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Equilibrium Point Selection in a Bargaining Situation with
Opportunity Costs.

By Reinhard Selten and Ulrike Leopold

It is the purpose of this paper to analyze a simple bargaining
situation with the help of a noncooperative solution theory de-
veloped by John C. Harsanyi and Reinhard Selten (Harsanyi 1976,
Harsanyi-Selten 1980). This theory selects one equilibrium point
in every noncooperative game.

The bargaining problem considered here is a very simple one. Two
bargainers, player-1 and player 2, can propose one of two agree-
ments U or V,wehre U ismore favorable for player 1 and V is more
favorable for player 2. An agreement is reached if it is proposed
by both players. In addition to U and V,each of both players has
a third alternative, namely not to bargain at all. Thereby he
avoids opportunity costs of bargaining which arise whether an
agreement is reached or not. One may think of an illegal deal
where bargaining involves a risk of being punished.

The model has the form of a 3x3-bimatrix game. The game has three
pure strategy equilibrium points. Two of these equilibrium points
correspond to the agreements U and V and the third one is the stra-
tegy pair where both players do not bargain at all. It is shown
that each of these three equilibrium points can be the solution of
the game. With the exception of degenerate cases a complete over-
view over all possible cases is obtained. The interpretation of

the result shows that the behavior of the solution as a function of
the parameters is not unreasonable.

A similar problem will be investigated in a chapter of the book
manuscript on the solution concept (Harsany - Selten 1980). There,
arbitrarily many different agreements on the division on one money
unit are considerd but only one of the players has the option not
to bargain at all. One may hope that finally it will be possible

to extend the analysis of this paper ina similar way to a range of
possible agreements.

A short version of this paper will be published in German (Selten ~
Leopald 1980).




I. 2-person-games in normal form

A 2-person-game G = (?{1, §2, H) in normal form consists of two finite
non-empty sets of pure strategies §4 and }E of the players 1 and 2 and
of a payoff function H which assigns a payoff vector H(y) = (Hlﬁﬁ ,HZQ@)

with real components to every strategy combination

P=(profp) € &= 8 %9, -

A mixed strateqgy g5 of player 1 is a probability distribution over
player i% pure strategy set §&. The probability assigned to 2 is
denoted by qi(¥ﬁ)‘ Moreover Q = Q; x Q2 is the set of combinations of
mixed strategies q = (ql, q2). The definition of the payoff function
H is extended from @ to Q in the usual way.

The combination q € Q which contains 9; and 9 with i # j is sometimes
denoted by qiqj. No distinction will be made between a pure strategy
¢ and that mixed strategy which assigns probability 1 to this pure
strategy.
A mixed strateqgy ry € Qi is called best reply to qj e.Qj with j # i,
if we have:

H.(r. g:) = max H.{(q:; q.)

iv' i j q;€ Qi iYoo)

We say that a combination r = (rl, rz) is a best reply to g = (ql, qz)
if r is a best reply to q, anci_r2 is a best rep1y,ioiq1.

An equilibrium point is a strategy combination r € Q which is a best

reply to itself. An equilibrium point r = (rl, r2) is called strong,
if r is the only best reply to r. A strong equilibrium point is
always an equilibrium point in pure strategies.

II. The bargaining problem

The bargaining probiem considered here is a 2-person-game in normal

form G = (§;, 3, H) with & = (U}, Vi, Wl and @, = {Uy, Vy, W)
whose payoff function is given by the following matrix :



U, V) Wy
u 0 0
U
1 us>v>1
1 0 b 0<a=<l
0 1 0 o<h<l
1
0 v b
a a a
W)
0 o] b

Figure 1: The bargaining problem. The quares contain player 1's payoff
in the upper left corner and player 2's payoff in the lower right corner.
It is assumed that the parameters a, b, u and v satisfy the above
inequalities.

