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An Information-Theoretic Approach to Large Crganizations

Hans W. Gottinger

1. INTRODUCTION N ' ‘ ;

Organization theory is an elusive subjecﬁ, being of interest to
jdiverse disciplines: sociology, psychology, human engineering
and economics. But past work has been mostly qualitative, and
the originatof of classical organization theory is uéually con-
sidered to be MAX WEBER/1922/. Modern approaches to organization
notably MARCH and SIMON/1958/,distinguish a traditional ané a
modern form of'organizaticn theory. The traditional version ap-
pears to be characterized by the fact that it t:eats organiza- -
tion members as fuily coopefatiﬁe instruments while the latter
accords to them preferences and aspirations that may not coin-
cide with those of the organization.

This paper here also treats organization members as being fully
cooperative, and therefore may be considered a guantitative ver-
sion of the traditional theory. Most other quantitative theories
of organization, as those using hierarchical forms » assume the
structure of the organization to be given at the outset . A not-
able exception is thetheory of teams by MARSCHAK afd RADNER71972/;
where the structure is determined by the requirement for an ex-
pected minimal cost ¢f communication, or, equivalently for an
expected maximal payoff in terms of the teams' goals. Following
some earlier work on “computable“'organizations; GOTTINGER/1973/,
we suggest that an organization reveals very much of the struc-
ture of a sequential machine, and for that purpose, in this a&ap-
proach, the structure of the organization is very much detex-
mined by the capabilities and limitations of the organization

members which weakens the rigorous normative set~up of other or-
ganization theories.

2, ORGANTZATIONAL STRUCTURE AND PERFORMANCE

We deal here with the wajor building blocks of the kind of orga=-
nization which has been described as “task-oriented". The pur-



pose of such organizations appears to be best modeled as a deci-
sion-making task, so we start with an extremely simple decision-
making or "computational" model.

We assume that

(i) the organization receives an input drawn from a certain set
of inputs and is required to respond to it with an output,

(ii) it is rewarded for such a response with a certain payoff
which in general depends on the response, as well as the input,

(1ii) the goal of the organization is to maximize the expected
or "average" payoff.

It will be useful to consider the inputs to come from "sources"

and the outputs to be delivered to "destinations", both outside

the organization. In information-theoretic terms we may speak of
all inputs and outputs as being "signals", the same term may al-
s0 be applied to transmissions among organization members.

A signal will be understood to be a sequence of symbols: a sym-
bel may be asingle letter, a memo, a certain number of resource
éoéts, a job specification, a price quotation, etc. The collec-
tion of different symbols that are used in a signal are its "al-
phabet”. All alphabets are assumed here to be finite but pessibly
quite large.

The members of the organization will be assumed to operate in
the same way as the organization as a whole. They will acquire
symbols as inputs, either from outside sources or from other mem-
bers, and will dispatch them after suitable processing to certain
destinations inside or outside of the organization. The members
can be thought of as persons or machines. For simplicity, we de-
signate them with impersonal letters such as alpha, beta, gamma,
etc. If the organization is of a centralized nature we will have
to add a centralized unit, cu.

Suppose now that xj is an input symbol received by the organiza-



tion at a certain point of time, either from one source or joint-
ly from several. It is assumed that if xj is dispatched the-sym—
bol will be received with a known "symbol probability" Pj and
that one such symbol is acquired per unit time. The incidence of
symbols in different time units, as fhey subsequeﬁtly come in,
are assumed to be statistically independent.

The organization is required to respond to the input symbol xj
with an output symbol Yx It need not do so within the same time
interval as the acquisition of x.. Thus delays are permitted,
provided they do not pile up. That is, the average delay between
the receipt of an input symbol and the delivery of an output sym-
bol must not exceed one time unit.

Under these general conditions, if the organization respond to
xj with Y it receives a reward Rjk' Of course, it would be de-
sirable as a normative postulate, to respond in such a way that
the reward is maximized.

However, under the assumptions to be made here concerning the in-
dividual organization members, in situations in which they have
difficulties in coping with the schedule, the optimal response
will rarely be realized.

