of output.l3

On the basis of a 'putty-clay' model of the firm, Bischoff [12] has shown
that the response of investment to changes in reiative prices is more delayed
than its response to output. Therefore, let us divide the demand for invest-
ment, I%, into two parts: that due to output changes 13, and that due to
interest changes I;. Assume that there is no demand lag in reaction to var-

iations in'output. Then we may approximate 13 as
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2 a~-1 ‘
(68) o= S — o ®
The capital accumulation equation is
(69) K =1I-6K
where I is gross investment and 6 is the rate of depreciation.
On the other hand, I: depends on past as well as present changes in the
real rate of interest, z. With a lag structure involving geometrically declining

weights, this can be expressed as

(70) (I;)t = (1 - A')(AK*Z)t + A'(I;)t_l

where (AK;)t is the change in the desired capital stock between time periods

t - 1 and t due to a change in z. This is approximated by the first order

differential equation

z - n, 1%

k =
(71) I n L%

oK
z 1 2

z
The control variable is defined by the equation
(72) z=u

Thus far, nothing has been said about the lag in supply; this brings us

to the third dynamic equation. Generally there is a considerable length of
time between the ordering of machines and structures and their availability.
Specifying this gestation lag as one with geometrically declining weights,
we determine current gross investment with the function

= - % *
(73) I, = (= A)I* +2A,I% | + 8K

27t~-1 1t

which we approximate by the differential eqﬁation

I = x -
(74) I ulI uzl + u3K .

Recognizing that I* = I; + 13 and using (68) we have for I

. (fKa—l
= o 25 - -
(75) I ul[Iz + - (1 §K) ] uZI + u3K .
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The control u enters through i;; hence we control not I but i.

The last dynamic equation concerns the growth in foréign debt. Net
foreign capital inflow is the difference between gross investment and gvoss
domestic saving. Let V represent gross domestic product, and assume that gross
domestic savings S may be expressed as a linear function of V (= Ka)

(76) S =sk%-b

where s is the aggregate (constant) savings rate. Substituting this into the

identity for net foreign capital inflow and subtracting off interest payments

from savings yields

(77) D=1-sk +b+£D

where D is foreign debt, and f represents interest payments as a proportion of
foreign debt.

An explicit palance of payments equation is neglected. Imports, it is
presumed, are allowed to vary so as to always equal the sum of exports and net
capital inflow. We note that creditor nations tend to scrutinize the ratio of
total debt service payments to export earnings, the 'debt-service ratio’.
Suppose that debt-service payments may be represented as a fixed proportion,
8, of total debt and that export earnings E are taken as exogenous. Then, we
assert, no more loans will be forthcoming once debt-service payments reach a
certain percentage, B, of export earnings. Symbolically
(78) 6D(t) < BE(t)

i.e. a constraint on the debt level.

In this model the welfare functional which is to be maximized is
T - 2
(79) T=ge YE(1 - 8)K* + b} - ouldt

subject to (69), (71), (72), (75), (77) and (78). Here T is the planning
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horizon and vy is the rate of social discount.14 The main component of the
integrand is consumption which is determined by subtracting savings from gross
domestic product. For the reasons cited earlier, we penalize changes in the
control variable with the coefficient 0. Some allowance should also be made

for the effect of tax policy on income distribution. This effect is not accounted
for as it is difficult to do so without explicitly determining the rate of

interest.

In sum, the optimal debt policy is given by the following optimization

problem.
T
(80) Maximize J = [ e_Yt[{(l - s)Ku + b} - Guz]dt
u 0
subject to
(81) z=u
» L uKa
®) = e - &
(82) (IZ) ny z2 u nZIz
2 _a-1
(83) . % a0 0K -3 -
1 ul[Iz + = (1 §K) ] UZI + UBK
(84) K =1-6K
and
(85) D=1-2sk” +b + D

and subject to the third order state constraint
(86) #D(t) < BE(t)
with specified initial and termimsl conditions on the five state variables.
As the Hamiltonian for the above problem is regular, we have by Theorem 2

that the optimal debt level touches the debt-service ratio ceiling at most

instantaneously i.e. optimal debt level is not maintained equal to the debt~-

service ratio ceiling for a non-zero time interval.
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There is a significant contrast between the optimal path in this model
and the 'bang-bang' solutions of Chenery and MacEwan [13] and Cetin and Manne
[14]. The latter models are linear programs; upper bounds are placed either
on the change in investment or the net change in the level of debt. These
constraints are continuously binding in the early periods of the solutions.
Considering the general structure of both models, this is equivalent to saying.
that the constraints on maximum debt are binding in each of the initial periods.
Yet, we know from the order of the constraint in our model that the debt level
touches its upper bound at most instantaneously. Consequently, the nature of
the optimum debt path for higher order models (which are perhaps more realistic)
is considerably more complex than past programming results suggest.

