Universitat Bielefeld/IMW

Working Papers
Institute of Mathematical Economics

Arbeiten aus dem
Institut fiir Mathematische Wirtschaftsforschung

No.88
ON THE GEOMETRY BEHIND THE FAIRNESS CONCEPTS
A LA RAWLS AND A LA KOLM
FOR LOCATION CONFLICTS
by
AXEL OSTMANN and MARTIN STRAUB

July 1979

Institut fir Mathematische Wirtschaftsforschung
an der
Universitit Bielefeld
Adresse/Address:
UniversititsstraBBe
4800 Bielefeld 1
Bundesrepublik Deutschland
Federal Republic of Germany



SUMMARY

In this paper we consider the geometry behind the fairness
a la RAWLS and & la KOLM for location conflicts. This
geometry is taken to be a middleline geometry generated by
a pseudodistance. In part I we state the differences to
ordinary geometry. Part II contains a standard example and
a pathological one. The third part on degeneracy gives the
conditions upon the middleline geometry to be the euclidian
one. It turns out that in this case the pseudodistance is
generated by a scalarproduct.

These results make it possible to generalize the construction
of fairness solutions and the classification of location
conflicts, both given in OSTMANN 2.

RESUMEE

Dans ce papier nous découvrons la géométrie cachée derriére
les solutions de "fairness" & la RAWLS et & la KOLM pour des
conflits de localisation. Cette géométrie est modelée comme
une géométrie des lignes intermédiaires centrales produits

par une pseudodistance. Dans le premier part nous expliquons
les différences & la géométrie ordinaire. Des examples, 1'un
standardisant, ]'autre pathologique, se trouvent dans le

part prochain . Le troisiéme part contient des conditions

pour garantir 1'euclidicited de la geéométrie. La condition plus
suggestive est peut-8tre que la pseudodistance soit produite
par un produit scalaire,.

Ces resultats rendent possible Ta géneralisation du
construction pour les solutions "fairness" et du classification
des conflits de localisation qui se trouvent dans OSTMANN 2.
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PART 1

ELEMENTS



§ 0 AN EARLIER ATTEMPT AND INTERPRETATIONS

0.1 THE EARLIER ATTEMPT

In OSTMANN 1 and 2 the following optimizations are considered:

(R-M) max min d

b(x)
xeCA beB

(K-M) L-max  n(d (x) )
XeC, b* " "beB

with n: y -y 1 4 23§ = y;' s yj' and  {y;} = {yj} ;
A being a finite subset of an R™, P + B < A, C, the
convex hull of A, db the euclidian distance from b € B,

L-max the lexicographic maximum operator,

The dual problems, easier to handle, were considered too:

(R-m) min max db(x)
xeC, beB
(K-m) L-min n*(d_{x) )
xeC, b*" /beB
With n* :y - y' 2n i s J =yt syy' oand ({yy) o= (y5)

For our design we will remember two results:

1. construction by decomposition (see 0.3) and
2. classification of (A,B) by (local) continuity and
equality of the solution concepts "R" and "K" (see 0.4).

But first let us give some remarks on the interpretations.



0.2 INTERPRETATIONS ECONOMISTS ARE INTERESTED IN

For all such interpretations more general functions than
the euclidian distance are suggested. The db's are seen
as utility or disutility functions on the space of
alternatives R™. b represents an individual's best or
worst result.

A somewhat sophisticated interpretation is that one
discussed in ZECKHAUSER/WEINSTEIN and ROSENMOLLER

For m=2 we have the most simple interpretations as

(-M) repulsive euciidian location conflicts and

(-m) attractive euclidian location conflicts,

with fair solutions & Ta RAWLS ((R-), "make the worst-off
best-off") and 4 1a KOLM ((K-), "justice pratique" or
"lTexicographic Rawls"). We represent individuals or groups
by their standpoint. In the repulsive case we see the
individual interests as to get the object of planning as
far as possible. We assume that there is no other conflict
than that on the location. Examples are given by necessary
facilities that burden the environment, planned by an ideal
society of common planning and decision on the base of an
individual calculus on utitities.

1f the reader does not agree with this abstract model there
are three ways of going through:

1. We think that there are many real situations where people
behave 1ike that (maybe because they have no other
arguments or ideas or informations, maybe because they
do not like to invest more time and energy into the conflict);
the reader searches for other interpretations;

3. the reader is interested in the mathematical structure we
will design (we hope he will get a new Jjook on some
geometry we usually use).

Let us go back to the location conflict.



In the attractive case, examples of objects of planning are
parks (cf. ZECKHAUSER), hospitals, say simply "attractive
supply services".

Let us now consider a similar but more technocratic
interpretation, a society where Planner Alimighty is

calculating for reasons of peace.

He 1ikes to calculate

...the best supplied point

...the worst supplied point

(R-m)

(K-m)

(R-M)

there are different measures

of the group efficiency of

supply

there is no summing-up

(K=M)

.the point of smallest

infection

...the point of strongest

infection

(R-M)

(by all sources)
(K-M)

(R-m)

R takes into account only
the next (M) or the farest

(m)-source

K: all sources simultaneously

(by all sources)
(K-m)

(If we have a summing-up of supply or infection potentials
we have to deal with the FERMAT-WEBER-problem, but if there
are equal weights, we can use the following concept of
decomposition to get regions where the b-component ist the

most important.)




0.3 DECOMPOSITION OR "SPHERES OF COMMAND"

We can decompose the optimization into 'Bi optimizations
on b's sphere of cammand, b € B, defindd as:

+ .
D, ¢t = {x € Cy 5 d (x) = min d_,(X)} resp.
b A b b'eB b
D, : = {x € C, ; d (x) = max d_,(x)}
b A b b'eB b

These D; are polytopes constructable by the middie-

hyperplanes B(b,b'). Let us denote the generated halfplane

that contains b (resp. b')} by Hb(B(b,b')) resp.

Hpt (B(bsb')). ﬂqu
D,
A =B = (i,j.k)
3
Then D) = n  H (B(b,b')) and
b'eB
b'#b
D, = n (B{bsb"))
b~ prep P
b'+b

Optimization is finite because we only have to take into
account the vertices of the Db-regions. In this paper we
like to give the geometrical structure to enable the same
praocedure for db being a pseudodistance.



0.4 CLASSIFICATION OF LOCATION STRUCTURES

In OSTMANN 2, § 2, the space II of location structures (A,B)

is defined.

It was proved that: ,

For attracting conflicts (-m)-solution correspondence is
continuous and single-valued, and for repulsive conflicts
(-M)-solution correspondence for (R-M) is upper hemicontinuous;
moreover the situation can be symbolized by the following
diagram (§ 4):

I = [upper hemicq&ii:ijus R]
fupper hemicontinuous K] [single-valued K]

= [R = K] \\\\\\
[single-valued R

[Tower hemicontinuous K]

[Tower hemicontinuous R]

where [2] 1is the subsbace of I where property ¢ holds
for its elements (locally). Moreover all these subspaces are
dense in IO .