Rather, when the input symbol Xj is received, every output sym-
bol Y% 1s a possible response, and in fact will be the response
with a certain conditional probability P(ykh%).). The perfor-
mance of the organization will be given by the average payoff,
i.e. the quantity

() R = InfRy P x)

in which j and k range over the input and output alphabets, res-
pectively.

Optimal performance is, of course, a special case of (*), i.e.
it is the largest expected pay-off that the organization can ob-

tain if all messages will be responded properly, when

k = k(j).



This appears to be the case, if

(*%) P(yklxj) 1, if k = k(3j)

0, otherwise.

Completing the definition of the organizational goal we have a
decision-making problem of a conventional type, with the restric-
tion on the organization to stay on schedule. The theory of teams
in particular uses a very similar set-up. The problem itself, as
formulated, appears too simple, and if any claim to realism is to
be made, some more restrictions have to be imposed.

(a} Stochastic Dependence

Successive input symbols should be allowed to be dependent, or,
the input arrivals should be allowed to be a specific random pro-
cess,

(b) Uncertadinty
Complete knowledge of the input alphabets and probabilities, as
well as the payoff matrix Rjk should be dropped.

(c) Complexdity
Cognitive and computational limits in handling vast amounts of
messages and in choosing among responses should be explicitly

recognized.

(d) Penalty

The organization should be penalized for delays.

We will not treat these generalizations in a detailed fashion,
but instead show what the conceptual building blocks are that

provide for such generalizations.

3, A TWO - MACHINE MODEL

As mentioned in the previous section, the organization member
"processes" xj into Yy This processing may be deterministic or

stochastic. In the first instance, the organization member pro-



duces the same output symbol Y whenever he receives x. and trans-
mits it to the same destination, in the second he does so only
with a given probability.

We are emphasizing that the organization is ‘task-or-iented'and that
every member is coping with the difficulty of properly process~
ing input into output symbols, depending on the nature of the
task as well as on his competence for its execution. As a proxy
measure for the leﬁel of difficulty we could use the (average)
processing time (or the number of computational steps in time)
which he needs to perform a given task.

It will be convenient to visualize an'organization member, a ma-
chine, as being composed of an input machine and an output ma-
chine - hooked in serial connection as illustrated in Fig. 1.
The reason for this distinction is that an organization member
may be called upon to do two quite different tasks, and may have
difficulties of different kinds with performing them. One is the
acquisition and sorting out of input symbols, the other the pro-
duction and dispatching of output symbols.

The processes which are needed for one usually differ significant-
ly from those for the other, and their processing times accord-
ingly depend on guite different parameters.

Decision Machine

Source o Destination a
X | Input Output

‘\
////’ Mmjunel Machine

Source R

Destination 8

Fig. 1

The decision machine is then characterized by two sets of pro-

cessing times. Thus, tsi), i for input, is the processing time

of the input machine for symbol xj, and t£°) is the correspond-

ing time of the output machine for the symbol Y+

The performance of the two machines can be measured by their aver-

age processing times

T(i) (o)

and T : given by



(o), (o)

W 5 p ) e = Ry (1)

K i35
where Pj and Pk are the probabilities with which the processing
of xj and Yy is called for.

The processing Load of the organization member is measured by

the sum of t(4) and T(O», i.e. by

T =1 + T ' {2)

(1}

The individual processing times t, and t£°)

may depend conly on
the symbols xj or v, that are being processed, but they may de-
pend also on other parameters, for instance, length or number of
symbols, not explicitly considered here.

All these parameters may reflect the complfexity or difficulty of
a processing task for a particular organization member. Thiswill
be developed further in the next two sections. By the assumption
that an organization is required to meet its schedule we see im-
mediately that the average processing time T of each member must
not exceed the average time between the arrivals of input sym-

bols, namely one time unit. Therefore,

r=1® 4 T <1 (3)

must be assured for every member of the organization. If this
bound is violated for some member, he will be considered "over-

loaded”, in an intuitive and technical sense.