The game can be interpreted as a bargaining problem with opportunity
costs. There are two possible contracts U and V. The strategies Ui and
Vi consist in naming the respective contract by player 1.
An agreement results if and only if both players name the same contract;
otherwise bargaining results in conflict. Each of the two players i has
a third possibility Ni’ which stands for not bargaining at all.
It is assumed that opportunity costs of size a and b respectively can be
avoided by choosing wi.
In order to have something definite in mind, the opportunity costs can
be thought of as the 'risk of cooperation in an illegal deal.
One has to imagine that the risk of punishment is totally independent
of whether a contract is concluded or not. The payoffs for

U= (Yqs Us) and V = (V,, V2)
are net-payments , whose computation already takes into account the
punishment-risk. The units of utility are normed in such a way, that for
both players the contract unfavorable tc him yields payoff 1 for him.
This can be done without loss of generality.
If the strategies wl and N2 were not available the bargaining problem
would have the form of a 2x2-game with two strong equilibrium points,




in which the payoffs outside the equilibrium-points are zero. The
theory of John C. Harsanyi and Reinhard Selten selects in such games
the strong equilibrium point with the greater payoff product
(Harsanyi-Selten, 1980). It is not necessary here to explain this point
in more detail. In view of u > v, in our case U= (Ul’ U2) is the
solution of the 2x2-game, which results by crossing out the strategies
wl and wz, Therefore one can expect that also in the 3x3-game

U= (U, Uz) often will be the solution. It is interesting to see
where this is the case and where the opportunity costs yield other
results. As we shall see later each of the three strong equilibrium
points U = (Ul, U2) , V= (Vl, VZ) and W = (wl, wz) can be the
solution of the game.

I1I. The Harsanyi - Selten - theory

It is not necessary to give a complete description of the theory of
Harsanyi and Selten; we shall only outline those pars of the theory
which are needed in the analysis of our bargaining probiem.

The theory achieves perfectness of the selected equilibrium point by
looking at uniformly perturbed games of the original game and then going
to the 1imit with the perturbance parameter e (Harsanyi-Selten, 1980).
Instead of doing this we shall apply the procedures for equilibrium
selection directly to the unperturbed game. Since we are not interested
in border cases where the perturbances really matter, it can be expected
that the results are not infiuenced by the ommission of perturbances.
The analysis, however, is greatly simplified in this way.

The process of solving a game begins with a procedure of reduction and
decomposition.In our case this procedure does not change the game,
Therefore the procedure of reduction and decomposition will not be
explained in detail. Games which cannot be further decomposed or
reduced 1ike our game here, are called irreducible.

Irreducible games may still have structural properties, which must be
taken into account. In this respect certain substructures called

formations are of importance.

Consider a game G' = (qll,\f%, B') which is derived from the game

G = (351,352, H) in the following way:

The pure strategy-sets W/ and‘{, are subsets of the respective sets
§1 and §2. The new payoff function H' is the restriction of H to
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V=V, xY,. Sucha substructure G* = (Y1otoe H') is a

formation of G if for i = 1,2 each pure best reply \Pi inG to a
mixed strategy q; With qj('*f’j) =0 for qE\i-/i always belongs to‘l{.

This praperty can be interpreted in the following way: best replies

to strategies within the formation are within the formation. A formation
is a closed substructure with respect to best replies.

The above definition of the formation can not be directly generalized

to n-person-games (n > 2); in these games one also considers best replies
to so-called- joint mixtures, which are not essential for 2-person-games.
Since we are regarding only 2-person-games, we can ommit the general
definition.

A primitive formation is a formation which has no proper subformation.

Primitive formations are of special importance for the theory. Consider

a strong equilibrium-point n=(r, m,) of G = ($,.9,, H) then

G' = (Hii,\k%, H') with \fﬁ = {vl} s o = {nz} and H'(m) = H(m) is

a primitive formation of G. Usually not all primitive formations do

arise in this way by strong equilibrium points; however in our bargaining
problem this is actually the case.

It is easy to see that the game has three primitive formations namely
those generated by U = (U, U2) . Vo= (Vs V2) and W= (W, NZ)'

The first step in the solution of an jrredurible game is the determination
of its primitive formations and their solutions. The solutions of the
primitive formations are considered to be natural candidates for a
solution of the game. The set of all solutions of primitive formations

is called the first candidate setfli-

It is not necessary here to define the solution of a primitive formation
in general. In our case each of the three primitive formations consists
of only one equilibrium point, which therefore must be the solution of
the primitive formation;
therefore we have

1, =,V ,H
Ifﬁ]i consists of only one element, then this only first candidate
is the solution. If.L), contains more than one element, a second
candidate set.112 must be constructed. For this purpose we need the
concept of payoff dominance.




We say that an equilibrium point r payoff dominates an equilibrium

point g, if we have
Hi(r) > Hi(q) for i = 1,2
The second candidate setiﬁ? is the set of all elements offlr which
are not payoff dominated by other candidates in.fli.
In our case we observe that W is payoff dominated by U and V, but between
¢ and V there is no payoff dominance. Therefore we have

112 ={U,V} .