The main auxiliary for these theorems was the decomposition.
So the geometry we will construct is also the tool to
generalize these theorems.
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§ 1 THE GENERALIZED MODEL TO DEAL WITH AND SOME TRIVIAL
PROPERTIES

We are accustomed to look at pictures like this:

S8(x)

when there is reported on noxious emissions. The sphere
SP{x) means equal density of infection and it is suggested
that stretched spheres also represent equal density. The
unsymmetric form may be caused by integration of winds by
their freguency.

We give a family of utility/disutility functions that
formalizes that suggestion. We turn from "backward
measurement" (measures from the emission source) like above
to "forward measurement" (measures from the individual
affected) in the definition below.

DEFINITION 1.1: uy = m2 +IR is called pseudodistance of

an individual i ¢R® iff it has the form u.(x) = fo(x-i)
with f‘:IR;0 -»IRgo monotone, ¢ a positively homogenuous
continuous functional with strictly convex unit sphere

S'(0) = {x; o(x) = 0} . u:R® xR® R : u(i,x) = u,(x)

is calied pseudonorm.

REMARK 1.2: In general measuring forward (ui(x)) is not

equal to measuring backwards (ux(i)). There is equality iff

v 1s a (strict) norm.
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REMARK AND DEFINITION 1.3: If u is pseudonorm then

u* with us*(x) = fo*(x-1), o*(y) = ¢(-y) 1is a pseudonorm,
too. u equals u* iff ¢ 1is norm. * turns forward measuring
into backward measuring (and backward into forward). The

*-concepts are called the dual ones.

50, as euclidian norm induces (elementary) euclidian geometry,

we now define the induced geometrical objects for wu.

DEFINITION 1.4: B(i,§) : = {x €R%; u (x) = us(x)} s

called middleline for i and j. B : = (B(i.J); i, € R%, i # i)

is the family of middlelines or shortly “the lines".

Bx = {B(i,j) € B; x € B(i,J)} 1is called pencil in «x,
X {B(x.J); J EIRZ} is called anti-pencil for «x,
2

B

it

SP(i) = {x €R

Pous(x) p} is the p~sphere around i,

$9(x) = {i eIRz;ui(x)

n

o} 1is the dual p-sphere.

EP(4) {x eIRZ; ui(x) < p} and Eﬂ(x) the corresponding closed

balls.

REMARK 1.5: Let us look at the euclidian objects. G be the
family of euclidian lines. For u the euclidian distance we
X

have G = B = B_. U B

X Topologically B 1is a Moebius strip.

The following remarks give some trivial properties of the

objects just defined.

REMARK 1.6: Two spheres intersect at most two times.

SP(i) = pS'(0) + i . The triangle unequality holds:
o{X - ¥) + oly - Z) 5 o{x - 2) ; there is equality iff

there is (euclidian)} collinearity.
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REMARK 1.7: For all f the B(i,j) generated by

u, = fel-v), v = i,J are identical. For the following

we set w.l.o.g. f = id. B(xi,rj) = aB(i,j) ,

B(i + a, jJ +a) = a + B(i,j) : that is, generation of. lines

commutes with translations and (centered) stretchings.

In general the generators of a middleline are not uniquely

determined (look at the euclidian case; cf. part I11).
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§ 2 ON TANGENTS

DEFINITION 2.1: Let Gi be the euclidian pencil in i and

G: the oriented euclidian pencil in i (pencil of rays). For

any S$P(i), » € RT the correspondence T; : SP(i) » G, s

called tangent correspondence iff T; assigns a point

x € SP(i) all euclidian lines out of 6. that intersect

SP(i) after the translation i - x in exactly one point,

that is in x . Ti : SP(i) = G:

; is defined in the

corresponding way (we can identify rays with halfplanes).

REMARK 2.2: Gi and Gi' is homeomorphic to the circle.

The following sketch shows Ti and T: . The horizontai

coordinate shows SP(i) : we have to identify right and left

1imit of the interval. The vertical coordinate shows Gi

resp. Gil : jdentify upper and lower limit.

596

I i

S
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LEMMA 2.3: (without proof): T. and T: are strictly

Tocally monotone (define this in the obvious way), since
SP(i) s strictly convex. Let us consider the inverse

correspondences T: and T?+ : since SP(i) s strictly

convex, T:* is single-valued (or function) and T? is

two-valued,

DEFINITION 2.4: Two spheres SP(i) and S%(j) are said

to be tangent to each other iff SP(i) n S%(j) + P and
Ti(x) X Tj(x) contains a pair of parallels whenever

x € $°(i) n $9(j)

REMARK 2.5: For these x the pair of parallels carries

two opposite orientations. The parallel through x is a

dividing hyperplane.

DEFINITION 2.6: C(i,j) be the set of maximal elements

of IR2 with respect to (-u '-uj) and the natural

.i!
halforder on IR2 . For attracting conflicts the interpretation

of C(i,j) 1is that it is the set of PARETO-points.

REMARK 2.7: C(i,j) 1is homeomorphic to a closed real

interval. Its boundary is {i,j} . If ¢ 1is norm, then
C{i,3) 1is the euclidian interval. (For a proof cf.

MC.KELVEY/WENDELL and substitute T for their v.) When
we parametrize C(i,j) by i-distances, we get the other

distance as a strictly antitone function.



§ 3 ON TOPOLOGY

Looking at ( mz,B) as a topological object, there are
mainly three simple ways to introduce the topology on B .

For this paragraph cf. SALZMANN, p. 4.

DEFINITION 3.1: B, be the topological space over B

induced by generation:

2

R x IR°~diag » B : (i,3) » B(i.5).

A set A is open in By iff A can be generated by an

open set in RZ x IRZ

~diag.
Neighbourhoods of A can be written as
VE(A) = {BeB ; there exists (i',j') € Ue(i) X UE(j) with
B =B(i',J")} with Ug(-) the ordinary, euclidian
e-neighbourhoods. You might say: there are "representations"

in the neighbourhood...

REMARK 3.2: In the definition above we used the natural

topology on IR4 . It is the same as that one generated by
¢ or o% . All pseudonorms generate the same topology.
With the above definition we can write By as

2 y IRZ\diag)/,_, with (i,3) ~ (i',3') iff B(i,j) = B(i',j').

( IR
In the .euclidian case the equivaience classes are generated
by translations in a fixed direction (that one of the line)
and stretchings with center on the line. So dimension reduces

to 2.

For the non-euclidian case see part [II, § 1.
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DEFINITION 3.3: B, be the uniform space over B of

pointwise convergence. The topology can be constructed

by the vz(A) :={(BeB;BnU(x) P, xeA and

Ue(x) the ordinary e-neighbourhoods of x in IRZ

B

et A

DEFINITION 3.4: B3 be the topological space over B

induced "geometrically". This topology can be constructed

by visY(A) = {(BeB;3BnU(x)+8+BnU(y)), x,yeA.

R

—

A
Ue (y)

REMARK 3.5: If there are A,B e B , A B, x,y e Ane8B,

we can seperate A and B in 82 resp. Bj by a
2122

neighbourhood of type VE(A) resp. Ve (A) with z; € AnB

LEMMA 3.6: B2 and B3 are identical.

Proof. Since VI*Y(A) = VX(A) a vI(A) , the topology of &,
is coarser. Since Vx’y(A) [= VE(A) the topology of By, “is
€

coarser,
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LEMMA 3.7; B1 and 83 are ijdentical.