4., THE QUTPUT MACHINE

We set out to measure the relative difficulty of the task by the

processing times t, which the output machine needs to carry them

out. In conventiongl information theory, as in SHANNON's model
1949/, the processing times are assumed constants, i.e., would
depend only on the.symbol Yy It will become apparent below that
the machine outputs of one organization member often need to be

transmitted to several destinations according to certain more



or less involved procedural rules. It is then too simple an as-

sumption to suppose that the processing time tk will be the same
for all such rules.

Suppose, for instance, that Yy is a directive which is produced
by the output machine of an organization member in response to
gsome input xj. The procedural rule may then specify that Yy be
sent to the same organization member, a say, whenever it is
called for but that other directives be addressed to other mem-
bers. The rule may, on the other hand, be rotational. Thus, if
the directives have r potentional destinations, o, B,...,u the
rule may specify that areceives every r-th directive. One may al~
s0 consider a stochastic rule which would prescribe the probabi-
lities

Pak' PBk""' Puk with which

Yy be transmitted to those m members, such that

_ E

(*) Pog > 0 (r=a/8,...,u ; k=1,2,....,n})and

* =
(**)} P = .
An output machine operating in this way will be said to process
its symbols "alternatively" and the probabilities P will be
called the "assignment probabilities".

The procedural rule for an output machine can however be more in-
volved than the ones that have just been described. The greater
complexity occurs when Vi is actually an m-tuple of subsymbols

y;, yi,..., y?, say, each of which can be transmitted to a or Bor...
U. The rule may then specify first a certain permutation Pk of

the superscripts {1,2,...m} '

l.€.

h that
{01,02,...,0m} = puk{1,2,...,m} sue a

y}gl+a' y]fz_)- B,---



The rule would further specify how many permutations Py are al-
lowed, and it would finally specify the probability Puk with which
each of those is to be used. The Puk would then be the assignment
probabilities under this rule and would satisfy

Pak 2 9 LPak=1 (k= 1,2,....,m

with u ranging over all allowed permutations. An output machine
operating under a procedural rule such as this will be said to
be doing its processing "in parallel”. One might expect parallel
processing to represent an even more complex task than alterna-
tive processing, especially when the number u of allowed permu-
tations is large, and hence to require even longer processing
times tk' The discussion of two possible processing procedures
indicates that the output processing times tk should be allowed
to depend on certain parameters, for instance, the number m of
distributions or the numberu of allowed permutations, and per-
haps, also on the assignment probabilities Prk or Puk' The depen-
dence should in some way reflect the difficulty of the process-

ing jobs.
Let us make these notions more precise:

DEFINITION 1. An alteinatively processing output machine will
be called "load-dependent"” if it has the following properties:

(a) 1Its processing times tk are functions of the number m and

of the assignment probabilities

g, Bye.c.su ,i.e.

a1
n

+
I

= tk(m IP) ’

defined for all m > 1 and all vectors P with components P, s

4 satisfying the constraints (*) and (**}.

Bk’ LI 'Puk'
(b) Suppose m is fixed and one of the assignment probabilities,

. ' .
Puk' say, is reduced to Puk< Puk but in such a way that



PL.> Py for all r + p. The processing time t, of y, is then not
decreased, and we have

tk(m:P') 2t (m;P)

(c) Suppose one of the assignment probabilities, Puk say, 1is ze-
ro. In that case

t, ((m-1); P') < t, (m,P)

where P' is an (m=-1) vector whose components Pak'PBk""' Plkare
the same as the first (m-1) components of P.

DEFINITION 2. An output machine processing in parallel will be

called "load dependent"” if itsprocessing times t, are functions
of the number m of the destinations, of the number u of allowed
permutations Puk’ i.e.

tk = tk(m;u;P)

provided that the ty have the properties (b) and (¢} in u and P

when m is fixed, and

tk (m=1;u;P) < tk(m;u:P)

when u and P are fixed, provided u < (m-1)

THEQREM 1: Let an alternatively processing output machine be

load dependent in the sense of DEF.!. For fixed m, its process-
ing times tk are continuous concave functions of the assignment
probabilities Pt and each assumes its minimum when all but one
of the Prk vanish. This minimum is a monotone non-decreasing func-

tion of m.