In cases where 112 consists only of one element, this candidate is the
solution of the game. In our case there are two candidates in.112.
Therefore we shall try to select one of both candidates 1n112 with the
help of the risk dominance concept which will be explained next.

Risk dominance is a relation between two equilibrium points U and V of

the same game with the interpretation that the risk dominant equilibrium
is in some sense the less riskyone, if only these two equilibrium points
are believed to be possible solutions of the game. The following three
cases can arise in the risk dominance comparison between two equilibrium
points U and V:

U»v U risk dominates V
v>U V risk dominates U
Ul there is no risk dominance relationship between Uand V

The definition of risk dominance is based on a hypothetical process of
expectation formation which is modelled with the help of the tracing
procedure (Harsanyi 1976). The tracing proéedure can be thought of as a

mathematical déscription of a reasoning process whiich starts with an
arbitrary strategy combination p = (pj, pp) of a game G = (gil,giz, H)
which is gradually transformed to an equilibrium point r = T(G, p) of
the game G. (We restrict our explanations to the 2-person-case). The
original combination p = (py» p2) is called the prior combination. It
has the interpretation of a naive theory of behavior, which is the
starting point for considerations, which finally yield ‘the equilibrium
point T(G, p). Later we shall look at the tracing procedure in more

detail. In the following we shall first introduce the special "bicentric”

prior combination on which the definition of risk dominance is based.
The naive theory of behavior which under].ies the bicentric prior
distribution, proceeds from the assumption that player i expects that




the other player plays Uj or Vj . The subjective probability for player i
is z for Uj and 1-z for Vj. The expectation of player i is described

by the mixed strategy z Uj + (l-z)vj of player j. It is assumed that
player i selects a mixed best reply which assigns equal positive
probabilities to all pure best replies, this central best reply is calied
r? . Assume that z is a random variable uniformly distributed over the
interval E);ﬂ . The bicentric prior strategy P; is the probability

distribution over the strategies ¥, e §ia which arises in this way:

1
p;{ ;) = {)rﬁ(%) dz forall € §;

p = (pl, p2) is the bicentric prior strategy combination. U risk
dominates V in cases where the application of the tracing procedure
yields T(G,p) = U and V risk dominates U for V =T(Gp). It may also
happen that there is no risk dominance relationship between U and V.
We now describe the linear tracing procedure.

In some extreme cases an unequivocal result can only be received
with help of the more complicated logarithmic tracing procedure which
is not considered here any further.

We define a family of games Gt - (gi, Ht)-with the tracing parameter
t € [0,1] . The number 1-t can be interpreted as the degree of
confidence placed in the prior combination. The payoff function Ht
results from G = (¢, H) in the following way :

K, v g) =ty ) + (10) Myl py)
for 1 = 1,2 withj # 1.

For t=0 the strafegy %ﬁ chosen by the opponent does not be of any
importance for the payoff of player 1. For t = 1 the influence of the
prior strategy combination disappears totally. Gl is the original game
G. . _
Let us call ®the set of all pairs (g, t) withq € Q and t € El,l] .
Further, let E be the set of all (r, t) & R with the property that r js an
equilibriumpoint of Gt. We call E the graph of the equilibrium points.
The best reply r® to p in G is almost always determined in an unambig uous
way; if this is the case, then (r°, 0) is the only point of the form
(q, 0) in E. It can be shown, that almost always there is exactly one
continuous path, which leads in E from (r°, 0) to a uniquely determined
(rl,l ). The equilibrium point rl is the result T(G, p) of the tracing



procedure applied to p.

The way in which the solution is determined with help of risk dominance
is shown here for the case that J].z consists of two elements., If one of
the two equilibrium points of}flz risk dominates the other, then this
one is the solution.

If there is no risk dominance between the two candidates, the solution
will also be determined with the help of the tracing procedure, however,
together with another prior strategy combination. Consider.ﬂ2 = {U, V} .
The centroid of&lz is the strategy combination ¢ = (cl, Cz) with

c; = % Ui + % Vi for i = 1,2 ; this means that each of both players uses
his equilibrium strategies in U and V with the same probability. For
U]V, i.e. the case in which there is no risk dominance between U and

V, T(G, c) is the solution of the game.

