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ON LOCATION CONFLICTS AND THEIR FAIR SOLUTION CONCEPTS

Abstract

In this paper we consider some special geometrical problems of optimization
that can be seen as a generalization of the theory of the center of circum-
circle. In particular this theory is essential for the study of the location
structures of location games. We classify the location structures by the
behaviour of the concepts of fair solution given by Rawls (1) and Koim (2).
We check these concepts on continuity, single-valuedness and equality
between each other, and we give some relations between the concerned spaces
of “regular” location structures. A study on methods is given by examination

of the space of location structures of triangle conflicts.



§ 1. A Special geometrical optimization, ist construction of

solution and an interpretation into locational conflicts.

(1.1) The convex hull of a subject D of an R™ is denoted by CD.
Given a pair (A,B) of finite subsets of an R™ with
@ # Bc A, [l Il is the euclidian norm and de the corres-
ponding distance function de(x) = jle - x|l for e.

(1.2) (Primal version of the optimization problem)
For such a pair (A,B) we consider the following maximi-
zations on CA:

(R-M) ma X min dy(x) and
X € CA beB

(K-M) L-max o (d, (x)) ) with
xE:CA | b beB

L-max symbolizing lexicographic maximization and a being
the permutation on the coordinates given by a; y » ¢',
. ..

yi s yj for isgj.

(1.3) (Dual version)
Concerning the corresponding minimization problems we are
going to offer just a few remarks. Their study ist some-
thing analogous to that of 1.2. So we simply give their
definition at first:

(R-m) min ma x db(x) and
xECA beB

{K-m) L-min o*{(d_ (x)) ) with
x€C, b beB

o¥: y - y' , y!

5 < y% for i = j.

(1.4) We define the corrsponding level for the maximization problems:
+ .
(R-M) 1,(A,B) = 15:Cp» R :-xagég db(x) and

(K=M) 1, (A,B) = 1,:Cp~ R®: x-i a (dg (x))pep)

with i being the embedding filling up the coordinates not



yet used by repetition of the value of the last coordinate.
The mapping that maps (A,B) on the set of solutions of
(R-M) or short

R: (A,B) = M. 1.(A,B) is called
A

RAWLS-correspondence. We define the KOLM-correspondence in
the same way:

K: (A,B) - MCA 1 (A,B).

The dual concepts are called ]R*‘ 1,%, R¥, K=,
(1.5) We will demonstrate LEMMA 1.5:
R and K are well-defined and finite-valued.

(1.6) (Proof of Lemma 1.5)
We remark that (R-M) and (K-M), but also (R-m) and (K-m),
are generalizations of the center of circumcircle.
We define for a given (A,B) and b€B a “sphere of command"”

Db: = {xECA; db(x) = Tp(x)}.

The boundary of Db consists of fragment of (finitely many)
middle-hyperplanes of pairs from B and eventually a fragment
of the border of CA. Db is polytope and maxima do exist.

It is clear, the solution points for 1.2 can onlty lie on

the edges of the Dbfs (beB). The set of these edges is
finite. We summarize:

Be E: (A,B)»{e edge of a D beB},

b!
so we have @+E.oR.oK., because R and X each are generated
by further optimization. Because of that fact and by the
finiteness of E, K (and R) is finite and nonempty, too.



(1.7) (The dual version)

(1.8)

Let us look at the dual concepts for a white. Obviously
for all X€C,~Cp there exists a yeCB with IR*(x)>1R*(y).

So K*(A,B)CR*(A,B)CCB; i. e.;

the solutions only depend on the second component.

Every B can be seen as the extreme points ext(B) of CB

and the rest. We have R*(A,B)cR*(ext(B), ext(B)), because
nonextreme points get a better i. e. smaller distance

in any way. The diameter of B equals the distance between
a8 suitable pair of extreme points, denoted by dext(B).

A11 other points of B are elements of the corresponding
ball K(B). To get all possible ext(B), i. e. all strictly
convex polytopes given by their extreme points, we can
start with polytopes of two points and give one more point
within K(B} with every step. This induction is the technique
to show:

LEMMA 1.7: K* and R* are single-valued and equal.