Given a lower order constraint on D(t), i.e. more direct control of the
debt level, and no cost on the control, the economy is better off growing along
the upper bound on debt than it is in meéting the optimality conditions in the
third ordervconstrained model. In calculating the social cost of discarding
capital, the possible social benefits of eliminating the lagged demand must be
singled out. Thus, because firms do not consider.this effect in their cost
calculations, subsidized discarding of capital may be justified under some
circumstances. For the delay in the response of investment demand to changes
in the effective interest rate may be reduced. Obviously, such tradeoffs can

only be examined in the context of larger models.

7. Conclusions

We have shown that there exist economic planning problems, with constraints
on the state variables, where some qualitative features of the optimal trajectories
may be deduced a priori, if the order of the constraint is odd (but not one).

The empirical validity of geometrically declining weights for the lag functions -
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an assumption upon which many of the differential equations rely - is perhaps
questionable.15 But few would deny that some form of lag structure exists.
This, together with our results, suggests that decision rules based on systems
not incorporating these lag structures must be held suspect.

Thus in this sense, this contribution has been negative. Let us now out-
line some possible areas for future research.

What are the properties of the optimal employment trajectory beyond its
touching the full employment bound at most instantaneously?

Clearly, the policy implications differ radically depending upon whether or

not the state variable path is cyclical in nature, i.e. bounces on and off the
full employment bound. 1In situations where a certain level of unemployment

is optimal, it may be desirable to use income redistribution policy to compen-
sate the unemployed (e.g., "a guaranteed annual income"). But for an optimal
trajectory which is cyclical, the timing of such a policy would be critical;

thus, in this case redistribution of income may be intractable in view of the
institutional inflexibilities of fiscal policy. For an optimal trajectory which
touches only in the terminal period, if at all, a slow implementation of policies
may be considerably less serious.

Past programming results ([13] and [14]) indicate that it may be extremely
costly to employ periodic limits on accumulated foreign debt other than the
usual terminal condition. Our analysis throws no light on the expense inherent
in the imposition of the state variable constraint. HNor do we have any
indication of the number of times, if at all, the service payments strike their
upper bound. These are crucial issues. Take, for instance, the case where
the upper bound on service payments coincides with the terminal requirement

at that point in time. If it could be established that the utate variable
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constraint is binding only in the terminal period, then considerable support
would be given to the institutionalized system of debt allocation where a given
debt-service ratio is notexceeded. Insight into these problems may well come

from numerical solutions.
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Appendix I

Lemma: The Hamiltonian of employment model A is continuous and piecewise
differentiable, except at points ti e [0,T]3 ID(ti) = L(ti).
Proof: The only (possibly) non-differentiable function is
z(t) = min[D(t), L(t)]

L(t) :
But D(t)%gre continuous and differentiable on [0,T]. Hence z(t) is continuous
and piecewise differentiable except (possibly) at ti e [0,T] 3 D(ti) = L(ti)
where the derivative %(t) may not be continuous.

The discontinuities in &(t) will not affect the application of Theorem
2 provided they do not occur at tj e [0,T] such tha; L(tj) = i(tj). That this
is the case #s seen if we re-write (31) in the form

L=n,(-1L)+ (n, - n,)L.
1 1

)
Then, assuming that the initial value of L is less than f,L(tj) = i(tj) if and
only if D(tj) > L(tj) (as Ny > Ny and Ny~ Ny < 1). So the changeover
g(t) = L(t)[D(t)] from z(t) = D(t) [L(t)] does not occur at tj. The case when
the initial value of L, L(to), is equal to f(to) and D(to) = L(to) (= i(to))
causes no difficulties; for at t = tO + e (g > 0)
+ e)- = E 1

L(tO g) < L(to) = L(to)

So, if at t, we set C(to) = L(to), at time& z(t)is still equal to L(t) [if

D(t) > L(t), if not set g(to) = D(to) = L(to)]. In either case, there is no

changeover when L(t) = L(t).
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Appendix II

We have the following constraints [(63)-(66)]

(1%) 0<w<1
(2%) Gsezs 1l
(3%) Oiuzil
(4%) 0<u, +zc<1

Before we can apply Theorem 2, we must ensure that the presence of constraints

(2%) - (4%) does not affect the continuity of U, u, and their derivatives.
Consider (2%) - (4%). This gives rise to the seven cases:

A, z and u, both slack, 0 < u, +z < 1.

B. z and u, both slack, 0 < u, +z =1,

G z = 0, u, = 0, u, + z = 0.