PROOF. Consider first alternative processing with m destinations,

and some fixed Yo Suppose that the assignment probabilities are
changed to

p! r = a,Br....,1s in accordance with (b} of DEF.1:

rk’



10

Pox 2 Pox 7 Pgi 2 Ppirever Pry 2 Py,
’Pﬁk € Py
These inequalities imply
Pak + PBk teoot Plk < P&k + Pék +...+ Pik'
Pox * PBk Fouut Pyt Puk =Pt Pék +;..+ Pl ¥

1 =
Puk 1.
It is known that two vectors P and P' whose components Prk and

PI
rk
tion of the form

satisfy inequalities such as these, are related by an equa-

P = Qp'

in which Q is a doubly stochastic matrix, i.e., one whose ele-

ments Qrs satisfy

(r,s = a,B,...,H).

Suppose that P', in particular, is specified as the vector with

the component

R
Pdk = 1

and all others zero. Then P will have the components Qra'QrB""
C%U' and since O can be any stochastic matrix, all vectors P of
assignment probabilities can be generated from this P' by suit-

able choices of Q. These vectors can be, however, also be gener-

ated by

P = {jaj p(j’ (5=1,2,0..m Py = 1)
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where P' is the vector that has just been defined, P'' similarily
has the component ~

Pl = 1
and allothers zero, and P(m) has
(m) _
Puk =

and all others zero. Therefore, by the inequality in property (b)
of PEF.1 it follows that

. .p(3) (3)
ty (m;P) > maxy ) (m;P'77) > Xixjtkﬁmp ),
which proves the concavity of tk(m,P) on the polyhedron defined
by the assignment probabilities, i.e

Py 2 00 Loy = 1.

Its continuity on the interior of this polyhedion follows from
a wellkown fact regarding concave functions, see e.g. KARLIN/
In the present case, however, it is permissible to in-
clude also the boundary of the polyhedron on which one or more
of the Prk vanish because any discontinuity in tk there can be
absorbed into its behavior as a function of m. Thus, tk is con-
cave on a closed bounded convex set, namely the polyhedron. Ac-
cording to another weliknownfact concerning concave functions,
tk assumes its minimum at extremepoints of such é set, in the

present case at one of the vertices P(J),

Thus, the individual processing times ty of a load dependent
output machine have the properties as stated in the theorem.

CORQLLARY 1. Consider an output machine, processing alternative-

ly to m destinations. Suppose that its processing times tk are

concave functions of the assignment probabilities. Then

tk(m;P) > tk(m;P')
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for any two vectors P and P' related to each other as in the
proof of THEOREM 1.

5. THE INPUT MACHINE

The input machine collects certain inputs xj from sources out-
side or inside the organization, and converts them in a one-to-
one fashion into a form that the output machine can process them.
The collection and conversion of x. will in general réquire a
certain processing time also, for which the notation tgj was in-
troduced. (The superscript (i) will henceforth be omitted, for

notational simplicity.}

The allowances for the complexity of an input processing task are
different from those of an output machine, in fact, they appear

to have no couterpart on the output machine.

According to a large volume of psychometric data, the processing
time ('the reaction time') for an input symbol xj varies with the
probability with which the symbol arrives. The input machine in
other words, somehow quickly accumulates statistical evidence con-
cerning the relative frequency with which the various xj are re-
ceived and then adapts its processing times accordingly. Symbols
that occur rarely are processed more slowly and those that come
up frequently are disposed of quickly. There are, in fact, indica-
tions that the variation of tj with the probability pj is rough-
ly logarithmic, i.e.

*)t., = t_. - c. log P.
(Pt = To3 7 %5 799 75
but this observation does not seem to be uniformly accepted by

experimental psychologists.

