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Coalition probabilities in a non-cooperative model
of three-person quota game bargaining

by Reinhard Selten, Bielefeld

Experiments on three~person characteristic function

games show that different coalitions are formed with
different frequencies. Typically in asymmetric three
person guota games without the grand coalition and with
zero payoffs for single players the coalition of the

two stronger players is more frequent than the other two-
person coalitions [5] [6]. Recently Levinsohn and Rapoport
have found a very interesting empirical reqularity..

The relative frequency of the coalition of the two stron-
ger players seems to be linearly related to a struc-
tural index which measures the inequality between the

quotas {6 ].

In view of these empirical findings one may ask the guestion
whether it is possible to give a game theoretical exnla-
nation for the phenomen of different frequencies for dif-
ferent coalitions. Generally, human decision behavior

cannot be expected to conform to the logic of game-theo-
retical reasoning [12]. ©Nevertheless, it is necessary

to explore the possibilities of rational explanation. Game
theoretical analysis can provide important insights even

if the results are of limited descriptive validity.

The theory of the bargaining set developed by R. Zumann
and M, Maschler suggests that in a three person quota

game without the grand coalition a two person coalition
will form where the players in the coalition receive their
quotas as payoffs. No predictions on coalition frequen-
cies are made [ 2 }]. Several other theories which can be
arplied to the situation come to the same conclusion.

This is true for the von Neumann-Morgenstern solution



(applied to payoff configurations instead of imputations)
and for the John Cross-solution and its variants {1],[3),
{15}. Unlike these theories, equal share analysis excludes
the coalition of the two weaker plavers and sometimes does
not permit any other ecalition than that of the two stron-
ger players [10]. At least under some experimental con-
ditions, those coalitions which are excluded by equal

share analysis do occur with non-negligible relative fre-
quencies {5],[7]. Obviously, a more adequate theory
should lead to positive probabilities for these coalitions,

too.

It is the purpose of this paper to present a non-cooperative
bargaining model which permits the derivation of coalition
probabilities. Predicted frequencies are not blatantly dis-
similar to observed frequencies even if there are signifi-

cant deviations.

1. Three-person guota games

Let v be the characteristic function of a three person
game without the grand coalition and with zero payoffs
for single players:

(1) v{1l) = v(2) = v(3) =0

(2) v(12) = a v(13) = b v(23) = ¢

We assume that a, b and ¢ are positive. Without loss of
generality the numbers of the players can be chosen in such

a way that we have
(3) a>b>c>0
Moreover we assume
(4) b+ ¢ > a

in order to secure that the quotas qqs 9,5+ d3 are positive.

These quotas are defined as follows:



(6) a, = EI%:E

(7 g = Btc-a

The garand coalition 123 cannot be formed: the function v
is not defined for this coalition. For the sake of simpli-

city we exclude the limiting cases ¢ = 0 and b+c = a,

2. The bargaining model

The bargaining model has the form of an infinite extensive
game. The game is played over infinitely many periods
t=1,2,3, ...in the sense that the rules permit plays of
infinite lenath but plays of finite length are also pos-
sible and in fact are more advantageous for the players.
Every pveriod has the same structure; a play which does not
end before period t leads to a subgame at the beginning of
period t which is homeomorphic to the whole game. Therefore
the game is completely described by the rules for an arbi-
trary period t and the payoff specification for infinite
plays.

2.1 Rules for period t: For t = 1,2,3,..., period t, if it
is reached, is plaved as follows. At the beginning of the

period the three players have full information on all pre-
vious cheices including those of the random ovlayer. The
period is subdivided into four steps. The first three
steps determine a tentative coalition Ct'
Step 1: A random choice selects one of the players 1,2,3.
Each of the three players is chosen with the same probabi-
lity 1/3. The result of the random choice is made known

to all players.

Step 2: Let i be the plaver selected in step 1. Player i
has to propose either coalition ij or ik, where j and k

are the other two plavers. Player i's proposal is made

known to all players.



Step 3: Let ij be the coalition proposed by player i.
Player j can either accept ij or oropose jk. The tenta-

tive coalition C_ is ij if he accents ii and jk if he pro-

t
poses jk. The tentative coalition Ct is made known to all
plavers.