D. z =0, 0 < u, < 1, Q< u, + z < 1.

E. z=20, u, = 1; u, +z = 1.

F. 0 <z<1, u,

2
= 0, u, +z =1,

=0, 0<u, +2z < 1.
G. Z =1, u,

We will now analyze each case individually.

A. No constraints effective. Then we can apply Theorem 2 directly.
B. u, and z slack; u, + 2z =1. As z is slack, uy is given by
* = = o
(5%) Hu 0 201ul + wzkz
1
Then
w
(6*) u = ._.g_._ >\Z
1 20l

and, assuming that fk’ fm exist.~ a reasonable assumption - up;s Uy are continuous
and Uy exists. From u, +z =1, u, = 1 - z; hence, Uys Uy, U, are continuous.

We can now apply the analysis (given in [2] or [3] of optimal control) leading
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to the equation (11); this gives an expression for the multiplier vw of the
form = . - = L * o ote 2
H [{o) = kuw) | ®H [(u) = (u) ']
uguy 1 1 u,u, 2 2
= fug)P ' -
@ e =D Zped,

The second term on the r.h.s. is zero, but the first is not (except under very
unusual circumstances). Thus we can apply a modified version of Theorem 2, and
the state that for this case w = 1 at most instantaneously.

Cases C, D and E can be treated together, for from the dynamic equations

for w and y, namely

IS
]

(8%) y

(9%) ulf(k,w) z - (uz + 2n)y - n(n + Dw

we see that if z = 0, w is governed by a homogeneous second order differential
2
equation. For feasibility, if w = 1, w =y < 0. So, provided My > 4n(1l - uz)

i.e. negative real eigenvalues, the trajectory will not stay on w = 1 except

instantaneously.
F. z slack, u, = 0, u, + z slack. This is further subdivided as follows:
Let w =1 at t = tl where condition F holds. Then either

i) u, has saturated prior to time tl' In this case ﬁz, ;2 exist and

are continuous and the modification of Theorem 2 used in case B holds, and
w = 1 only instantaneously.

ii) u, saturates at the same time, i.e. the transition from any of
the other cases to this is made at time tl. In this case as w < 1 prior to tl
(we anticipate some of our analysis ) we cannot unequivocally rule out the

possibility of a sustained boundary arc in w, i.e. w = 1 for a non-zero interval

of time. Were this to be the case, however, the optimal solution would exhibit
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simultaneously

a. decreasing per capita capital stock

b. increasing per capita investment in education

c. decreasing per capita consumption.

Economically, this makes little sense; further an optimal solution
exhibiting such a sustained arc would be (economically) indefensible. We thus

conclude that we can safely rule out this possibility on purely economic grounds.

G. z =1, u, = 0, U, + z = 1. Then u, must saturate prior to the time, tl’
at which w = 1 - from continuity of z and U, + z = 1. This leaves only two

possibilities

i) =z saturates at the same instant, tl

ii) =z saturates prior to tl.

In either case, subsequent to the time tl’ if the solution is to exhibit a

sustained boundary arc in w, the controls Uy Uy must satisfy

"2
(10%) u, = — = constant
1 ﬂl
(11%) u, = 0
and
* = —]
(12%) w=20 w(ul,uz,t).

But (12%) would require uy and u, to be time-varying, hence a boundary

arc cannot be sustained.
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Footnotes

A state-variable inequality constraint is pth order if its pth time deri-
vative is the first to contain the control variable explicitly.

In point of fact, it is rather difficult to construct a non-regular
Hamiltonian e.g. see [3] p. 126.

sz _ 1 [0,T] = Class of functions whose (2p - 1)th derivative is bounded
in the interval [0,T].

p-1 _  p-l
The case (u) = (u) is possible, but numerical experience with problems

(p > 3) indicates that this is rare. In fact x_would have to be care-
fully chosen for this to occur. ©

Estimates, using this form of the lag structure, have been carried out
in [4], [5] for the more general C.E.S. production function.

Most of these arguments, along with the empirical evidence supporting
them, are given in Kuh [8].

The lower ceiling on L(t) is of little economic significance.
i(t) will be assumed to be monotone increasing.

More correctly, this should be modified to include per capita consumption.
However, this does not affect our results.

The Hamiltonian is still piecewise continuous and differentiable. See
Appendix I. '

In [10] Dobell and Ho consider the case of a constant training cost. For
this case, their results unequivocally yield sustained full employment
for a significant portion of the optimal trajectory. The case of an
increasing training cost gives the solution discussed in [9].

This is not an overly stringent condition if education in the model is
defined as short-term vocational training. Other educational services
may be expressed as an exogenous component of E without affecting the
final result.

See, for example, Jorgenson [11].

Footnotes 7, 8, 9 apply here also.

However, see Griliches [7] with regard to other estimates.

i(t) is assumed to be a monotone increasing function of time.