Proof. Let A = B(i,j) . V_(A) ¢ V:’y(A) is easy to get.
We choose o such that SP(i) n SP(3) = : (x,y)

Since ¢ s continuous, there is an. appropriate ' for
any e . To get B € VZ’y(A) c VE(A) we have to construct
some i',j' with B = B(i',3') . This is done by the
backwards distance. Let x',y' € B with x' € Ue(x),
yUeUgy)s 3ty s = s g 0 s@" gy ghe
work is done by using the following property of the
correspondence p + S5(x) n S9(y) : in a neighbourhood of

a two-valued o two-valuedness holds.
Summing up, we have:

THEOREM 3.8: Al1l the defined topologies on B are the

same dane.
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§ 4 MIDDLELINES

The basic idea is given in the following theorem:

THEOREM 4.1: There is one and only one point m = m{i,j)

on B = B(i,j) that has minimal pseudodistance from i

and j . B is closed and homeomorphic to the real lTine.

m devides B into halflines B* and B~ . On the

halflines the common pseudodistance a{z) : = o(z-1) = ¢(z-j)
is monotone. B devides the plane into two components

Hy(B) and HJ(B) . These components are defined by the

inequalities o(z-i) 2 o(z-j) . Both of them are unbounded.

Sketch of the proof: At first we can get existence and

uniqueness of m by looking at B(i,j) n C(1,3) (cf. 2.3).

m is the only element of this intersection. For closedness

of B , we remember the continuity of ¥(z) = o(z-1) - o(z-3).
Next we parametrize B by means of the continuous correspondence
¢: [a(m),») =+ B : p > SP(i) n SP(j) . We note that the
intersection is two-elemented for o ¢ (a(m),=), 6r in other

words: the curve B has no loops.

R B
L YO

[tw), 00)
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We have m in the interior of EP(i) nEP(j) because of
the stretchings. By strict convexity of the spheres we know
that there are two and only two elements of SP(i) n SP(i) .

+ -

Because there are no loops we have halflines B and B

with monotone pseudodistance. Further we have at most two

components of IR2

~B. If there would be only one there would

be a path from i to Jj so that the irequality o(,-1) > of,~])
(w.1.0.9.) would hold for all its points. That is a
contradiction. If Hi(B) would be bounded, there would be

a loop.

REMARK 4.2: We state two ways of constructing m(i,j):
1) m(i,j) 1is the unique point of intersection of B{i,J)

and C(isj).

(¢,3)

2} m(i,J) s the center of the unique "antisphere" (compare

§ 7) {x 5 e(m-x) = a} having parallel tangents in i and 3

REMARK 4.3: If ¢ is norm, then m(i,j) is the euclidian
middle > and B(i,j) is symmetrical w.r.t. the
pointreflection in wm(i,j) . The proof follows by the symmetry

of © : o(x) = ¢(-x) = @*(x) , and the translation invariance.



- 20 -

REMARK 4.4: The generated halfplanes are convex iff

middlelines are euclidian (i. e. B < G) . Any strict
convexity would cause strict concavity on the other side.

Cf. part III § 2.
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§ 5 CONFIGURATIONS OR DECOMPOSITIONS

REMARK 5.1: By construction the halfplanes H.(B(i,j))
hold the inequality @{.-i) < o(.-j) . This way some
configurations become impossible. We give an example:

Blo)

1 B(Y)
B(1,2)

Bl23)
2

In the region signed by o , we get
o(z-1) < ¢(2-2) < @(z-3) < o(z-4) < o{z-1)

That is a contradiction.

REMARK 5.2: The halfplanes are in general not convex, and

so are the Db's (take the definitions in 0.3). To generalize
the principle of construction there is no need for convexity
since we have inequalities and half-monotony. For the latter

regard the following sketch of a triangle:

B,

D.

D ’ &)
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If we sketch D: and D; with halfmonotony on the middlelines

and monotony on the euclidian segments, we get:

It is clear that KOLM- and RAWLS-solutions have to be vertices,

in our example: E.

REMARK 5.3: In contrary to the real affine plane two different
lines can intersect infinitely often. We give an example in
part II § 1.6. But this property does not disturb the
construction, because we have strict half-monotony and a
bounded region CA we optimize in. In the sketch of 5.2 the
B's are assumed to intersect in one point. This question is
handled in § 7 where we deal with antipencils

Bl : = (B(i.3) ; § €eRZ, i # i}
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& 6 ASYMPTOTES

For the following it will be convenient to use another

parametrization of B

LEMMA 6.1: Any ray in i (or J) intersects B(i,j) in
at most one point. (We omit the elementary proof: compare

Th. 4.1.)

COROLLAR 6.2: B(i,j) <can be parametrized by the angles

1, o{x) : = a(im{1,3)s 1X); v : B - Sl,
w{x) : =a(J m{1,3)s Jx), » and ¥ are continuous unimoduiar

(p:B-*-S

functions of x € B

Since B has no loops, ¢ and ¢ are not surjective, and

hence, since B =~IR , w'l(B) and W-l(B) are open intervals,

DEFINITION 6.3: The union of the rays corresponding to the

two endpoints of @'I(B) resp. W-I(B) are called the

asymptotes of B in i vresp. j , Asi(B) = Asi(B(i,j))
resp. Asj(B) = Asj(B(i,j)).

m
By definition the asyptotes are "cracked" lines:

- -

AsT(B), Asj(B) € K : = {Xy U Xz 3§ X £ ¥, X £ 2}

THEQREM 6.4: Asi(B) | Asj(B) » B Ties in the strip bounded
by Asi(B), Asj(B).

("1 " being defined for cracked lines in the obvious manner.)
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(Consider Time(x) = 1im(2n - ¥(x)) = 2rn - Tim¥(x) (a{x) = ).)

Hgﬁ»

THEOREM 6.5 (Construction of Asi(B) and Asj(B))

There exist exactly four points Py294 € Sl(i), pj,qj € Sl(j) with
+ + — + + —
Ti(ps) |l Tj(pj)|[ T3 5 Tylag) i Tj(Qj)|| 1] and

As.(B) = ip{ U 1q; s Asj(B) = Jpy U a5 -

i 4 X
% $'(3)

% ’ %
REMARK 6.6: Pi and pj (resp. q; and qj) have maximal

distance from 13 measured "parallel the corresponding ray®

of the asymptote.

Proof of Theorem 6.5: It suffices to show: p. ¢ a@'l(B).

j
-1
1) Py &€ o (B):

If p; € @'1(8), then there exists y € ip; n B, and by

similarity follows di(y) < dj(y) which contradicts y € B.

2) p; e 39 T(B):

Iﬁ any neighbourhood of p. there exists p € S1 i and
i

q € Sl(j) with the same "parallel" distance from T3J , such
that Tp nJqg #@ . By similarity ip n jg € B and thus

p € m‘l(B), i. e. py € aw‘l(a)
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DEFINITION 6.7: k € K 1is called the axis of B : k = A{(B),

if kil As;(B) ([| Asj(B)) and Kk crackedin m(i,J)

(i. e. k = M(3,3)y U mi1,35£).

By Th. 6.4 we know that B 1lies in the strip between
As;(B), Asj(B) . In the sequel we ask whether B would even
converge towards a cracked linelwhen the distance

di(x) = dj(x) = o grows to infinity.