In the analysis of our bargaining problem, we shall neglect border cases
which pose difficultiesin the application of the tracing procedure. These
border cases form a set of Tower dimension in the parameter space.
Wherever we shall describe a region where the tracing procedure applied
to the bicentric prior or the centroid yields one of the three strong
equilibrium points U, V, and W as the final result, we shall really
mean, that this is true with the exception of border cases. It would be
tedious to point this out in every single case; border cases may also
arise along lines inside the regions, if the analysis requires case
distinctions based on strong jnequalities . We shall make ppattempt to
keep track of the exciuded border cases in detail. One can expect that
an extension of the analysis to the border cases would not add much to
the interpretation of the overall result.

IV . Computation of the bicentric prior strategy combination

The bicentric prior strategies can easily be determined with the help
of the graphical representations in figure 2.

The drawings show the payoff for each player i reached by U;, Vi and
W, if his opponent plays zUj + (1—z)Vj.

For the computation of the prior strategy of player i it is important
to distinguish several cases.



H
1 u
Hy
U v
1
Vi
a
u
ol
s
“
AN
N
0 l-a a 1 0
u
pyU) = 1 - 3 py(Uy) =1 - b
-b
PV =1-a PolVy) = !v—
v-b’
py(H)) = 5 - (1-a) pp(Hy) = b - T2
Hy
1

1
| u ‘
p{Uy) = G P2(Up) = w1
1 _
(V) = 35 Po(Vo) = var
(W) =0 py(W,) = 0

Figure 2: Determination of the bicentric prior strategies.
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At the intersection point of the lines for U, and v, players 1 and 2
:%3-, if they play one of these
strategies. In the upper half of the figure the opportunity costs a

and b are greater than the intersection point payoffs. Therefore wl

and w2 can be best replies to zUj + (l-z)Vj in these cases. In the

Tower part of the figure the opportunity costs are below the intersection
point payoffs.

The probabilities prescribed by the prior strategies can be determined
easily with the help of elementary geometry. The results are shown below
the respective graphical representations.

obtain the payof%-ﬁ%I respectively

It {s necessary to distinguish four cases with respect to the bicentric
prior strategy combination. The cases will be labeled as shown in
figure 3.

v v
b b > T

a < E%T case (1) case (2)

a > E%T case (3) case (4)

Figure 3: Case distinction with respect to the bicentric prior.

V . Investigation of case (1)

In this case the opportuniiy costs a and b are relatively small. It can
be shown that in case (1) the equilibrium point U is always the solution.
The result agrees with the analysis of the 2x2-game obtained by erasing
the strategies W.. We can say that relatively small opportunity costs do
not have any influence on the solution.

The following payoffs must be computed to receive the best reply of
player i to the prior strategy pj of the other players:
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Hy(Uy pp) = pplUp)H Uy Up) + PplVp) Hy(Uy Vp) = M
(V1 Pp) = (UM (Vg Up) + ppl¥g) By (Vg Vo) = T
Hy(W; py) = 2

oy Up) = by (Up)Hp(Ug Up) + py(Vy) HalVy Up) =

s

- v
Hy(py Vo) = py(Ug)Hp(Uy Voo + py(Vy) HolVy Vo) =t
Ho(py W,) = b :
since we have u > v, the following is valid:
Hy(Ug pp) > Hy (Vg pp)
H2(p1 Uz) > HZ(pl Vz)
Moreover, the restrictions on the opportunity costs yield:
Hy(Uy pp) > Hy(Hp Pp)
HZ(pl Uz) > Hl(pl wz)
It follows from the four inequalities, that U = (Ul’Uz) is the only best
reply to p = (pl, p2). If a strong equilibrium point is the only best
reply to the prior-strategy combination, then this strong equilibrium
point is the result of the tracing procedure. Therefore we have

T(G,p) = U,or in other words, U risk dominates V. Consequently the
equilibrium point U is the solution of the game in case (1).

The equations for Hi(ui pj) and H1.(V,i pj) also hold for the 2x2 game,
which results by erasing the strategies Ni' Also this game has the
solution U.