Under these circumstances it may be appropriate to define load
dependence for input machines in a way that is roughly analogous
to DEF.1 for output machines, but includes (*) as a special pos-
sibility. In such a case the analogy should further make plau-
sible allowance for the complexity of alternative and parallel
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processing tasks. The size of an input alphabet can be quite
large. It may be appropriate to associate the notion of the com-
plexity of the task of input processing with the numbers of in-

put symbols, and the probability of their occurrence in roughly
the same way in which this notion was associated with the number
of destinations (or of permutations) for the output machine. The
gualitative analogy that suggests itself here would then be this:
an input processing task would be the easier, the smaller the num-
ber n of symbols in the output alphabet, and if n remains the same
the task should become easier if the frequency of the processing

is increased.

DEFINITION 1. An input machine will be called "load dependent" if

its mean processing time 1 has the following properties:

(a) It is a function of the number n of symbols in the input al-

phabet and of symbol probabilities
Pj'j = 1,2,...,!1 :
= :P) = Y,P.t.(n;P
T = t(n;P) = )} Pyt (iP)
defined for all n > 1 and all vectors P with compcnents P1,P2,..”Pn.
(b) Suppose n is fixed and one of the symbol probabilities P

say, is reduced to Pﬁ < Pn but in such a way that Pa > Pj for
all j ¥+ n. The mean processing time is then not decreased, i.e.

t({n;P') > 1(n;P)

(c} Suppose that one symbolprobability, P for instance, is

zero. In that case,
T(n-1;P') < 1(n;P)

where P' is an (n-1)-vector whose components P1'P2""'Pn—1 are
the same as the first (n-1) components of P.

Notice that this definition bases load dependence of an input
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machine on the mean processing time 7. This is in contrast to its
counterpart in Sect. 4 which is based on the individual symbol

processing time'éo)

The reason for this lies in THEOREM 1, Sect. 4,which shows that
the tt” are cancave functions of the assignment probabilities P k
and Pnk' If the definitions here were based on the individuafiym—
bol processing times, tj' also, these would be found concave in
the symbol probabilities Pj’ and that would be incompatible with
(*) : tj in that equation is convex'in Pj. DEF.1, however, implies
properties for the mean processing time which are the same as

those of its counterpart of the output machine.

THEOREM 1: Let an input machine be load dependent in the sense of
DEF.!. For fixed n, its mean processing time is a continuous con-
cave function of the symbol probabilities Pj which assumes its
minimum when all but one of the Pj vanish. This minimum is a mo-
notone non-decreasing function of n.

COROLLARY 1. Suppose that the mean processing time T of an input

machine is a concave function of the symbol probabilities. Then
T(n;P) > 1 (n;P')

where P and P' are two vectors of symbol probabilities related
by P = QP! with Q being a doubly stochastic matrix.

THEOREM 1 shows that the mean processing time 7t of an input ma-
chine can be concave in the symbol probabilities even in cases
in which the individual processing times tj are convex. In par-

ticular, if the Pj are given in logarithmic form, then

T = ). Pitoy = chjpj log P,

is concave, and the same is true when

s-1)

tj = ¢c(1 - Pj , (s > 1)
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which is convex for s < 2, but

T =c(1-}.p® s >
( J J] ( M
is again concave.

Information theory supplies a remarkable characterization of the
mean processing times for signals that can be processed by cer-
tain channels.

These channels are of the same kind as the "input machines"intro-
duced here, but they must be load independent. The signals are
characterized by their "entropies"”

H=-P. log P..
1Py log Py

The corresponding quantity for the channel is its "channel capa-
city" C which can be defined in two ways, i.e., either by

C = log a_ (a}
where o is the largest root of the eguation
E‘Q-tj =1, (b)
3
or as the limit

_ 1lim log N(T) -
T3 ® T {c)

where N is the number of sequences of input symbols that can be
processed by the channel in period T. It can be shown (see e.q.
SHANNON and WEAVER /1949/, p. 37) that (b) always has a posi-
tive root and further that the limit in (¢) coincides with (b)

and (c).