They are equal to a center of circumcircle of dim CB-l
points, among them dext(B). If there is equality of maxi-
mum and minimum solution, then B = ext(A).

Imagine a group deciding on alternatives CA' lying between

the extreme positions A' and having equal-scaled ordinal
preferences, that can be represented by utility functions
db’ bEB'cCA. - i. e. the individuals have standpoints b
(their poorest alternatives) inside the extremes, then we
can define for A = A'UB' a game without sidepayments V(A,v)
with v being a nontrivial superadditive game:

il il
L= I ]

V(Av)(B) = {CHBdBCA for v(B)
CHBO for v(B)

with CHB the comprehensive hull taken in B-coordinates
(B<A).

Substituting damage functions for utility functions the
threat-point O becomes a bliss-point. In this interpretation
corresponding to 1.3 and 1.7 V(A,v) is called dual game.



(1.9) Such models are especially occuring in locational conflicts.

Be the parameter m in 1.1 not greater than 2. Under a given
structure of souvereignity v is to decide ona location of
say a garbage collection {primal problem) or of a hospital
{dual problem). In this interpretation 1.2 and 1.3 give the
formal definition of fairness within B: where B would build
the object of planning, having enough power to carry its
point and being fair with each other (perhaps being forced

to be it).

{1.10)Imagine the decision on & industrial area between municipa-

lities given the objective ofngximal reachability and minimal
environmental burden as simultaniously solving 1.2 and 1.4

(see 1.7 Lemma).

{1.11)Interpreting B as facilities of supply, we can also see 1.2

as search for the worst-supplied point in CA, when we can

scale the quality of supply by negative distance. Maximi-
zation by ]R takes in consideration only one unit of supply,

that by ]K takes into account all of them.

(1.12)For an interpretation of m-dimensional dual conflicts as

conflicts on public goods we refer to ZECKHAUSER/WEINSTEIN (6},

GUESNERIE (7) and RICHTER (3).

(1.13) The concepts of fairness gain in game theory, because

conventional concepts aredifficult to apply, insufficiently
analysing or difficult to justify in the given situation.
We give two examples and refer for further studies to

RICHTER (3) and ROSENMOLLER (4,5).



(1.14)

(1.15)

The first example is on NASH's value. This value-concept
requires invariance under affine transformations of utility
and convexity of V(B); in our class of games thereis
neither convexity nor affine invariance. Asking for
ZEUTHEN-NASH-principle and the maximators of.ndi we must
realize that the latter are boundary e]ements,1$§en we Took
at triangles. For a proof look at the CASSINI-curves

around two points. The CASSINI's give lines of constant

distance-products.
Mostly the Core is empty. For an example take

» the majority game on

{1 for 2-RB>RA
v(B) =

0 otherwise
a triangle A, If A ist equilateral and

1 a€B and b¢B
v(B) = » then the Core equals {b}.
0 aé¢B or beB



§2. The spaces of the location structures of locational

conflicts.

(2.1) Interpreted as games V(A,v), locational conflicts are to
study on their souvereignity structure v, on their loca-
tional structures (A,B), P3BcA, and on the relation
between both. In this paper we only deal with location
structures w. r. t. fairness, or more independent on
the special interpretation: we classify pairs (A,.B)

according to R and K.

(2.2) (The topological space considered)

We define I " : = ((A,B); @4BcAcR"} and II = 1im( 1", i
IIm*IIm+1

r m)
with the natural embedding im: , filling up the
new coordinate by zero. II is to have the Hausdorff-topology
(generated by : d((Ai’Bl)’(AZ’Bz)) =
-max min |la,-a, ||+ max min {la,-a, I+ max min |Ib,-b, I+
1 72 1 "2 1 72
Ay Ay Ay Ay By B

+ max minllbl-bzll,ﬂ Il taken in any R™, where both (Ai’Bi)
B, B
2 °1

are lying in its II™); this formalizes the intuition of

lying close together.