DEFINITION 6.8: We consider the situation of the proof of

Th. 6.5, part 2):

g and 3J4 intersect in a point x € B, x = x(p) . Take the
ray A(p) through x|l 7p, and start inthe unique point

y = y{p) € Tihﬁmjf. y(p) converges towards a point called
y(p;) for p - p; (from one side), then Aspi(B) ! = Aspj(B)

is defined as the ray starting in y(p;) | TE?.

In the same way As_ (B) : = Asq_(B) is defined.

A ) TAL

X
X3

i /Ty ’ )

/’ Be(E |
‘ [

Because of the symmetry of the definition of Asp (B),
i

Asq (B), we restrict our further considerations on Asp (B)
i i
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THEOREM 6.9: If Asp_(B) exists, then
i
d(x(a), Asp_(B)) =0 (o ==«)
i
(where x(a) € B, @ d.(x(a)) = a; B being the appropriate

P; P
half of B , and d{(.,.) the euclidian distance)

Proof. a = a(p) = di(x(p)) being a continuous pérametrization

of Bp. » a -~ & includes p - Py » and by supposition
1

y(p) - y(py) » thus

d(x(a), As; (B)) = d(A (p), As

(B)) = d(y(p), y(py)) = 0

The following theorem gives an easy sufficient condition for

the existence of Asp (B) and explains its construction.
i
For the formulation of the theorem we introduce a coordinate

system by: 0 : = i , x-axis : = 73 , y-axis : = Tﬁ?

Be the "upper part" of Sl(i) represented in a neighbourhood

U of i =0 by a function of «x:

»
- 4

f has one-sided derivatives f} , f! (as a concave function)

THEOREM 6.10:

1) £1(0) # f.(0) (i.e. fi(0)+ 0 or f!(0) + 0) implies the
existence of As_ (B) given by y € Asp_(B) n 7? with

Pj i
(73, ¥3) = a(-fL(0), £1(0)) (» € R")
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2) Be f n-times continuously differentiable (in U , n € IN)
with £'(0) = £(0) = ... = f(" Doy =0, fo) %0 ,

then As_ (B) exists and is given by y e As_ (B) n 33,

S
p'i pT'

with y being the euclidian middlepoint of 7'

Proof.

1) By similarity

ciy(pyr = ry(p)Jd

|| e
Frpy ¢ 14958

- Ascent (qu) : Ascent (ppi) R

and by p » Py 1) follows.
2) As in 1) with Op> ¥p

Ty(PYr ¢ (Y(PYd1 = - Ascent (Qpy) : Ascent (ppy)

fl
_ Flixg

) f'(epxp)

€ (0,1} by the Mean-Value-Theorem

* ¥p(Xpj - Xg))

- 1 (P~ pi)s
Applying 1'Hopital's rule in the last step.

REMARK 6.11: It is easy to see that not every B has an

asymptote As(B) (see part II,§1), but naturally the question

arises "how o{ten" this may occur.

Consider (for fixed o) S'(0) and all B e Bl : = (B{0,3:i€S (0)},

then all B € B result from those by translations and dilatations.
Because the asymptotes are invariant under these operations, we

may restrict ourselves to asking for asymptotes of B(0,])

(J € Sl(O)). By the Lebesque-(L-)measure on 51(0) we get a

natural measure on Bé

often" there are asymptotes in B.

, making precise expressions like "how



Because T: is a locally monotone and, up to denumerably

many x, single-valued correspondence, f" exists (L-)almost
everywhere and one might argue an asymptote to exist (L-)almost
everywhere, too. But this is not true, moreover, an example in
part II1,§2 shows that for any ¢ > 0 thereexists ¢ and a
meaéurab1e set J < 51(0) with L(Sl(O)\J) < ¢ such that for

any Jj € 7 B{(0,j) has no asymptote.
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§ 7 PENCILS AND ANTIPENCILS

DEFINITION 7.1: 8% : = {B e B ; B = B(x,j), § € R{x}}

is called antipencil in «x (x EIRZ)

THEQREM 7.2 (Theorem of the Three Points)

Two different middielines B(x,i) and B8(x,j) from an
antipencil Bx have at most one point in common which lies
on B(i,j) , too.

. are . , i
I{ 1,X53 not collinear (in the sense of the Real Affine
Geometry), then B{x,i) and B(x,j) have exactly one point
in common.

In other words: Any triangle has at most one middlepoint, any

non-degenerate one has exaclty one,

Proof. Be z ¢ B(x,i) n B{(x,j)}, then di(z) = d (z) = dj(z),

thus z ¢ B(i,j) . Be Z1525 € B{x,1) n B{(x,J}, then, using

the dual distance d#(¢*):

d1(21) = d,(z;) ='dj(21) = d;l(i) = d;l(x) = d;l(j) =10

di(29) = &x(29) = dy(zp) = d3 (1) = df (x) = d (3) = : oy
P1 °2 . .

thus the antispheres S, (zy) and S, (zo) intersect in the

three different points 1i,x,j , thus z. = z, . If i,x,j are

1
not collinear, As;(B(x,1)) |l Asx(B(x,i)).H‘ASX(B(x,j))]| Asj(B(x,j)),

thus the strips formed by As.(B(x;i)), As (B(x,i)) resp.
As,(B(x,3)), As;(B(x,3)), in which B(x,i) resp. B(x,j) is
lying,have a compact intersection, in which B(x,i) must

intersect B(x,j).
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COROLLARY 7.3: B(x,i) and B(x,j) are different for i + j.

COROLLARY 7.4: B* s homeomorphic to the (open) torus,

especially two-dimensional.
it is

DEFINITION 7.5: By = {B €83 ieB}y is called pencil in 1.

We consider

g2 B - By ¢ B(i,J) -1 - m(i.§) + B(i,3) ,

that is a continuous bijective application (translation)
translating m(i,j}) into i . Thus we have a one-to-one
i

correspondence between elements of B and Bi

1If B=G6G, then B =8 uB®” and B ~ 5

Since the pencil has no great meaning for the solution concepts,
it will not be discussed further.
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§ 8 THE GEOMETRICAL OPERATIONS

DEFINITION 8.1: The correspondence "joining" is defined by

2 X mzxdiag) ++ B (X;¥) »xyuy:={BeB; x,ye By

u : (IR

The correspondence "intersecting" is defined by

n : (B x B~diag) -- IR : (Bl’Bz) - B1 n 82 » Seen as set-
theoretical intersection.

In the following we restrict n to where B1 n 82 £ P

REMARK 8.2: In usual geometry gy and n are single-valued,

and so we have to modify the definitions of the continuity of

the geometrical operations.

Usually by the continuity of intersection we mean the following:
If B1 n B2 = x and U 1is a neighbourhood of x , then there
are disjoint neighbourhoods of V(Bl) and V(BZ) of the Bils
such that each line in V(B,) meets each line in V(B,) at

a point of U (cf. SALZMANN,pp.%,13).

This definition gives rise to the following modification:
Let B1 n 82 #+ P and U a neighbourhood of B1 N B2 .