The above mentioned characterization of signals can then be sta-

ted as follows, for the present purposes.
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THEOREM 2: Let a load independent machine be given which has the
processing times tj for the symbols xj, j=1,2,...,n. The input
signal x* with these symbols and with the entropy H which has the

smallest mean processing time 1* is then one with the symbol pro-
babilities P} defined by

- log Pg = Ctj (3 = 1,2, ...,n}

C being the capacity of the machine. The mean processing
time for x* is

T* = H|C.

PROOF. This proposition is arephrasing and specialization of some
of SHANNON's results, namely of his theorems 1,8 and 9 combined,
and the proof is therefore omitted. It can be shown that results
analogous to THEOREM 2 hold also for load dependent input machines.

6. ORGANTZATIONAL MALFUNCTIONING

An organization member is considered malfuncticning if he (she)
cannot keep up with the schedule on which the organization works
but falls progressively further behind. This will be the case
when

(*) T = RAEL T(O)> 1
where T(i), Tkﬂ are the mean processing times of his input and

output machines. The only way in which an overloaded member can

react to this predicament is to make mistakes.

It does not matter for the moment how an organization member
makes his errors, i.e., whether he does so deterministically,
stochastically or in some other , less well defined manner. All
that matters here is that on occasion an overloaded organization
member will generate an output other than the one that is called
for, and as a result, will jecpardize the expected payoff to the
organization. What are the conditionsunder which such an over-
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overload occurs?

The issue that will matter most is the intuitive notion that over-
load should develop in most cases of interest when the complexity
of processing tasks for either or both of the machines of an or-
ganization memher increases beyond some critical point.

DEFINITIONS 1 (Secs..45)in fact characterize the effect of measuring
complexity but neither makes overload inevitable even if the in-
crease is unbounded. To see this, consider first an input process-
ing task. While there are several ways of increasing its complexi-
ty, according to DEF.1(Sec.5), the only way to do so without bound is
to let the size n of the input alphabet grow to infinity. For
output machines, the same can be achieved only by letting the num-
ber m of destinations go to infinity, according to DEF.? (Sec.4),since
H cannot increase indefinitely without m doing the same. However,
both definitions merely imply monotonicity of the mean process-
ing times in n or m, which need not lead to (*). Malfunctioning
or overload will, however, be inevitable if, for instance

(**) lim T(i)(n) = o gor lim T(O)(m) = @,
n > «< m-—» o

disregarding here the possible dependence of tkﬂ on 4. In cases
in which (**) does not apply, overload will be inevitable at
least for certain procedural rules, if

T(i)

{***) lim max . (n,p) = » or
n -+« !
lim max T}O)(m,m = o ,
m-—>>o PP

In practice, unboundedness of the mean processing times, in the
sense of (**) or (***) or both is likely to be encountered more
often than not. It will therefore be useful to establish two re-—

sults here which are pertinent in such cases,

THEOREM 1. Suppose that a load dependent output machine has the

second property of (**). For any given input load, r(i), there is
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a maximum number m of destinations which the organization member
can serve without being overloaded, and which is achieved by a de-
terministic assignment rule. An analogous statement holds for the
input machine of an organization member with fixed output load Tfu).

PROOF: Consider an alternatively processing output machine first.

(i)

Since mean processing time T of the input machine is assumed

fixed, then overload will be avoided by the member if,

m?P) <1 -1,

T(0)
Now, for every m, TM)(mJ is the minimum of the l.h.s. above.
Therefore, the largest value of m for which this inequality holds
is
(0)

T(o) (1).

{(m) = min_rt

P 1 -
) (ml)i T

The minimum, however, occurs for a vector P with all but one of
its components zero, according to THEOREM 1 (Sec.4) Thus, for a
fixed T“J, the maximum m is achieved by a nonstochastic assign-
ment rule, as asserted in this theorem. The argument clearly

applies also tocuatput machines doing their processing in paral-

lel.

It is conceivable that situations exist in practice in which (**)

fails., It is more specifically possible that

lim 1(0)(m,P) = T < 1
o

for an output machine and that no overload develops if an assign=-
ment rule is used that minimizes the mean output processing time.
In such cases, (***) may hold and overload will develop for at

least non-minimizing assignment rules. One then has a result that

is a counter-part to the preceding, namely this.