Step 4: Let players g and h be the members of Ct and let
th be the set of all vectors x = (xT,xz,x3) with

(9) Xg + x, = vigh), xgzO ' xhzo
and

{10) X, = 0

where m is the player who is not in Ct' Players g and h

simultaneously and independently select prowosals xgexgh

and xhsxgh, respectively. If both nronosals agree then
the game ends and the players 1,2,3 receive the payoffs
Xy Xy Xg specified by the common proposal x = xg = xh

In the conflict case xJ F xh the game proceeds to period

t+1 L]

2.2 Infinite plays: The payoffs attached to infinite plays

are zero for each plaver.

2.3 Interpretation: We may call steps 1,2 and 3 the coali-

tion formation phase and step 4 the payoff bargaining phase.
The coalition formation phase may be thought of as a game
of perfect information whose outcome is a tentative coali-
tion. The bargaining phase is a very simple model of pay-

off bargaining within a coalition.

The perfect information character of the coalition forma-
tion phase facititates the analysis. Overall symmetry is
achieved by the random chcice at step 1. The remaining
two steps 2 and 3 of the coalition forration phase are just
sufficient in order to permit the formation of any of the
three two-person coalitions, regardless of the outcone of

the random choice.



2.4 Behavior strategies: A behavior strategy s; of player i
is a function which assigns a probability distribution Siu
over the choices at u to every information set of player i;

in this paper a behavior strategy will always be a finite
behavior strategy in the sense that Siu assigns positive
probabilities to a finite number of choices only. Since
more general behavior strategies are not considered the
word "finite" will be omitted. With respect to the bar-
gaining model, the only restriction imposed by the finite-

ness condition concerns step 4.

Let 58 = (51.52,53) be a combination of behavior strate-
gies for the bargaining model, i.e. a triple of behavior
strategies, one for each personal player. Since the bar-
gaining model is an infinite game, it is necessary to ex-
plain what is meant by player i's expected payoff Hi(s) at
s. Fortunately, in the case of the bargaining model no
difficulties arise. Let Hit(s) player i's expected pay-
off up to period t (payoffs arising later are neglected).
Since s permits only a finite number of possibilities for
the course of the game up to period t, the expected pay-
off Hit(s) is well def;ned. Moreover, the sequence
311(5), Hiz(s),... is non-decreasing and bounded from

the above by a, since payoffs can be obtained only at

the end of the game by agreement at step 4. Therefore,

the sequence converges to a limit. Player i's expected pay-
off Hi(s) is defined as this limit. Since infinite plays
yield zero payoffs, it is natural to define expected payoffs
for combinations of behavior strategies in this way.



3. Nature of the proposed solution

A reasonable game theoretical sclution of a non-cooperative
game cannot be anything else than an equilibrium point or

a set of equilibrium points. Theories which prescribe
non~-equilibrium behavior are self-destroying prophecies
since at least one player has an incentive to deviate if

he believes that the other players obey the prescriptions.

Unfortunately, one cannot expect that human decision making
is perfectly rational. This is especially true for game si-
tuations. Learning processes rather than abstract think-
ing determine the behavior of experienced players. Mathe-
matical models of game learning like the Brown-Robinson
process converge to equilibrium points if they converge

at all, but this is by no means always the case {8],[9],
[14]. Nevertheless, eguilibrium point theory may still

be a useful tool for the prediction of experienced hkeha-
vior where learning processes do not converge. Numerical
examples convey the impression that in such cases one can
expect a tendency towards cyclical fluctuations around

an equilibrium point in mixed strategies. These fluctua-
tions may produce average results similar to those at the

mixed eguilibrium point.

Admittedly, the hope for empirical relevance of mixed
strategy equilibrium points as approximations of expe-
rienced average behavior is based on weak evidence. Never-

theless, it seems to be worthwhile to pursue this approach.

The bargaining model introduced in section 2 has many equi-
librium points. Reasonable criteria will be used to se-
lect a unique one. In view of the descriptive purvose of
the theory to be presented it is not advisable to apply

the method of selection developed by John C. Harsanyi and
the author { 4]. 1Instead of this the analysis will be
based on requirements which are specifically addressed

to the problem at hand without any ambition to provide

a solution concept for a large class of games.



In view of the limited scope of the theory to be present-
ed it seems to be adeguate to avoid lenagthy formal defi-
nitions of technical terms whose usual meaning is suf-

ficiently clear.