This definition is equivalent to upper hemicontinuity of the
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correspondence n { e. g. cf. HILDEMBRAND, P. 22}. For a
simple intuition we can say there are no new ones appearing

by small moves.
3

z R |
I R

Via)x V(B,)

The usual definition for continuity of joining is as follows:
If U 1is an open set of lines, the set of pairs of points
(x,y)}, such that xgy exists and helongs to U , is open (cf.
SALZMANN, pp .%,11). Modification is given by:... such that x u y
is not empty and there is some connecting 1line (i. e. element
of x y y) that belongs to U . This definition is equivalent
to lower hemicontinuity of the correspondence u . For a simple
intuition we can say that there are no collapses of the image
by small moves, or more exactly: For any element of x u ¥

and any sequences x" - X, y° - y there is convergence in the

image: BY - B with BV xV y yV

2
|

| Y
Ly

]
(% y) WAR
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Upper hemicontinuity for u and lower hemicontinuity for n
are defined in the obvious way. An example where intersection

is not lower hemicontinuous is given in part II.

THEOREM 8.3: Intersection is upper hemicontinuous.

Proof. Let U be an (w. 1. 0. g.) open neighbourhood of

B1 n 82 . So B1 and 82 differ on 3U and we can give a
separation by separating ¢-neighbourhoods of PE Vi(Bl) and
VZ(BZ) with y e 3U . By the shape of the middlelines we
know that pairs of lines of »

(Vi(31) N V2(31)) X (v{(sz) n vZ(Bz)), x € By n B,

must intersect in U
In other words: topology Bo is the topology to guarantee

upper hemicontinuity of n .

By the next lemma we give a construction for x y y

LEMMA 8.4: 1If there is more than one intersecting point of
S%(x) and S$B(y) , say i and j , so B{i,j) 1is connecting
line for x -and y . A1l elements of x yu y are obtained

this way. x y y 1is not empty and is closed (4 and g arbitrary).

Proof. The first statements follow by simple caiculation. Non-
emptyness follows from strict convexity and positive homogenity.
For closedness consider BY » B , BYex Uy : Bz-topo]ogy

guarantees that x,y € B
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The positive reals o and g of Lemma 8.4 are used to

parametrize x Uy . As a first step we figure out:

LEMMA AND DEFINITION 8.5:

Jiy t = {(ar8) eRY x RY 5 S%(x) 0 S8(y) is a singleton)

is the boundary of

Jiy = {{asB) er x R ; SL(x) n SE(y) is two-elemented)
Description. Let ny be the curve of intersecting points
generated by Jiy . For any sphere Si(x) we take the tangent

spheres Si(y) . There are exactly two of them (g4 4 0), the
radii of whom we write o1{a) and gp(a) . The one has empty
intersection with the inner of S:(x) » the other one envelops
S:(X) . 0'1(0',) = 02(0,) holds iff o = 0

ny has no loops and divides into halfplanes. Different pairs

from Jiy can generate the same line.

We resume:
LEMMA 8.6: x y y 1is generated by the intersecting points of
. +
the spheres S%(x) and SE(y) with o e R" and ge (o1(a)s0n(a)).

Especially we have: x y y is connected.

COROLLARY 8.7: If 4 1is norm, then ny is the euciijdian

connecting line.

This case is illustrated by:



In general, x U Yy

is two-dimensional,

If middlelines have a

special shape, dimension becomes smaller.

X Uy < K~G

X yycgG

This becomes clear if we look at the transformations

lines:

Lines of shape "K"
are transformed
into themselves by

stretchings in m

one-dimensional

one-elemented

Lines of shape "gG"
are transformed
into themselves by
stretchings and
translations into

its own direction.

on these
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THEQREM 8.8: x y y cuts an interval IX y out of B(x,y).

Ix y is short-hand for {BnB(x,y) ; B € x u y} . Theorem 8.3

gives u.h.c. of n . Lemmata 8.4 and 8.6 give c¢losedness and

connectivity of x uy . So IX y is closed and connected, too.
Y
w® l “ho new w

|
[ | ones”
l

[ Tro}us'ion .

!
i
|
)

4

[N

(8B6y)

Because of the shape of B(x,y) {(Theorem 4.1) dimension reduces
and 1x y is homeomorphic to the interval.

COROLLARY 8.9: If x yu y e K , then Ix y is a singleton and

equals {(m(x,y)}

THEQREM 8.10: Joining is continuous.

Proof. First: It is lower hemicontinuous:

Let A be an open set of lines, W. 1. 0. g. A = Vz’y(A)

(we refer to topology 83). Then {(x',y') 53 x' U y'e A} equals
the U_(x) x U_(y) defining V:’y(A) . So topology By is the

topology "to make joining 1.h.c.".

Next: It is upper hemicontinuous, too:
It is to prove that for any neighbourhood V of x y y , there

are neighbourhoods Ux and Uy of x resp. ¥y , so that for

any pair (x',y') € Ux X Uy the jcin x' y y' 1intersects V
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Neighbourhoods of x u y contain a neighbourhood of any
fixed Bexuy . W. 1. 0. g. we refer to the basis of
topology B, : V(B) = VE(B) . Then by continuity of o and
the equivalence of By and By we know about the existence
of appropriate neighbourhoods of x and vy

((x" uy')nVviB) +p):

3

B ex' uy' can be generated by (i',j') with i' and j'
in such neighbourhoods of i and Jj that
p(2' - i') = (2" - j') = o with z' € Us(z) and

a= of{z - 1) = o(z - J)
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PART I1

EXAMPLES
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§ 1 A STANDARD EXAMPLE

1.1 THE UNIT SPACE

¢ is norm and the unit sphere is given by the boundary line

of the intersection of the ball of a circle x2 + y2 =1 and

of that of an ellipse (% y - x)2 + y2 = 1
The ellipse can be generated by (X,y) - ((%y + X}, y) and

the circle.

x?ryzzl

1.2 MIDDLELINES

that
We classify B by that segments of the spheres determine the

line in a neighbourhood of m . This depends on the ascent for
the generating pair (i,J). (We define the ascent in a

homogenuous form.)
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Type of B Ascent of (1i,]) Determining segments
= B(i,J)
—— e
Hq (1,4) ' one elliptic
i. e. where one circular

s4(0) is kinked

Z, {{asd) 3 o« = 1} both elliptic
Ho (1,0) one circular
i. e. where one elliptic

si(0) is kinked

2] ((lya) 5 o € (0,4)) both circular

1.3 TYPE Hp

We restrict our attention to r = 1 . The other case can be

handled in the corresponding way.

1 + .
Let Hy 3 H = B({ 0, 75 (1,4)) = H' y H**  with
1 .22 1 .2 4 2 2
Y = 1Y) 5 (=) 4" = (=) S+ (y-9)© and y 2 o5
and * the point reflection at m = 17 (1,4)

For the H+—generating quadratic equation

2 + 2Dx + 2Ey + F = 0

1 1 1 4

{sz + 2Bxy + Cy
A=0’B=-_2-’C=I’D=7T7’E=7T7’F__1

we get the shape-determing determinants
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A = B CE =0 and § = ‘B C

So we know that the quadratic equation gives a pair of
intersecting (euclidian) lines.

These can be calculated as y = 7%7 and 'y = 4x - 2 /17 .

AN

Y ¥

Y-s‘+x -2Y1T

HY s marked by a doubleline.