VI. Best replies to the prior in case (2)

The payoffs of the pure strategies against the prior sirategy of the
opponent are shown by the following equations:
u{1l-b)

Hy(Ug ) = pp(Up) Hy(Ug Up) + PalVa) Hy(Uy Va) + Pp(ip) Hy (U; W)
py(Uy) Hy(Vy Up) + py(Vp) HylVy Vo) + py(Wy) Hy(Vy Wy) = !59

Hi(Wy pp) = 2

Hy (Vg pp)

u

Hy(py Up) = Pp(Yy) Hy(Ug Up) + Py(Vq) Hp(¥y Up) + py(Hy) Ho(Wy Up) = gt
Hy(py Vp) = Py(Up) Hy(Ug Vp) + py{Vy) Hpl¥y Vo) # py(Hy) Hy(Wy Vy) = T

Hy(py Wp) = b
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These equations and the assumptions on the parameters yield the
following results on the conditions under which various payoff
inequalities hold:

. uy-v
Hy(Up pp) > HitVy P iF o> ®
Hy (U pz) > Hy (Wg p2) if  u(l-b) > a

Hi(Vy py) > Hy(W pp) if v(l-a) > b
H2(p1 U2) > Hz(p1 VZ) always
Hy(py Up) > Hy(py Wy) if E%T > b

H2(pl Vz)'> Hz(pl Hz) never

The conditions on the right are necessary and sufficient for the
inequalities on the left. A1l six inequalities remain valid if ">" is
replaced by "<" and "always" is replaced by "never”.

Now we turn our attention to the gquestion, under which conditions a
combination of pure strategies is the only best reply to the bicentric
prior strategy combination. The result is shown in figure 4, As we shall
see five of the nine possible strategy combinations are excluded by the
assumptions for the parameters.

W, V2 Wy
3 < u(l-b) a < u(l-b)
U b < X excluded u uv-vy
. E§§§ wl <P Wl
b < 2¥=
uv-v 1
v excluded excluded v < b < v(i-g
1
u
wr <P
u{i-b) < a
excluded exciuded v(i-a}) < b
W U
1 -U—_FI(b

Figure 4: Only best replies to the bicentric prior in case (2).
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We first show that V, cannot be a best reply to py. If V, were the
best reply to p, the following inequality would have to be satisfied:

v o, _u
u+l u+l
This is impossible, in view of u > v. Moreover

_Vl_ > b
u Ut
contradicts TT < b . It can be seen that (Vl’UZ) can never be a best

reply to p, since this would imply:

u > b > uv-v
U+l uv-1

and therefore

UZV-U > UZV-UV+UV-V

which is a contradiction to u > v.

Moreover, a best reply (Nl, Uz) would require the following condition:
u

U(l-b) < a < U—+.[-
H:E < h <« u
u u+l
U2 - ya+u-a < U2
u
T <@

This is excluded by case (2). Therefore (wl,UZ) is never a best reply
to p. The conditions for the remaining subcases are nothing else than
the conditions for the relevant payoff inequalities.

In cases where a strong equilibrium point of the game is the only best
reply to the prior strategy combination, this is also the final result
of the tracing procedure.

If U is the only best reply to p, then U risk dominates V and U is the
solution of the game. If, however, W is the only best reply to p, then
there is no risk dominance relationship between U and V and it becomes
necessary to apply the tracing procedure to the centroid prior distribution.
In the two remaining subcases of figure 4, where (U;, NZ) and (Vl, NZ)
are the best replies to p it is necessary to Took more closely at the
path of the tracing procedure in order to determine the final result
T(G,p). This will be done in the next section.



- 14 -

VII. Application of the tracing procedure to the bicentric prior
distribution in case (2)

If @ = (), p,) is the only best reply to the bicentric prior

combination p, then we can find a greatest intervall of the form

0 <t<t' where \ is a strong equilibrium point of Gt. With the
exception of degenerate cases the situation at the upper border t'

will be as follows: There is one player i such that his strategy $’1 will
remain his only best reply to qﬁ'h1atfort:t*+g for sufficiently smail
e,but for the other player j another strategy *ﬁ becomes his best reply

to Y The number t' is called switch point from I{J= (t{)l, LPZ) to

W= (1)

The switch point t' from \f= (Lf)l,lf)z) to Y= (‘F’l’\VE) can be
defined independently of whether LPis an equilibrium point in 6% or not.

t' is the solution of the following Tinear equation:

Hy (@1 o)

tl
Hy (12

or more detailed:

£ Hy(py ) + (1-t') Hyleypp) = ' Hylipg o) + (1-t1) Hpley )
Switch points from (&PI,LP 2) to (\Jl,tfz) are defined in an analogous
manner. Of course, we cannot talk about switch points, unless the
respective equation has a uniquely determined solution. Values outside
of the interval 0 <t <1 do not have any meaning. '

Let \p= (‘Pl"PZ) be the only best reply to the prior strategy
combination. The border t' of the greatest interval 0 <t <t' with
the property that is equilibrium point of Gt is called the first
switch point. With the exception of degenerate cases this is a switch
point from @to a combination of the form (\Vl"fz) or of the form