THEQREM 2. Suppose that a load dependent output machine has the

property {***), For any given input load T(i), there is a maxi-

mum number m of destinations which the organization member can
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serve, using a stochastic assignment rule and without being over-
loaded. An analogous statment holds for the input channel of an
organization member with fixed output load 1(0{

PROOF. Consider again an alternatively processing machine. As m

increases, the vectors of assignment probabilities make up a se-

{m)

quence of convex polyvhedra CP of increasing dimensions. Sup-

pose that the proposition is false and there exists a vectour p
which lies in all of these polyhedra and for which

T(O)(m,ﬁ) < 1-g (B

(n)

(m*) (o) (m}

(m,P) on ¢cP""’ ., One can then con-
(m) (m*) .

: CP say, which has as
{m*)
and P

Let P

struct a convex sub-polvhedron of CP
(m)

be the maximum of =
its vertices some of those of CP , which contains P.
That is

5 < (M p3), 5 (w0 plm¥)

345 , Where

(m*) , (m*}

the sum ranges over the vertices of CP other than P

and where
*
gy N
J 3

Because of the concavity of the mean processing time

1) m,5) > EijTtoi (m, 23} & 2 @) 0)  p(meYy

!
B . (o) ¢ (m*) NP _
y assumption, T (m,P ] approaches infinity as m does. There

{m*) _ - .
= 0 from some m > m. But this

fore, so does r(O)(m,P) unless A
means that the components of P beyond the m-th vanish, as asser-
ted. The same argument again applies to parallel processing out-

put machines, as well as to input machines.

6. CONCLUSTONS

. A model of an individual organization member should first of all,

be consistent with experimental evidence. And experimental evi-
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dence suggests that principles of bounded rationality and complex-
ity considerations impose restrictions on behavior rules, even
more so in an organizational context (sece e.q. GOTTINGER/1979/, and
SIMON/ 1978/) .

Beyond that, however, the model should be as general as possible.
We attempt to achieve this by making the assumptions as intuitive-
ly plausible as possible. The machine model of an organization

and its members was chosen here mainly on grounds of intuitive
plausibility. The task of acquiring and interpreting inputs (the
input machine} is often so different from that of producing and
delivering outputs (the output machine) that it appears to be
justified to represent them by different mathematical models. The
notion of a load dependent machine is also based on intuitive
grounds. It is supported by observing executions in "large" or-
ganizations, in particular the existence of interdependence in
such organizations,facilitating bottleneck multipliers, adds sup-
port to "load dependence”.

On the other hand, the formalization of load depéndence leans on
SHANNON's ideas, and on the observation that the concepts of task
complexity in this study and of signal uncertainty in information

theory have quite similar properties.

The definifion of load dependence for input machines, by contrast
to that of the output machine, is based on the evidence of expe-
rimental psychology (H.W.GARNER A962/). The resulting machine mo-
del seems to be one of the most general that are compatible with
this evidence, and with the idea of the complexity of a process-
ing task. The fact that human input machines often react to over-
load by making errors is also well established experimentally.
Some improvements of this model appear to be desirable and can

be pursued . in the following direction.

{i) an input machine, as defined here, is an especially simple
kind of stochastic service {(i.e. waiting line) system, e.g. in
which the service times are known constants rather than random

variables and in which problems, such as the distributions



21

of waiting times and thenumbers of customers waiting in line are ig-

nored. Similar problems should presumably be considered in connec-
tion with the machine models developed here.

(ii) one might also wish to make "load" dependent on effects other
than the parameters that are now included. For input machines the num-

ber of sources seems a particularly useful additional parameter,.

The disadvantage of keeping the basic concepts as general as pos-
sible are that the statements that can be made concerning them
are inevitably rather diffuse and weak. A case in point is the fact
thatthe definitions of load dependence in Secs. 4 and 3 do not ne-
cessarily lead to overload, as task complexity increases. This is
certainly contrary to intuition and experience. The additional

assumptions made in Sec¢.5 try to specify the results and put them
in a proper perspective.
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