It follows: H = Ax(H) = £(X,y) 3 y = o2} .

As;(H) and Asj(H) are the parallels through i vresp. j
H = Asp (H) (cf. part I, § 6.3 f.).

i
Hy ={H"; © a translation} = all parallels of H

1.4 TYPE 7z,

Let us restrict to 7 .« Let Z7 2 Z = B(0,(3,2)). We give a

scetch of the regions of equal determining segments.
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y= H-x -'10

Because of the symmetry we restrict our computations to regions
1, 4 and 5. In region 1 and 5 we will get eucliidian Tine seg-
ments, since the determining parts of the spheres are both
circular resp. both elliptic. In region 1 we get the (euclidian)

perpendicular bisector: y = - % X + %3

The segment in region 4 is calculated as fullfilliing

2 xy + 6x + 4y - 13 = 0

1
Ty
By A # 0, 6§ <0 we know that it is a hyperbolic segment,
The hyperbola has asymptotes y =6 and y = 4x - 22

The intersection with the boundary of region 4 1is

(et Loy, &L -
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Let us go back now to region 5,

Euclidian 1ines of ascent (2,-3) are transformed by
(X,y) -~ (x + % Y 5 y) into ltines of ascent (2,-1) , that is

the ascent of the line segment in region 5.

™. Y="73
™
\ v

C\se('z}

1.5 THE JOIN

To classify types of the join x y y for pairs (x,y) we
have to examine the ascents of the pairs (x,y) ; x,y € B € B

By asymptotic considerations we get:

A Ascent (x,y) € {(a,4) ; o < 1} - B e 2
X,yeB

A Ascent (x,y) € {{l,a)} 5 a € (0,4)) « B ¢ 7,
X,yeB

From 1.3 we know:

A Ascent (x,y) =
X,yeB

I
o
$
o
M
g

[

A Ascent (X,y)
X,yeB

H]
=
3
(o n]
m
a

~o

Thus x uyu y contains only lines of one type.
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1.6 THE INTERSECTION

In § 5 we remarked that there are intersections with a

continuum of points. The figures give two examples.

In this example Zy is a stretched version of Z,

Z2 is a translated version of Z1
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1.7 JOIN IS NOT COMPACT

Consider Z1 in the upper sketch and select a pair (x,y),
X,y € Zy , such that they lay in the left (unbounded) line
segment. We use translations T, of length v e N 1in direction
of that line segment to the right. The sequence (Ziv)veIN does
not converge (the euclidian line in this direction is not in B)

So the join x U y 1is not compact.

1.8 ON CONTINUITY

Qur version of continuity of joining as developed in 1.2 - 1.4

is intuitively represented by the following sketches:

| B |
| }
t

| = Z,

|
|
|
|

(X '\IA 4 ‘z-v (X,Y)E g'[uv

To get an example against lower hemicontinuity for intersection,

we have to intersect lines of type Zv
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,R?.
| |
|
| x |
]
| !
| [
/T//’#‘Y |
|
L 1
220 {(z,27) T}

T are translations in arrowdirection.

If we transfer 22 by an e-translation the image may collapse.
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§ 2 AN EXAMPLE FOR PATHOLOGICAL ASYMPTOTIC BEHAVIODUR

As announced in part 1, § 6, we construct for arbitrary ¢ > 0
a ¢ such that the unit circle Sl(O) contains a measurable
set J_ with L(S}(0)\J) < ¢ and B(0,j) has no asymptote
for j € JS:

.i

Be IN . = ¢ N5 € {0,105 (n o= 1,...,N))

S M=

define by induction

&= e (51-% » 3149) 0 10,1) (= 10,5) U (g-7.3+ 7) fore<1)
N a U (G s dnt—Sg) U ATRLI [0,1) .
€ jNGJN N 2N N 2N n=1 ¢ _
and set
J := u N ,
€ NeWw °©
then
et c10,1)
and
L(aNy < g %n 2e _ ¥ o <
©' " ps1 k=1 22K pe1 M '

Furthermore, for ¢ <-% . x €[0,1)~d_ , we have:

(For any M €I there exists Nz M and jy. ky € 7N with
X = Jy 1 = min Ix = iyl . Ix = kyl = min . Px -yl
*ﬁ 1NEJN 1NeJ \{JN}

and

N € . [> . - - E - €
(Y€ (JN‘22N+1=JN+22N+1)=’2' =12x-yl(mod 1) & (ky E?N?T’kN E?N?T)
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(z 1is the reflection of y at x , therefore
N+1

[ E N
zZ ¢ (kN - T Kt E?N:T) would imply x € JoT e d,

in contradiction to x & J_ )

We are choosing now as starting figure for the construction of

1

1 C??(O)

S*(0) the euclidian cicle ,» the points of which may be

homeomorphically identified with [0,1) (the neighbourhoods of
0 and 1 (0 = 1) beingiproperly defined). Thus we may regard
Jy » J_ as subsets of c*"0)

1

1 . Zr . . N . e . 1
In JE we modify C"7(0) by drawing in any J,-x , Itz (i, €77)

1

Zn

the tangents to C“"(0). The new figure is convex, but not

strictly; the latter may be repaired by replacing the tangents

1

by very flat arcs tangent to C?;

(0) in j1—§ . jl+§ . This
modification being entirely trivial, it would complicate the
considerations and computations, and so we work with the tangents

nevertheless.

g
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1
2 . Zw% . . . .
In J€ we modify C w(0) in those intervals (Jz-g » Jot g)
with (jz-g s j2+§) n Ji =@ in the same manner, and do the
same with Ji ces
For Sl(O) - constructed in this way - we show with (x) by

direct computation that for any direction ox with x € 51(0)\\]E

the corresponding B (i. e. all B wup to a set of measure < ¢ }

has no asymptote:

1
(

Be x € S7(0)~J_ , then for any M € N we may choose Ji,, k
£ N N

according to *

and, hecause, if eventually
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[ £ E €
Ve U (kg o kytoor)s (ko KN* 2T )

Knes 2 2
1
V "deviates much Tess from CE?(O) than u" , we may even
1
assume V € C2¥(0)
Now, by <¢os y = %%%—% we get
1 .
_2 _sin y - cos B
1 S'i'ﬂa.
2 COS
=J1 - COSY's—ﬁr—S
_ cosza-coszs
2 . 2
1n a cos Bg+sin a

JEOS R - C052a
SH’\ o

2 1
‘JS1H a = sin B
s1n o

sin’ B

T2

sin“o
By construction sin B, .50 (M + =) thus 12 +1 (M- =)
Y sin a € ’ TI
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PART III

DEGENERACY
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§ 1 ON UNIQUE GENERATORS

In this paragraphe we characterize degenerate middlelines

B €GnB by the fact that their generating points i,]

are not uniquely determined. In other words: For any
nondegenerate B € B~G there are two unigue generating points

i3 €eRE , i+ j . with B = B(i,§)

THEOREM 1.1:

1) If B = B(i,j) € BN G, then B = B(k,1) with k € R°<B

arbitrary and XT | 73 , B deviding kT in the same
proportions as 1J
(Thus 1 may be called the "reflected image"” of k -
"reflected at B , paraliel to TJ and with the appropriate
proportions".)
2) 1f B = B(i,j) € BSG , them B = B(k,1) iff (i,i) = (k1)
(resp.  (1,3) = (1,k)).