'(xpl,qJZ). In the first case player 1, in the second case player 2 is

called the first switcher. If the first switch point is already a switch
point to a strong equilibrium point of G, then this equilibrium point is
already the result of the tracing procedure (except for border cases).
The search on the path has come to an end by the first switch. This
situation prevails in the subcase of figure 4 in which (Ul’ w2) is the

only best reply. In order to show this we compute the payoffs of each
player for the game Gt:
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HY (U] Wy) = (1-t) u (1-b)
HE (v W) = (1-t) Y22
Hlt (M W) =a

Hf (U1 wz) is always greater than Hf (Vl wz) and therefore the switch
can only go to (wl,wz) if player 1 is the first switcher. If, however,
player 2 is the first switcher, then the switch can only go to (Ula Uz)_
for the computations yield the following results:

Uy Up) = oo
A V) = (1) .
(U Wy) = b

The payoff for the combination (Ul’UZ) is the only one which increases

with t. The payoffs in the other cases are decreasing, respectively

constant. The first switch goes to U or to W. ( border cases in which

both switching points are equal are not considered.)
. The switching points are the following ones:

) . = .l_.
from (Ugs Wp) to (Wpalp) @ty = 1- g,

‘bu + b - u ' .

from (U,» w2) tp (Ul’UZ) : Fz
The smailer switching point decides in which direction the first switch

leads: For a < (l-b)zu(u+1) the final result of the tracing
procedure is U; for a > (l-b)zu(u+l) the final result of the
tracing procedure is W.

We now apply the same kind of reasoning to the case where (vl,wz) is
the best reply to p. In this subcase the switch can go to (wl, wz) if
player 1 is the first switcher and to (VI’VZ) if player 2 is the first
switcher. A switch to U1 or to U2 can be excluded, since player 1l's
payoff for (Ul.wz) and player 2's payoff for (VI’UZ) are decreasing in
t, wheras the payoffs for (wl,wz) are constant. The switch points are
as follows: ‘

] - 2v
v-b
. bu+b-v

2) : t4 uv

from (vl,wz) to (Wy.Wp)) & tg

from (yl,wz) to (Vl,V

We have
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v-b)2(u+1)

uv
2
(

t3 < t4 for a>

v-b) {u+l

t4 < t3 for § <

uv

W is the result of the tracing procedure in the first case and V is the
result in the second case. If the result is V, then V risk dominates U
and V is the solution of the game.

In order to obtain a better overview over the results for case (2) we
show that

2
a < ¥b utl implies b < v(1l-a)
and oW :
y-b) 2 (usl
b > v(l-a) implies a >
: uv

In order to prove the first implication we rearrange the first inequality
with a on the left hand side as follows

. pa
(v-b)2 > fegfl

. In view of v > b an equivalent transqumation yields:

b<va=v “G%T a

Since a < u/(u+l) holds we can conclude:
b<v-~ anz = v(1-a)

The second implication follows by the fact that b > v{l-a) implies

b»v-yv D—g-l- a

which yields 5
(v-b)2 LA
utl 7
With the help of the two implications the results obtained up to now
for case(2) can be summarized as follows :

L@ - U {:for a < u{l-b) and b < %%E% and b > E%T and a < (1-b)2u(u+1)
_ uv-v u
2
- v-b){u+l Uv=-v
L{G) =V forac«< L———&;&———l and WoT < b < v{1-a) and U%T <b

-b)2{u+l) uv-v
for lli-)—é———l < a and I < b < v{l-a) and _ET < b
T{(6,p)=W uv uv= (1-2) u+
uv-v

for a < u(l-b) and b <« ov=T and b >'E%T and a > (l-b)zu(u+1)
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VIII. The application of the tracing procedure to the centroid prior
combination in case (2).

Wherever W is the final result T(G, p) of the tracing procedure applied
to p, there is no risk dominance between U and V. Here we receive the
sofution as the result T(G, c) of the tracing procedure applied to the
centroid ¢ = (c;.¢,) of L= {u, v} .

Yo Y2 "2
1
1-t 1+t 1-t
z 7z =
1
a a " la
1

Figure 5: The games Gt which appear in the application of the tracing
procedure to the centroid c = (CI’ CZ) of {U, V} .

Figure 5 shows the games Gt which appear in the application of the
tracing procedure to the centroid ¢ = (clscz) of {U, V}. We can see
immediately that for t = 0 the strategies Vl and U2 cannot be best
replies since u and v are greater than 1.

