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Abstract

A class of one-dimensional search problems is considered.
The formulation resulte in a functional-minimization
equation of the dynamic programming type. In a special case
the optimal solution for both the objective function and
the search procédure is found.
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1. General Outline of Search Problems

Suppose that an object moves around within a finite number of
regions (cells) at each time instant according to known probabilistic
lavs.

A gearcher adopting a search rule checks sequentially one region

~at a time, until the object is found. At his disposal is an 'effort
budget' which tells him when to stop searching, i.e. when the costs of
searching exceed the prospective gains of searching. Various optimality
conditions for search rules may be invoked: they may vary between those
that maximize the probability of detecting the target with a given effort
and those that minimize the expected search costs needed to find the
target. Alternatively, one may consider minimizing the expected number
of periods to find the object or, if appropriate, minimizing total
expected losses until the object is found.

Such optimization problems are of eminent interest in operations
research, see J.M. Dobbie (1968), or S.M. Pollock (1971), most of the
models studied so far have been Markovian-type search models.

Also in economic decision problems one is interested in comparing
various decision rules with regard to the costs involved by implementing
such rules. Here rather than facing the impossibility of choosing an
optimal strategy 'rules of thumb' may constitute satisfactory strategies

constituting a reaction to the complexity of decision rules (see H.A. Simon

(1972) and C. Futia (1975)).



Search and complexity appear to be intimately related - as we
encounter choice problems invoking a combinatorial structure (such
as chess). If we are in a very large market the optimal search
consists of finding the minimal price offered by one agent for one
unif of commodity, howevér, with every search costs are involved and
finding the minimal price after many searches need not be optimal
since search costs.may be prohibitive. Here the proper optimal search
procedure would consist of minimizing the expected cost of search
for a minimal price (among all alternative searches), or, alternatively,
of maximizing the probability of finding the agent with a given
minimal price and within a f;xed number of searches (constituting the
cost budget). Both optimiiation procedures are also genuine for
statistical search problems (see de Groot (1970)). The standard
search problem, treated statistically, is as follows: Suppose that an
object is hidﬁen in one of r possible locations ( r > 2) and let Py
be the prior probability that the object is in location i. The statis-
tician must find the object but he can search in one location at a
time. Hence he must devise a sequential search procedure which specifies
at each stage that a certain one of the r 1locations is to be searched.

An important subclass of such problems, restricted to one-dimensional
search will be considered in this paper. It involves a functional

minimization technique of the dynamic programming type.

26 The Problem and the Optimization Eguation

We consider a storage unit of an information system consisting of
N cells, with information stored in tabular form. That is, the record
r(i) stored in cell i is in the form of a pair [xi,f(xi)] s the file

being arranged in ascending order of the argument X o An example of such az



arrangement is a dictionary.

Given a particular argument x , we find f(x) by searching
for the cell containing [x, f(x)] . The search proceeds by comparing
x against the arguments in a sequence of cells 11,12,... This
sequence is to be chosen so as to minimize the average number of
comparisons required for locating the correct cell, in other words,
for a given gearch cost associated to each comparison we want to
minimize the expected cost of search over the sequence under con-
sideration.

We begin with the following assumptions.

(1) 1In a comparison of x against x;, only three possible

outcomes exist, namely,

H
5

x>xi, xéxi, X

(ii) Let X ©be an integer-valued random varisble denoting the
location of x. We assume that the prior probabilliies Py = Prob[ X = k]
are given, with |

; N

W) Z p =1
=1
(iii) Let S be the set of integers 1 through N, and let S'

be a non-empty subset of S. We assume that the posterior probability

distribution of X is unchanged except for renormalization; i.e.

b
(2) Prob[X = x| Xe 5] -I-,-’(‘-S-,-)— , KES!

0 , k¢s!

where P(S!') = > I
ieg?

Let T[(pk), N] formally denote the minimum average number of
comparisons per successful search, given N cells and prioxr

distribution (pk). It is clear that the search procedure starits with

the selection of a cell for the first comparison. Suppose cell n is




-

selected and x is compared with X,e The following situation then

resultss

(2) With probability P, X = x_ and the search terminates.

ne=1
(B With probability P4 = ?__:1 P;» X<x and x must be
contained in'the first n-1 cells. If we renumber the first n-1 cells

backwards stakting with cell n-1, the new distribution becomes

(3) Pk' = Pn-k 9 k = 1,...,11—1.

n-9 n

(¢) with probability 1-Pn = Z Py» x>xn. Upon renumbering
i=n+1
the last N-n cells, we find the new distribution to be

| D
(4) ‘pk"s_-'-_%’ k=1,...,N-n.

It is clear that whichever well is optimal for the first choice,
succeeding choices must remain optimal for the overall sequence to be

optimal. Therefore, T[.,N] must satisfy the following functional

equation:
p
(5) 7[(p),N| =min {1 + P T[( n‘k'). n-1]
[ - ] 1€ nelN =1 Fa-1

+ (1-2__.) T[(f’_’;z) , n_n]}.