Proof. The first part being trivial by similarity, we only have

to show the second one:

First we show that B{i,j) = B(k,1) includes 7FJ || KT :

Clearly As.(B) | As, (B) , since otherwise the strips of the
asymptotes would have a compact intersection including B , hence

B would be compact which is impossible. If 51(0) has no cracks
in the asymptotic directions, i. e. in y,z € 51(0) with

0y, 07 || As.(B) , then by construction of the asymptotes the
direction of the generating points is uniquely determined. If there
are cracks, then As{B) exists and TJ4H kT would cause a

different asymptotic behaviour of B(i,j) and B(k,}) as can be
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shown by a direit computation:

//‘Ef@ﬁfk?B

=t

L

. r _a tan a "o B
hyth, = hythy, = ¢ o1 ; (hy= a tana , h,= b tamg ),
_ a
hjctgy + hyctga = a , hy = ctgy + ctga
h,ct + h,ctgs = b h, = b
2Ct98 2tts * T2 ctgs + ctgp
] _a ctgs + ctgg _ a tang
hythy =3 ctgy + ctge b tang
_ tang ' tang
ctgy = Tare (ctgs + ctgg) - tang ctga
tang
_ tang 1 - tana
tang ctgs + tang

Since for kT W 7] t::a have different values (at+ = g¢) » We

get a different asymptotic behaviour for B(i,j) and B(k,1)
If 43|} k1, (i,3) # (k,1) (and (i,3) # (1,k)) and P ¢ B ,
m(1,3)P ¥ As;(B) . then we can jteratively construct by similarity
points P', P“,...,P(") e m{(1,J)}P , pln) no more lying int the

strip formed by As;(B), As;(B), contradicting AN
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HSi (B)
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§ 2 CONDITIONS FOR DEGENERATION
In this paragraph we give some geometric equivalent conditions
for the degenerate case, where all middlelines are straight.
The next paragraphe will give an easy analytical characterization

of this case.

The first theorem characterizes the degenerate case by the

operations "n" , "u" being (atmost) singlevalued.

THEQREM 2.1: B = 6 is equivalent to

1) B = A(B) (B £ B) , or
2) X(B1 n 82)
3) X(x uyy) =1 (X £y 3 X,y eIRz)

WA

Proof. We show: B =G= 1) = 2) = 3) = B = g

B=G=1): The statement is trivial, because B = A(B) (B ¢ G)

1) = 2) : From 1) B = 6 and hence X(B; N B,) =1 follows.

2) = 3) : If X{(x uy) >1, there are B, * B, , B,sB, € B
and X,y € Bl,B2 » hence x,y € B1 n 82 » hence
( 1,8.4) (x # y) x(By n Bo,) > 1 , hence 2) is
violated.

3) =8 =06: If B $6 , there is B ¢ BNG and on B there are
points x,y and u,v such that Xy || uUv , but

Xy # U




By similarity {(u - x , v - y) we can get B 3B
from B such that B #B , x,y € B , hence

B,B e xuy, and 3) is violated, hence B < G
From B < G 1) follows trivially, and because
we can construct B € B with asymptotes in any

direction, B = G follows.

The next theorem characterizes the case B = G by the

compactness of the pencil By and of x u ¥y

THEOREM 2.2: B = G 1is equivalent to

1) x uy compact (x %Yy , X,Y¥ EIRZ) , Or

2) B, compact for some X EIR2 » Or

3) Bx compact (x EIRZ)

Proof. We show: B = Ge l) , B=Ge?l),2) «3)

B=0Gel): "s" being trivial we have only to show et
We first state a lemma:

1

LEMMA 2.3: If BeBnG and S (0) has no cracks in the

points u,v € 51(0) with Gv = ou = ov |l B , then any B € B~

with asymptotes parallel B belongs to G

Proof of the Lemma. Be B = B(7,J) , then for any B = B(i,]) € B

with As;(B) || As;(B) Il B . T3] 73 (by construction of
As{(B), As;(B) . because s1(0) s not cracked in u,v) , and

by this B is similar to B , hence B € G .



Proof of the theorem (continued):

(1) =8 =¢6:) If B& G, there is B = B(i,j) € B~G , and,

because 31(0) has atmost denumerable many cracks, by continuity

we may assume that SI(O) is not cracked in wu,v € 51(0),

ou = ov = uv || As.(B) || Asj(B) , and thus by lemma 2.3 there is
no Besngs BI As;(B)]| As;(B) . We can choose x.y € B,
X #y , Xy || As;(B), and by dilatations and translations we get

T3, 0i, - 3t - e s Xey € B(i,d,) = 8",
hence B" - Xy ¢ 8 , contradicting 1) , hence B < G , hence

condition 1) of theorem 2.1 is fullfilled, thus B8 = G

B = Ge& 2): "=" being trivial, we show "«

If B8+ G, xuy 1is not campact by 1) for some x %y ,

hence B, = U X UZ is not compact, in contradiction to 2)
Z#X

2) = 3): The statement is trivial using translations.

For the next theorem we need the notion of a "pencil of

cracked Tlines™.

DEFINITION 2.4: We call Kk, € (¥ u X2 ; y.z e,y X . 2% %)

a "pencil of in x cracked lines", if for any y eIR2 s Y £ X,

2

there is z €¢IR® , z %+ x ,such that Xy u XZ € K,

THEQREM 2.5: B = G is equivalent to

1) B 2K, for some Xx eIR2 , Or
2) B 2 K, for all x eIR2
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Proof.

1) » 2) being trivial by translations, and

B =0Gwl being trivial, too, we need only to show

)
1) = B = G . For this sake we need an analogue to Temma 2.3:

LEMMA 2.3*% - If B € B contains a ray Xy (x #y) and 31(0)

has no crack in u e'Sl(O) , ou || Xy , then any B e B with

asymptotes containing a ray || Xy contain themselves a

ray |} Xy .

The proof of lemma 2.3* is analogue to that of lemma 2.3.

Proof of the theorem (continued): For B € B let the

directions of the asymptotes be given by two rays Xy » X2
(x #+y , x * z). Assuming - by continuity w.l.g. - the regularity
condition on 51(0) of lemma 2,3* to be fulfilled, and choosing
K

Ko € Ky with Xy € Ky o XZ € Ko » we conclude {by lemma 2.3*)

172
B - Xy u X2 . It remains only to show that any B of this form

belongs to G , which will be proved in the next paragraph.

We have proved in Part I the operation n to be upper hemi-
continuous {u.h.c.), and given an example for n not to be
Jower hemicontinuous {(1.h.c.) in Part II. Indeed the next

theorem shows that, if n 1T.h.c., then B = G .

THEOREM 2.5: B = G is equivalent to "n 1.h.c.”

Proof. If B =G , then trivially n is 1.h.c.,'thus only

the converse needs to be shown:
iIf B $ G , then we construct a contradiction to "n 1.h.c."

as shown in the following figure with some B € B~NG :



(P e B0 nB =Bsn B1 disappears when changing B = B1

0
"a little bit" into B, , i. e. n is not l.h.c. in (By,:By).)