(2.3) (Equivalences)
Distance functions db are invariant under any im and
euclidian movements. K and R commutate with centered
strechings in any R™ and with permutations on A. HWe

define the following equivalence onIl:



(AI’BI) ~ (AZ'BZ) if they can be transformed into each
other by embeddings, similarities and permutations.
It is enough to study R and K on a "~-normalized" subspace

I, of II with II/~= HNIN. HN is a representation system

N
of I and ~, if it is homeomorphic to I/ .

(2.4) (Subspaces)

Let 1"} : = ((A,B)em, ¥A sn} and 1{")/_ be the corres-
ponding subspace of II/_. In § 3 we will give a represen-
tation system forII(3) and describe R and K on it. In § 4
we learn something about regular subspaces and their den-
sity, but for a study of largeness of the spaces of irre-
gular R or K the global viewpoint of II does not work. But
a later paper will show that it does work on Il(n)/~
because of its special structure. As a first step to this

view we prove the quasi-compactness of H(")/N in § 5.

(2.5) MWe remember that 1im preserves all properties that are
preserved by the sum as well as by the quotient (see

CECH (8)).

(2.6) II/_ is not pseudosemimetrizable, since its points are not
closed: the equivalence-class 0 of the “"conflictless
conflict" (0,0), Oe€ R® is element of the closure of any
other point. We can converge to it by strechings.

But there is the following LEMMA 2.6: H/N\{O} is metrizable.




(2.7)

(Sketch of a proof of Lemma 2.6)
Let us regard only the first components nl( I/ _~{0}),

d(X,B) = inf {d(A,B); A€K, BeB, gA = 1}
with ¢ denoting the diameter, fulfills the conditions.

For a proof look at an(A) and n*Kc(A) with T the canonical
factorization and the K, the e-balls in question.



§ 3
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Location Structures for Triangle Conflicts

(3.1)

(3.2)

The following theorem gives a representation system
of n, 13} ang ~.
THEOREM 3.1:- (1) n, ¢3)/.<{0} s homeomorphic to the

disc., And 0 is element of every neighbourhood of any
other element.

(2) A representation system is given by Y u{0},

T= (400,0), 4, (L,0)3e n, W) 1gns1, n g b, 20)
(3) *y is homeomorphic to

F = a({{0,1,2}; 0,1,z € €, re z25, im 220,]z-1]21})
with o denoting the one-point compactification.

Remark: nl(II(3)\II(2)) can be obtained by factorizing
the affine group of the euclidian plane by similarities.
The affine group is transitive and effective on

ny ( 130 n(2)y, we get PSL,/S0,.

(Proof of Theorem 3.1)

ﬁY}nd'S] are homeomorphic to the disc. For the required

property of 0 see 2.6. So we only have to prove (2) and

(3). We obtain T and T' by normalizations. Let A={aj,a,,2a4}.

We ‘proceed by the following steps:

(a) denote the edges of the shortest side by a, and a,
(permutations on A)

(b) substitute 0 for ay by translations

(c) stretch the largest side (the diameter) to attain unit
length

(d) substitute (1,0)=:1 for a, by rotations.

By (a) - (d) we obtain Y . We may obtain Y by substituting



“(c') ... shortest ..." for “"(c) ... largest ...".

As a simplification we also represent n,II(3)/~\{0}

by a triangle §'' .

Consider the following figures:

N
b
T z
Y |
|
z l
w© i
g ’L; 1 hd % a -‘

The point ".x" represents the equilateral triangle, "="
the two-point triangle, and “"fr" the three-point symmetric
one-dimensional triangle. The topology is evident. ' is
not a representation system, since o § n1II(3). We further
remark that the boundary consists in symmetric and less-
dimensional "conflicts".

Unless otherwise stated we shall use the representation
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n111(3)/~\{0} by 3.

(3.3) COR. _3.3: The space 1{3)<{0} is a two-dimensional

connected compact CW-complex.