The unique equilibrium point to be selected will be an
equilibrium point in behavior strategies. We shall re-
fer to this equilibrium point as "the solution" of the
bargaining game. In the following the reguirements cha-
racterizing the solution will be introduced together with

the necessary terminclogical explanations.

3.1 Subgame consistency: Subgame consistency of an equi-

librium point in behavior strategies requires taat the
strategies of the players should be invariant with respect
to homeomorphisms between subgames. A more formal aefi-
nition of subgame consistency will not be given here. 1In-
stead of this it will be explained what the requirement

means for the bargaining game introduced in section 2.

All subgames beginning at step 2 after the random selection
of a svecific player i are homeomorphic. Subgame con-
sistency requires that at step 2 player i always chooses ij
and ik with the same prcbabilities, independently of t

and the prior history of the game. Similarily the proba-
bilities of the decisions of a player at step 3 must be
always the same, All subgames beginning with the same
tentative coalition C, at step 4 of some period t are
homeomorphic. The members of C, nust always behave in

the same way.

NMote that subgame consistency is not a part of the rules
of the bargaining game. The players are permitted to play
any behavior strategy. Only the solution will he required
to have the property of subgame consistency.

Subgame consistency should not be confused with subgame
perfectness which reguires that an equilibrium point should
be induced on every subgame [11],{12]. A subgame per-

fect equilibrium point in behavior strategies may not be



subgame consistent and vice versa.

3.2 Positive coalition offer probabilities: We say that

a subgame consistent eguilibrium point in behavior stra-
tegies for the bargaining game has positive coalition
offer probabilities if it always prescribes positive
choice probabilities to both choices of a player who de-

cides at steps 2 or 3.

2s has been pointed out before,empirical observations
suggest that all two person coalitions are formed with
positive probability. Apparently learning does not ex-
tinguish the tendency to form any of these coalitions.
Therefore,the requirement of positive coalition offer pro-
bahilities seems to be a reasonable condition to be Impos-
ed on a solution which tries to reoresent the behavior

of experienced players.

3.3 Independent positive coalition prorabilities: We call

a tentative coalition where an agreemcnt is reached a fi-
nal coalition. Let a,8 and y be the prcbabilities with
which 12, 13 and 23 are reached as final coalition by a
given equilibrium npoint of the bargaining game. We say
that an ecuilibrium point of the bargaininc game has in-
devendent positive coalition probabilities if the condi-
tional probabilities that 12, 1. and 23 are reached as
final coalitions after the random choice at step 1 of
period : are positive and do not depend on tne player
who has been selected. This means tnat the conditional
probabilities for 12, 13 and 43 given step 1 of period 1

are always the same positive probabilities a« B and y.

3.4 Nash bargaining property: Consider a subgame con-

sistent equilibrium point in behavior stratecies of

the bargaining game and let WarW, and Wa bhe the expect-
ed equilibrium payoff of plavers 1,2 and 3, respectively.
Since a subgame at the beginning of a period t is always
homeomorphic to the whole game, w,, W, and w, are also

the expected payoffs for these subgames.



Suppose that gh is the tentative coalition C_ at some

period t.

1he situation of the players g and h may be

described as a bargaining problem concerning the division

of v{gh) among g and h with wg and Wy

offs. A profitable agreement

(11 w_ o+ W
) q

" < v(gh)

as conflict opay-

can be reached, if we have

The avpnlication of Nash's bargaining theorv to this si-

tuation specifies an agreement where the surplus above

wg+wh

is split evenly among both players.

This agree-

ment corresponds to the following nroposal

X = (x1,x2,x3)eXqh :

{12) X

1
wq + i(v{qh) - wg-wh)

Q
- 1. _ -
(13) X, = Wy + 2(J(gh) W wh)
(14) X, = O

where m is the player not in

We say that a subgame consistent

Ct.

equilibrium point in

behavior strategies of the bargaining game has the Nash

bargaining property if it satisfies the followinc condi-

tion for any two plavers g and h for wnich (11} holds:

Whenever ¢ and h find themselves togqether in a coali-

tion Ct they both choose the
by (12),(13) and (14). This
Nash pronosal.