Thus from "n 1.h.c.™ follows B & G and hence (by asymptotes

in any direction) B =G follows, too.

The next theorem gives two conditions for B = G taken from

Topological Geometry (there stated as lemmata).

THEQREM 2.6: B = G is equivalent to

1) (Compactness Lemma, cf. SALZMANN 2.13)
A =B is compact iff there js a compact subset K <& R?

such that for any A A AN K +p , or

2) (Transversality Lemma, cf. SALZMANN 2.8)
Let be A,Be B , AnB =9, then Hl(A)n B « @ and
HZ(A) nB =29 ,IR2 being divided into top open parts

Hy(A)Hp(R) by A ( R% = H(R) U A U Hy(A))

REMARK 2.7: If A =B compact, then the concliusion of 1)

is anyway valid.

Proof.

Remark: If the remark would not be true, we could find outside

any compact ball B cR’ A €A with ANB =9,

thus constructing a sequence An € A without a point
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of accumulation. Thus A woul

compact, hence not compact.

G o 1): "3" being trivial, we show
A:=x Uy fuifills the cond
K = {x,y} for any x zy , th

compact for any X £y , thus

G « 2) : "=" being trivial, from

a contradiction, shown in the

Thus from 2) B c G s hence

d not be sequentldlly

1§} G" :
ition of 1)} with
us x Uy being

B=G by TH.2.1).

B & G we may construct

folldédwing figure:

B =6 follows.
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§ 3 CHARACTERIZATION BY SCALAR PRODUCTS

Having given in § 2 some geometric and analytical (equivalent)
conditions for the degenerate case B = G , we state here a

simple explicit analytical characterization.

THEOREM 3.1: B = G 1is equivalent to the existence of a

scalar product <.,.> such that ¢(x) = Y<x,x> (x eIRZ) s

or equivalent to 51(0) being eiliptic.

Proof. Since B = G any B = B(i,j) e B 1is its own asymptote,
and by Part I, TH. 6.10, we know that - up to denumerable many
directions - B n 77 contains exactly the euclidian middlepoint

of 73 . We deal furthermore only with such B ¢ B

(11
"

ﬁ-
N
~l

By similarity (see figure}, we can construct from any point

p € Sl(i) a point p' € Sl(i) by reflecting p parailel to
73 at the parallel to B in i . Because this holds for any

direction of B - up to denumerable many ones - , we may

construct from three points p,q,r € 51(0) other points € 51(0):
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By reflecting p at om parallel to rg , m being the
euclidian middlepoint of T¥q , we get p' ¢ Sl(o)s and in the

same way q' & 51(0), and so on.

Taking p,g,r "close" (i. e. more precisely, a point p , the
escent in p and the curvature in p , supposing w.l.9. both

to exist in p) , we get 51(0).

On the other hand, by affine geometry for three points p.q.r
with 0 1lying in the inner angle formed by pq and qr ,
there exists exactly one ellipse El(O) with center 0 containing
p,q,r . The same construction principle as for 51(0) being

valid for El(O) , too, and any Pp,q.r € 51(0) (taken in the
appropriate order) having 0 in the inner angle, 51(0) = El(O)
follows. Thus having shown one direction of the second part of

the theorem, one direction of the first part is an easy consequence.
Any nondegenerate El(O) being of the form El(O) = (X 3 xTAXx = 1}
with a positive definite symmetric matrix A , we get o(X) = V<K X>

(% eIRZ) by setting <X,x> : = x TAx

1f we have on the other hand o(x) = Y<x,x> (X eIRZ) we get
(by a wellknown theorem of Riesz) a positive definite symmetric

natrix A with <x.x> = xTAx , resp. if we have $3(0) = E*(0)
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being elliptic we have S (0) = EN(0) = {x ; x'Ax = 1} with

such a matrix A . Now we simply compute:

B(1,J) {x 3 o(x-1) = o{x-3)}
= (3 (x-1)TA(x=1) = (x-3)TA(x-3)}

(X 3 XTAX - 29VAX + VAT = X AX - 2j7Ax + j1Aj)

= {x 3 2(iT-i)Ax = jTAj - iTAi) €6 (i ¢ 3) .

the theorem being completely proved.

REMARK 3.2: We can now easily complete the proof of TH. 4 in

§ 2 . Having shown any B = B(i,j) € B to be of the form
B =Xy uXZ , we can conclude 81(0) to consist of two elliptic

par?s _FI’EZ

7

/
k.~

But then there are J such that parts of B(i,J) result
from different ellipses in contradiction to the form of B(i,]j),

unless the ellipses are equal, i. e. B= G :
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REMARK 3.3: By the proof of Th. 3.1 it is shown, too, how to

characterize degenerate directions not resulting from cracks
in Sl(O) , i. e, directions with (all or only one, see § 2, L.3)

B , having asymptotes parallel to, to be straight, B € G:

51(0) must be symmetric with respect to all degenerate directions

and with respect to reflection in the corresponding i3] - direction.

Either there are finitely many such directions only, and then by

successive generation of new points by reflection, starting with

three points p,q,r, om (m__, m

pq > °Mqr Mpq> "gr
middlepoints of Pq , gr) being degenerate directions, we ge®

being the euclidian

only points, the euclidian middlepoints, corresponding to degene-
rate directions (not resulting from cracks in 51(0)), and
furthermore we come back to an cld point after finitely many

steps:

or there are infinitely many degenerate directions, becoming
dense on SI(O) by construction, SI(O) then being elliptic,

and any direction being degenerate.

For the case of degenerate directions resulting from cracks in
51(0) we can proceed in a similar manner, replacing the
middlepoints in the reflection procedure by points of other

varying proportions., We leave the details to the reader.



- 65 -
REFERENCES

HILDENBRAND : Core and Equilibria of a Large Economy
Princeton, N. Y. 1974

KOLM, S-Ch. : Justice et Equiteé
Paris, CNRS 1972

Mc.KELVEY/WENDELL: Voting equilibria in Multidimensional Choice Spaces
Math. of OR 1, 2, pp. 144-158 , 1976

OSTMANN, A (1): Fair Play und Standortparadigma
Inst. of Statistics and Math. Economics, Karlsruhe 1978

OSTMANN, A (2): On Location Conflicts and their Fair Solution Concepts
Inst. of Math. Economics, Bielefeld 1978

RAWLS, J.: Theory of Justice
Cambridge, Mass. 1971

ROSENMOLLER, J.: On Values, Location Conflicts and Public Goods
Inst. of Math. Economics, Bielefeld 1979

SALZMANN: Topological Planes
Adv. in Math. 2, pp. 1-60, 1967

7ECKHAUSER:  Determining the Qualities of a Public Good ...
W. Econ. II, 1, pp. 39-60, 1973

ZECKHAUSER/WEINSTEIN: The Topology of Pareto-optimal Regions with Public Goods
Econometrica 42, 4, pp. 643-666, 1974

For further reading:

ALBERS/OSTMANN/RICHTER/ROSENMOLLER: Projekt Standortspiele
Inst. of. Math. Economics, Bielefeld, 1978

RICHTER, W.: A Game-theoretic Approach to Location-Allocation Conflicts
Inst. of Statistics and Math. Economics, Karlsruhe 1978