(3.4) (Proof of Cor. 3.3)
It is seen by the following figure that H§3)\{0} is
an intersecting sum of seven leaves homeomorphic to ',
indexed by the subcoalitions. Proof is evident by con-
sideration of symmetry and embedding the smaller power

sets into that of {0,1,z}.

4 - . - 4 o

A {423 10,43 o) =1




..]3._

(3.5) LEMMA: K and R are equal and continuous functions on H(3)
except the following irregularities:

{1) a halfopen one-diemsional intervall located on the
boundary of the leaves{0},: {1}, {z}: isoceles triangles
with vertex 0 resp. 1, z.

(2) a halfopen one-dimensional intervall located on the
boundary of the leaf A: isoceles obtuse-angled triangles.

(3), (4) a halfopen one-dimensional intervall on the
leaves {0,z} and {1,z}: triangles that admit a decom-
position into two isoceles triangles.

The corresponding irregularities exhibit the following

features: For (1) and (2) R and K are still equal, but

they are no more functions and not lower hemicontinuous

(1hc). For (3) and (4) we get R+K, R is not a function,

R and K are not lhc, K ist not upper hemicontinuous (uhc).

The content of the Lemma is suggested by the following

figure:

I(Z\ {&}

. and onje.c.le_cl by ¢




(3.6)
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(Proof of Lemma 3.5)

The statements of Lemma 3.5 are proved by verifying the

results given in the following table.
A = {0,1,z}
B <A

M: the center

myn,1: the cut-point of the middle-Tine of {1,z) resp.

{0,2z} resp. {0,1} with the side of {0,z} resp.
{0,z}).

{1,z} resp.

A BT N B () R |17 N
{0} “ - {z, 1} for equ11atera1 {z} otherw1se (1)
{1} {z, 0} for 1soce1es w1th vertex , {z} otherw1se (1)

{z} {0 1} for 1soceles w1th vertex z, {O} otherw1se E (1)

(0,1} (2) |/

1 e — | e
{0} for Im-1]| <1 i !
+ {0} for Im-1jsl |
{1,z} [{0,m} jm-1] =1 « (4) 3
{m} Im-11>1 ; 3
{m} fm=-1] >1 ; : §
L1} for inl< | | !
i {1} for In|sl ;
{0,z} :{l,n} Inl=1 - (3) f
{n} In|>1 X
{n} Ini>1 L o 7 7 :
-{M} for not obtuse-angled :
A {m,1} obtuse-angled ' (2) f
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(3.7) We consider the subspaces [4t] of H(S) consisting the

(3.8)

(3.9)

elements with property f .

Cor. 3.7: The following diagramm represents the strict
inclusions between the subspaces in question. Moreover,
the diagramm is a semilattice - it is closed under inter-

section; i. e.;

[uhc R]

[uhc K] [R=K] [s-v KI

[s-v R]
= [The K] = [1hc R]

s-v means single-valuedness.

The proof is evident by 3.6.

(Remark)
A1l subspaces of 3.7 are dense. Their complements are

less-dimensional, A1l the subspaces are connected.

(Remark)
R* and K* are single-valued, continuous and equal. R¥*(A,A)
is equal to {M} for not-obtuse-angled triangles, and to

%(0+z) for obtuse-angied ones.
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§ 4 Classifications of Location Structures

(4.1) THEOREM 4.1: The correspondence E (defined in 1.6) is

(1) Thc and (2) not uhc, but it is (3) continuous on

n(myg(n-1), (4) The correspondence R is uhc.

(4.2) (Elements of a proof of Theorem 4.1)
Let (A',B') be an element of an e-neighbourhood of (A,B).
One can imagine that neighbourhood as union of euclidian
balls K_a around the a€A. For all beB let b=B((A',B'))
be the set {b'eB', b'EKeb} of b-corresponding b'"s.
If we look at the construction of the edges of Db and Db'
by middlehyperplanes and boundary sets. we see that for
all edges e of D, there exists an edge e' of Dyv with
e'EKae (compare OSTMANN (10) 2.5 (d)): i. e "the edges
of Db are locally conserved - maybe some edges fuse".
This property is equivalent to (1). We further realize
that newly appeéring edges are due to an increasing number
of points. This property is equivalent to (2) and (3). An

illustration is given by the following figure.