Equation(5) is in the formalism of dynamic programming , Bellman (1957),
yielding as solutions the objective T[(pk),N] and the optimal policy

n¥* [(pk)\‘,\n] + A8 initial conditéons we set P = 0, 7(.,0) = 0, and
T(es1) = 0. (Note that this last condition implies that if there is only

one cell no comparison is necessary. This is a consequence of (1))



3. Optimal Solutions for Uniform Distribution

if Py= %, k=1,2¢+0,N, explicit solution of (5) can be found.
In this case, it is clear that T(.,.) and n*(.,.) are functions
of N only. With a slight change in notation we can rewrite (5) as
(6) T(N) = 1+ min {n"1 ™a-1) + (1- 2) T(N-n)}
- — 1N N *
{snsN

The solution T(N) of (6) is given by

k=0,1,2900c
(2k+1+2m,1)m(2k+1+2m-1) = 2k+1(k~%) + 2mk+3m+1, k
m"-’:O,‘!,.;.,Q
(7)
(2 s2m)n(25 s2m) = 2" (k= o (2m1)icH3(me1) 0,1, 00025

The policy n*(N) which yields the minimum is not unique. In fact, the
multiplicity of solutions can be quite large. The complete set of

solutions is

K+1 k-1

Op15c0ey2m+ly, m< 2

2m“2k+1 geee ,2k, m) Zk-1

n*(2"" '+2m) = 2k+j, 3

i

J
(8)

:1 C
ni¥* (2k+ +2m"1) = 2k+2,j, j = 0’1,aco,m, mé2k 1

j = m-2k—1’ooo,2k-1,' m>2k-1

4

For example, consider N = 2749 = 25,

Then n*(N) = 10, 12, 14, 16.

The policy solution is interesting and somewhat surprising. Intui-
tively, one would expect that the optimal solution n*(N) should be
such as to divide the remaining N-1 cells into nearly equal subsets,
i.e., Nen* T n*.q, Thus, the large multiplicity of solution is not
expected. Furthermore, in some cases the midpoint is in fact not

a solution. For example, for W = 25, the point n = 13 divides the

remaining 22 cells equally, but is not among the solutions.




4. Proof of Optimality

In this section we shall prove that the solutions of (6) are
indeed given by (7) and (8). The proof proceeds in three stages.
First, it is shown that the right-hand side of (6) is minimized
by a specific choice of palicy n*(N). Next, T(N) will be derived.

Finally, the multiplicity of the policy solution is found.

A. If we let f(N)

(9) £(w)

NT(N), (6) is simplified and can be rewritten as

N+ min {f(n-1)+f(N—n)}
1<ngN

We begin by proving the following theorem:
Theorem 1: TUnder the conditions £(0) = £f(1) = 0, the mini-
mization in (9) is achieved with n = n*(N), where for all positive

integers m,
(10) n*(4m-2) = n*(4n-1) = n*(4m) = n*(4m+1) = 2m

Proof: It is seen that Theorem 1 is equivalent to the

following set of equations with m ranging over all positive integers:

(11a) f(4m-2) = 4m-2 + £(2m-2)+£(2m-1)
(11v) £(4m=-1) = 4m-1 + £(2m-1)+£(2m-1)
(11¢) f£(4m) = 4m + f(zm-1)+f(ém)

(118) £(4m+1)

E‘

+ f£(2m-1)+£(2m+1)

We proceed by induction. First, by enumerating all possibilities,
we find that (11) is true for m=1. Next, we assume (11) té be true for
m = 1,..0.5k, and prove the following lemma:

~ Lemmas Equation (11) being valid for m=1,250009k, implies
(12) f£(n+1) - £(n) P £(n-1) - £(n-2), n=2,...,4K
(13) £(a+1) > £(n) s D=1,2,00.,4K

(14) £(2n) - £(2n-1)> £(2081)-£(20), F=1,2,000,2K



Proofs If (11) is true for m=1,...,K, then
(15) [£(4m+1) - £(4m)] - [£(4m-1) - £(4n-2)]

= [f(2m+1) + f(zm-z)] = [f(zm) + f(2m-1)] g W= $32ysumpke

Now under the same assumption, [ compare (11¢) and (9)] ,

(16) f(2m) + £f(2m-1) = _min {f(n-1) + f(4m-n)} 1€ mg K
1sn<dm

Therefore, it follows that

(17) f(2m+1) + f(2m-2)> £(2m) + £(2m-1), 1< mgK

and
(18) f£(4m+1) - £(4m)> £(4m-1) - £(4m-2), 1< M<K
Similarly, we find that

(19) £f(4m-1) - £(4m-2) = £(4n-3) - £(4m-4)
(20) £(4m) - £(4m-1)> £(4n-2) - £(4m-3)
(21) £f(4m-2) - £(4m-3) = £(4n-4) - £(4m-5), m<K

Relationships (18)-(21) imply (12), and together with the fast

that £(2)-£(1)>0 and £(3)-£(2)>0 impky (13).