The Nash bargaining nroperty
conditicon which secures that

both players suffer the same

proposal anqh described

proposal is called the

may be interpreted as a
in a step 4 situation

loss should they fail

to reach the equilibrium solution. In this sense the

equilibrium agreements are required to be balanced with

respect to the risk of conflict.



4. The solution

As we shall see, the four requirements of subgame con-
sistency , positive coalition offer probabilities, in-
dependent positive coalition probabilities and the Nash
bargaining property determine a unique equilibrium point
in behavior strategies for the bargaining game. »As long
as uniqueness has not yet been proved we shall call any

equilibrium point with these properties "a solution”.

Lemma 1: A scolution always prescribes the same proposal

xXeX

pard

gh to both members ¢ and h of a tentative coalition Ct'

Proof: Subgame consistency requires that the proposals
do not depend on prior history. The proposals for the
tentative coalition gh are always the same. No agree-
ment at gh can ever be reached unless the proposals of
g and h agree. In view of the requirement of independent

positive coalition probabilities both proposals must agree.

Remark: Only the reguirements of suboame consistency and
independent positive coalition probabilities have been

used in this proof.

Lemma 2: A solution has the property that every equili-
brium play ends immediately after step 4 of period 1

with the formation of a two-person coalition.
Proof: Lemma 2 is an immediate consequence of lemma 1.

Lemma 3: Let x = (x1,x2,x3) be the common proposal of
both members g and h of a tentative coalition Ct prescribed
by a solution. Then the payoffs specified by x = (x1,x2,x3)

are as follows:

{15) x
g

H
0

{(16) X, = 9p

(17) X

I
o

where m is the player not in Ct and qg and q, are the guo-
tas of g and h as defined by (5}, (6) and (7).
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Proof: Consider a player who has to decide at step 3 of
period 1. He has to choose between the two 2-person coa-
litions where he is a member. The requirement of positive
coalition offer probabilities demands positive probabili-
ties for both alternatives. According to lemma 2 whichever
coalition he selects will be the final one. Since he se-=
lects both of them with positive probabilities and moreover
the situation where he has to make his decision occurs

with positive probability, he must be indifferent bet-

ween both choices. This has the conseguence that he must
receive the agreement payoff in both coalitions where he

is a member. The argument can be applied to every player.
It is clear that only the guota agreements described

by (15),(16), (17) satisfy the condition that every player
receives the same agreement payoff in both coalitions

where he is a member.

Lemma 4: The probabilities o,f and Y with which the
final coalitions 12, 13 and 23, respectively are reached

by a solution are as follows:

a.q
(18) o= — 1.2 —
qqd, * qq093 * 95

g.q
(19) 8 = 1°3 -
q1q2 + q1q3 + qqu

a.q

(20) ¥ = —mmmm i3

Here q,,a, and a5 are the quotas defined by (5),{6) and
(7).

Proof: It is a consequence of lemma 2 and lemma 3 that

the egquilibrium payoffs are as follows:

2n W, = (a+B)ay = (1-v)ay
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0

(22) W, (a+7)q2 = (1-B)q2

(23) wy = (B+v)q3 = (1-a)q3

The Nash bargaining property requires that the following
conditions are satisfied

(24) qq " Wy = dy " Wy
(25} qq - Wy T dy T W,
(26) q, = Wy = dy T Wy
In view of (21),(22) and (23) this is eguivalent to

(27) yay = B9, = ady
This together with

(28) a + 8+ 7Y =1
yields (18), (19) and (20).

Lemma 5: Every solution prescribes the same probabili-
ties to the decisions to be made at steps 2 and 3.

Proof: Assume that at step 1 of period 1 player 1 has
been selected by the random choice. The situation is
graphically represented by figure 1. At step 3 plavers

2 and 3 must select coalition 23 with the same probabili-
ty since otherwise player 1 cannot be indifferent bet-
ween 12 and 13 as he must be in view of positive pro-
babilities for both of his choices. He receives the

same agreement payoff g, both in 12 and 13 and would
prefer the coalition which is chosen with higher pro-
bability by the other player.

In the same way unique choice probabilities for the

decisions at steps 2 and 3 can be derived for the s3i-



Figure 1: Choice probabilities for steps 2 and 3
after player 1 has been selected at step 1.

tuations which arise if the random choice selects player 2

or 3.