Since in case (2) we have

u u
< < =
a U+l 2

Nl cannot be a best reply for t=0 either. w2 is a best reply for t=0
if we have b > v/2 . Our conclusions with respect to the only best
replies to ¢ are summarized in figure 6.
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2 2 2
v v
U1 excluded b < 3 5 < b
Vl excluded excluded - excluded
wl excluded excluded excluded

rFigure 6: Only best replies to the centroid prior combination c
in case (2).

We have to determine the path of the tracing procedure applied to ¢ in
order to find T(G, ¢). We first look at the subcase (UI’VZ) of figure 6.
In order to see where the first switch occurs we compute the following
switch points:

from (Ul,Vz) to (VI’VZ) tg = %5%
from (U;,V,) to (Wy,V5) te = u:fa
from (Ul,Vz) to (U1;U2) ty = %i%
from (Up,V,) to (UpsWp) tg = V:?b

t5 < t6 holds for a < E%T-which is satisfied in case (2). The inequality
t, < tg is equivalent to u > v. Moreover tg < ts holds for b > V¥I-which

js satisfied in case (2). This shows that tg js the smallest of the four
switch points. Player 2 is the first switcher and the switch goes to
(Ul,wz). We must be aware of the possibility that not all c%gbinations
(Ul,qz) with g, = (l-a)v2 + aH2 are equilibrium points in G~ . Actually
this problem does not arise here, since player l's payoff is the same
for (UI’VZ) and (UI’NZ) and a deviation to Vl need not be considered in
view of the fact that V1 yields less payoff thenw1 against wz. Therefore
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the path of the tracing procedure continues at (Ul’ N2) after t = t8
until the next switch occurs.

Since (Ul’wz) is not yet an equilibrium point of G, at least one

further switch must occur. We can exclude the possibility that player 1
mooves over to Vl; figure 5 shows that player 1's payoff for V1 is

always less tkan that for U1 if player 2 plays wz. This leaves only two
possibilities, a switch to (wl, wz)or to (Ul’ UZ)‘ The switch points are

as follows:
from (Up, Wy) to (W, Wy) : tg = 42
from (Ul, wz) to (Ul’ Uz) : tg = 2b-1

t6 < t9 holds if and only if we have
a > u(l-b)

In order to see that the smaller one of the both numbers tﬁaﬂd t9 is the
next switch point, it is also necessary to convince ourselves that both
are greater than the first switch point t8‘ We know already that t8 < t6
holds and it can be seen easily that t8 < tg holds for b > v/{v+l), which
is satisfied in case (2}. '

In the subcase (wl, w2) at figure 4 the inequality a > u{l-b) holds. It
follows that under the conditions which hold there, the second switch goes
to W and W is the result of the tracing procedure and the solution of the
game., However, it is also necessary to look at the possibility that

T(G, p) = W arises in the subcase (Vl, wz) of figure 4. We receive

T(G, c) = U if the following conditions are satisfied

D < b o< v(l-a)

2
_(Lb)_g.l'il.l < a < u(]_-b)

uv
v
b<2

We receive T(G,c) = W in subcase (vl,wz) of figure 4, if a > u(l-b) holds.
We now look at the subcase (Ul’ wz) of figure 6. The situation is the
same as in the previous subcase after the first switch to (Ul, w2). The
First switch from (U,, W,) must either go to (M, Wy) or to (Uj, U,). The
switch points t6 and t9 have been computed above. The switch goes to W.
for a > u(1-b) and to U for a < u{l-b). In the former case W is the
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solution of the game and in the latter case U is the solution.

The results obtained 'incase (2) can be summarized as foliows :

U for a<u(l-b) and b <1
2
for Ly=D){utl) 5 L y(1-b)
uv
= uv-v
L(G) = < and =T < b
2
V for a < Avoh) {u+l and =¥ < b
v uv-1
2
Wofor vTB){url) oy ang u(l-b) < a
. uv

IX. Application of the tracing procedure to the bicentric prior in

case §31.