A'=B"'
Au{a'}=A"'




The new edge can be generated far from all old edges

by a proper choice of the direction of a' w. r. t. a.
These "far new edges” are necessarily suboptimal; i. e.
have lower R-levels. Since R can be derived from £ by
maximization of the R-level, we obtain the proof of (4):
The upper hemicontinuity of R (compare HILDENBRAND (9),
p. 29).

(4.3) We need some auxiliary definitions.

Let L(x) = {i1€S; dix = “ds} the subcoalition of the least
favoured, and a(x) = L(x) its number. L generates a
correspondence between R and K:

L

R“: (A,B) + {xeR{A,B); A(x) = min {A(y); yeR(A,B)}};

i. e. K minimizes A on R.
(4.4) LEMMA 4.4: [s-v R] is dense in 1II,

(4.5) (Proof of Lemma 4.4)
We prove this lemma in three steps:
(1) If R(A,B) n Ch #+ & + R(A,B) n Cg (if R has both
boundary and inner solutions), then there is a (A',B')
with R(A',B') < CB in every e¢-neighbourhood of (A,B).
(2) If R(A,B) < CA' then there is an element of [s-v R]
in every e-neighbourhood of (A,B).

{3) The same as (2) for the condition R(A,B) « CB.



4.

7
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First step: (A',B') = (Aé,Ba), where & moves inward
all the boundary hyperpianes of the polytope A, that
have no common point with the subpolytope generated
by B. By small moves we get R(A',B') < CB' since the
edges of E, that are not in CB, are no longer optimal.
Second step: to get an (A',B') with XR(A',B') = 1,
we introduce a ney player j in a neighbourhood of a
player of L(R(A,B)), who can discriminate the elements
of R(A,B). A' = A U {j} and B' = B u {j}.
Last step: When R(A,B) n CA = @ and R{(A,B) c CB’ then
R{A,B) < EB, i. e. the inner points of CB’ otherwise
the element not in the inner would not be maximal.
Take some x € R(A,B) c BB and its L(x). We enlarge the
R-Tevel of x by stretching L(x) with center x. So

R(A,B) ~ {x} is no longer optimal.

LEMMA 4.6 on finite correspondences: If v is a finite-

valued correspondece and [s~v ¥] is dense in the domain
of ¥, then from "y Thc in x" follows "v is s-v in X",

i. e. [The ¥]  [s-v v].

(Proof of Lemma 4.6)

Since yx is finite, we can separate the Y € ¥x by e-balls
around the y's. Then from "v 1hc in x" follows "for every
e and every y € ¥x is to exist a neighbourhood Vé of x in
which the y-values are within the conserved e-balls".

But in this neighbourhood V6 the correspondence ¥ is no
more single-valued. That %s a contradiction to the density

of [s-v v].
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4.8 THEOREM 4.8: A1l subspaces of II directly generated by

the properties s-v, lhc, uhc, R = K and logic conjunction
( = set-th. intersection) are dense. The inclusions and

intersections (not unions!) are given by the following

diagramm:
II = [uhc R]
) {2)
[uhc K} [s-v K]
mJ \-%\ (s)
[K =_R] [c K]
(© ()

[s-v R] = [c R]

4.9 (Proof of the theorem 4.8)
Since [uhc R] = T (1), (2) and (3) are trivially satisfied.
Since K <« R (6} is evident and [s-v R] c [s-v K] too.
(4) follows from definition. Since [s-v R] and the larger
space [s-v K] are dense {see Lemma 4.4) follows by Lemma 4.6:
fthe K] © [s-v K] and [1hc K] = [¢ K} = [¢c s-v K].
That proves (5) and the intersection of ({(4),(5)). For [s-v R]
Lemma 4.6 further yields:
[The R} = [uhc R] n [s-v R] = [s-v R] = [c R] = [c¢ s-v RI.
But [¢ s-v R] is a subspace of [c s-v K]. That proves (7) and
the intersection of ((6),(7)) - and completes the proof, since

[s-v R] is dense (Lemma 4.4),

4.10 THEOREM 4.10: [R = K] = [uhc K].
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4.11 (Proof of the theorem 4.10)
It is only to be shown that uhc K implies R = K. Let us
assume R{A,B) # K(A,B) and x € K, y € R~K. We look at L(y)
and L(x) as defined in 4.3 and at the corresponding sheres

S{y) and S(x) with radius Lg around y resp. x.