Theorem: The bargainina game has one and only one solution.
The probabilities «,B and y with which 12, 13 and 23, re-
spectively are reached by the solution are given by (18),
(19), (20). 1In the coalition agreements prescribed by the
solution the members of the coalition receive their quotas

as payoffs.

Proof: It is clear that the behavior strateqgy combination
determined by lemmata 1 to 4 is the only one which can be
a solution of the bargaining game. Moreover, it can be
seen easily that this strategy combination is in fact an
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equilibrium point of the bargaining game. A deViation

of a plaver can neither increase his probability of be-
ing in the final coalition nor his agreement payoff. Ob-
viously the equilibrium point is subgame consistent. As
the proof of lemma 5 shows, the requirements of positive
offer probabilities and independent positive coalition
probabilities are satisfied. The Nash bargaining proper-
ty follows from the fact that (24), (25) and {(26) hold.

Remarks: As we have pointed out above, subgame consisten-
cy does not imply subgame perfectness. The solution is
not only subgame consistent but also subgame perfect.
This follows immediately by the fact that one subgame

in every class of homeomorphic subgames is reached with
positive probability. The refined notion of perfectness
defined in [13] cannot be applied here, since the game

is infinite.

5. Comparison with experimental results

The rules of the bargaining game specified in section 2
could be used as an experimental procedure. Up to now

no such experiments have been performed. Nevertheless,

it is interesting to compare the theory with experimental
results obtained by other formalized bargaining procedures
which put the players into the situation of a well defined
infinite non-~cooperative game in extensive form without

any communication possibilities outside the game. Such
experiments have been performed by Kahan and Rapoport [51.

The bargaining rules used by Kahan and Rapoport produce a
very complicated extensive game. The analysis of this

game seems to be quite difficult. It is not clear whether
their rules permit an equilibrium point similar to the so-
lution of the bargaining game, but it is not unreasonable

to conjecture that this is the case.

Table 1 shows the games used in the experiments by Kahan
and Rapoport and table 2 contains the coalition probabili-
ties predicted by the theory for these games. Table 3 shows
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Game f a b i c d4 a, 45
i
I 95 90 . 65 L 60 35 30
1 | :
1T 115 i 90 85 60 55 30
i L ‘
111 95 ' 88 , 8 51 a4 37
'i L]
, —+
[ IV . 106 86 , 66 63 43 23
: | H
| : :
. @
v L 118 84 | 50 .76 42 8
T i

Table 1: The

quota games of Kahan and Rapoport

' Game a | g Y
‘ !
T 424 | 364 .212
0 ; |
i y i
i It .489 g .267 .244 |
' H
‘ H | | i
i M T ; 7
. III  .390 i .328 .283
! | ! l
: j i o
! 1 : T
¢ IV | .526 | .282 .192 i

Table 2: Coalition probabilities for the game

of Kahan and Rapoport




, Game 12 : 13 (23 | x2 |
i i I
| 1 § | |
i ‘ ! 5 !
E 27 ‘ 15 ; 5 - ;
w2 ° 1° - 2.81
23.47 12.80 11.73 |
—
18,70 15,73 | 13,57 |
Iv 3 7 j 6 - 8.02

25.26 13.51 9.22 5

v 12 ¢ - © 2.91"

37.04 | 7.06 3.90

Table 3: Observed and predicted coalition fre-

quencies for the games of Kahan and Rapo-
port, - Observed values are entered above
and predicted values are entered below.

* xz-value computed with categories 13 and 23 combined.

that in many cases the predicted values are close to ob-

served values.

For only one of the five games, namely for game 1V, the

null hypothesis of random deviations from the theory can

be rejected at the 5%-level. Nevertheless, there are sig-
nificant deviations from the theory. This is shown by a Chi-

square

test for the table as a whole which is signifi-

cant at the 5%~level (x2 = 19.27, nine degrees of freedom).



The theory seems to have a bias towards the underestimation
of the probability of the coalition of the two stronger
players. One may conjecture that this is the reason for
the deviations which cause the rejection of the null hy-
pothesis for the table as a whole. Nevertheless, the
agreement of prediction and observation is much better

than random. This is shown by a rank correlation bet-

ween observed and predicted frequencies in table 1.

The Spearman rank correlation coefficient is .954 which

is significant at the 1%-level.
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