Now, if (11) is valid for m=1,...,K, then

f(2m) - f(2m-1)>£(2m+1) - £(2m)
implies

£f(4m-2) - £(4n-3)>£(4n-1) - £(4n-2)
and

£(4m) - £(4m-1)> £(4n+1) - £(4m),
fiir m=1,2,...,K. Therefore, (14) is implied by £(2) - £(1) > £(3) -£(2).
This latter is easily verified.



Now, we proceed with the main part of the proof for Theorem 1.

First we write f(4K+2) as

(22)  £(4K+2) = 4K+2+ min {f(n-1) + f(4K+2-n)}
2<n<4K+1

- 4K+2+!;2{ min_ [£(2n-1) + £(4K+2-20)] ,

1sngkK

_min_[£(2n) + £(4E+1- ZnX]}
1sn<k

By (12) of the lemma, (22) is reduced to

f(4K+2) = 4K+2 + min {Ii(2K+2) + f(2K-1)] y [f(zx) + f(2K+1)]}
= 4Kk+2 + £(2K) + £(2K+1) ,
where the last step follows from (12). We note that we have extended
(112)to m=K+1, and (12) to n=4K+1.

Similarly, by the use of (12) and (13), f(4K+3) can be written
(23) £(4K+3) = 4K+3 + Eg{2f(2K+1), £(2K) + f(2K+2)}

It follows from (14) that
£(2K+2) - £(2K+1)> £(2K+3) - £(2K+2)
and it follows from (12) that
£(2K+3) - £(2K+2)> £(2K+1) - £(2K).
Therefore,
£(2k+2) + f£(2K) > 2r(2K+1)
and from (23) ,
(24) £(4K+3) = 4K+3 + 2£(2K+1).
Following a procedure nearly identical to the above, we can

show that

(25)  £(4K+4)

it

AR+4+£(2K+1) + £(2K+2)

and

(26)  £(4K+5) = 4K+5 + £(2K+1)+£(2K+3),



By induction, Theorem 1 follows.

B. The functional form of f(N) is given by the following theorem:
Theorem 2. Equation (9) is satisfied if and only if

(27a) £(2'e2m-1) = 257 (k- 1) + 2mk + 3me1, K = 0,1,...

m

]

k
0,1,00.92 ‘,

k+1

(270) £(2"42m) = 2*V(k- 1) +(2me1)x + w3,k = 0,1,...

m = 0,1,00-,2k-1

Proof: The "only if" part follows simply from the fact that no
two functions can both be the minimum without being equal. To prove
(27), we again use induction. That is, we verify (27) for k = O and as-
sume it tobs walid for k = O,1,...9K=1. If it follows thereby that
(27) is valid for k=K, then (27) must be true for all k. The detailed
proof involves substitution of (27) in (11) and elementary manipulation,

and will be omitted here.

c. Theorem 1 is strengthened by the following result:
(28) £ [ax(n) - 1] + £ [Wmx(W] = min_ Je(n) + £(-n)]
isnsN
if and only if

(29a) n*(2k+1+2m) = 2k+,j, J = 0y1y0e0y2mtl, Oém<2k-1
j o= 2m-2541,.0.,25, KL meo®g
(29b) n*(2k+1 k -1

+2m_1) = 2 +2j, j = 0,1,.0.,1‘1, Osm.‘EQk
ke

§ =28, L, 25, 5 g o

Proofs The "if" part is proved by substituting (29) and (27) in

1

(28) and verify. In the process it is also shown that for 2k+ < Ng 2k+2-1,

k41

the only solution in the range 2ks n¥< 2 are those given by (29).

Thus, it remaeins only to show that no value of n* greater than 2k+1

or less than 2k is a solution.
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k-1 N <

2k+1+2m, O=smn<?2 . Since we know that n* = 2

Consider N=

is a solution, we need only to show that (similar results follow for

¥ > o+ by symmetry)

k
(30)  £(2%-1) + £(2Eeom) < £(2K-2) * £(2+2me1)
< £(25-3) + £(2Krome2) <.,

The first of inequalities in (30)is easily verified using (27). The

remeining inequalities follow from (12). For 1< ms2k, we use
n* = 21 ang from (27) and (12) show that
(31)  £(2-1) + 2(2m) <£(25*) & £(om-1) < (26 T41) 4 £(2m-2)

S.‘.

For N = 2k+1+2m-1, the proof follows nearly identical lines

and will not be given here.

Remarks
A somewhat related one-dimensional, continuous search problem has

been treated by A. Beck (1964) with different tools.
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