Case one: There exists a belL(y)nL{x). Then there is a direc-
tion on S(y), where b can be moved to get d(.,x) < Ly (and
conserve d(.,y) = LR); i. e. in every neighbourhood of (A,B)
"x" vanishes from K and substitutes from y. But that fact

distroys upperhemicontinuity.

Case two: L(y) n L(x) = @. Then there are stretchings of
L{(y) centered in y to give an elevated R-Tevel to y and Tet

jump K from x to y. This completes the proof.

4,12 COR, 4.12: [c K] = [s-v R].

4.13 (Proof of Cor. 4.12)

i}

With 4.9 we got [s-v R] [¢ R] = [¢ s-v R} €« [c K]. It is
sufficient to show ¢ K = s-v R. But we know ¢ K = uhc K = R=K
and ¢ K AR=K=0¢cR. In 4.9 we demonstrated ¢ R & s-v R.

This completes the proof.

4.14 COR. 4.13: The diagramm of 4.8 is simplified to that of 3.6.

A1l of the four remaining spaces are different ones.



§ 5 Compactness of factorized spaces with number restricted
5.1 LEMMA 5.1: The mappings X: (A,B) ~ NA counting the number
and dim: (A,B) = dim C, counting the dimension of the convex
'hull of A, are continuous w. r. t. the topology of final
fragments on N (i. e. the topology of sequence convergence).
(Proof is simple, and so is the following (compare OSTMANN (10}).
5.2 COR. 5.2: (1) 1{™) and (™ are closed.
(2) (n{M<n Dy o (o1 (plm-2)y 45 dense
in H(").
(3) o{™ < o1 s open in n(™,
(4) o,1/_, H("), H(n)/N are of countable base.
5.3 (Elements of the proof of Cor. 5.2)
(1) is evident by 5.1.
(2): If (A,B) € m", so in every neighbourhood of A lies an
element with maximal number and dimension.
(3): since m(™1) i closed.
(4): IO~{0} resp. I/ ~{0} are metrizable by 2.2 and 2.6 -
so they have locally countabel bases. But they have a
countable base, too, by counting
{rational coordinates} x {dimensions}.
5.4 THEOREM 5.4: m("); (0} is compact. m‘M™)/ s quasicompact.
5.5 (Proof of the Theorem 5.4)

m{2) is quasicompact and H(2)~40} is compact. We will demon-
strate: from the quasicompactness of H(n) follows quaiscom-

pactness of H("+1); "compactness" works in the same way.
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Take a ~-normalized subspace HN of II by 2.3 and "(c¢''")
diameter is not greater than one”. Because of 5.3.(4) it

is enough to show that (A.,,),VE N® A e H£n+l)\{0} has a
cluster point in H("+1) ("countably quasicompact", see
SCHUBERT (11) p. 63).

If {A. )y has an infinite familiy in H("). all becomes true.
So let M c N with XM =X and for every ~v€ M: ¥A,, = n+l.

We give an arbitrary index to every element of the A like

1 n+1)

(a," ... ay . The families (al) have cluster points,

veM

say a1, because of the boundedness caused by normalization.
. _ i . .

We get: A = {a }; 4 41 1S clusterpoint of (Aq{)M. The

number of A is not greater than n+l. May be it is one. That

point is cluster point of every infinite family (2.6). So

H(") js quasicompact. 0 is open and H(n)\{O} closed and

that is why it is quasicompact, too. In H(n)\{O} we have

Hausdorff separation and therefore compactness.
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