The payoffs for pure strategies against the opponent's bicentric prior

strategies are as follows:

_ u
H(Uy pp) = 3T
v
Hi(Vy o) = 5T

Hl(w1 p2) = a

_ u-a
Holpy Up) = 55
H2(p1 Vz) = v(1-a)
H2(p1 wz) = b

In view of u > v player 1's payoff for (Ul,pz) is always greater than
that for (Vlapz). Therefore Vl cannot be a best reply to bo- We now show
that V2 cannot be a best reply to Py For this purpose it is sufficient
to prove the following inequality

U2 5y (1-a)
An equivalent transformation yields
uv=u

>
a uv-1




- 21 -

It can be seen easily that in view of u > v we have

uv-u .y
uv-1 U+l

In case (2) we always have u/(u+l) < a. Consequently V2 cannot be
player 2's best reply to py- '

We can exclude the possibility that (ul,wz) is the only best reply to
p;in order to do this we observe that this would imply:

u
b > u-d S u v+l _ Vv
u u v+]

which contradicts b < v/(v+1). The condition (u-a)/u < b is equivalent
to a > u(1l-b). With this fact in mind, we can see that ‘Figure 7
describes the conditions under which the nine pure strategy combinations
are only best replies to the bicentric prior p.

Uy Vs Wy
Ul a <'V%T excluded excluded
Vl excluded excluded exciuded
M, Mr<a<u(l-b)  excluded | 2 > u(l-b)

Figure 7: Only best replies to the bicentric prior in case (3)



- 22 -

In the subcase (Ul’UZ) of figure 7 the equilibrium point U risk

dominates V and is the solution of the game. In the subcase (wl,wz)

there is no risk dominance between U and V and we have to apply the
tracing procedure to the centroid of {U, V} in order to find the solution.

We now turn our atténtion to the subcase (Nl,Uz). In order to determine
the path of the tracing procedure we "ook at the following payoffs:

HY (W) U,) = a |

HY (U) Uy) = (1-t) Gy + tu = o + £
HY (V) Uy) = (1-t) oy

Hy (W Uy) = (1-t) L2

KE (W, V,) = (1-t) v (1-a)

HE (W) W,) = b

In view of u > v and- (u-2)/u > v(1-a) the first switch cannot go to V1
or V. Consequently the switch must go either to (U1=U2) or to (NI,NZ).
The corresponding switch points are as follows:

from (W d,) to (UppU,) ¢ty = 2vEl)-u

10 uv
. _ uf{l-b)-a
fron (Hplp) to (hp) =ty = --E:El-
We havé
2
tig < tyy for b < (u-a) (v+
uzz !
- (u-a)T(v+
t11 < th for b > 2

U is the result of the tracing procedure for th < t11 and W is the

result of the tracing procedure for tl1 < t10' In the former case U

risk dominates V and is the solution of the game. In the latter case
we have T(G, p) = W .

The results obtained up to now can be summarized as follows:

- u
L(G) = U for a < Vil

2
for Ur < a < u(1-b) and b < LUl (V1)

uv
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2
T(6, p) = W for sir<a<u(l-p) and L1 (W) oy,

u-y
for a > u(1-b)

X. Applications of the tracing procedure to the centroid prior

strategy combination in case (3).

In case (3) we have
v

.b<%1-<2
Figure 5 shows that therefore player 2's best reply to player 1l's
-centroid strategy Cq is always V2. Moreover player l's best reply to
Cy is U1 for a < u/2 and wl for a > u/2. We can conclude that the
conditions for only best replies to ¢ are those which are shown in
figure 8.

u, v, Wy
U1 excluded a < g excluded
Vl excluded excluded exciuded
Nl excluded % < a excluded

Figure 8: Only best replies to the centroid of {U, V} for
T(G, p) = W in case (3).




We first look at the path of the tracing procedure in subcase (Ul, VZ) of
figure 8. We have to Took at the same switch points tes ts, t, and tg as
in section YIII, As before t, < t5 follows by u > v. Moreover t7 < t8
holds for b > v/{v+l}), which is satisfied in case (3). It can also be
seen easily that te < t7 holds for a > u/(v+l), which is satisfied,
whenever T(G, p) = W holds. This shows that te is the smallest switch
point. Player 1 is the first switcher and the switch goes to (wl, Vz).

Player 2's payoff in Gt6 is the same for (Ul’ V2) and (wl, Vz). Therefore
all strategy combinations (ql, VZ) with g, of the form q; = (l-a)U1 + aky
are equiltibrium points in G 6. The path of the tracing procedure goes
through all these equilibrium points.

Now we must find out, where the next switch goes to. Figure 5 shows that
player 1's payoff for (Ul’ Vz) is decreasing in t. Therefore a switch

from (wl, VZ) to (Ul’ V2) can be excluded. Player 2's payoff for (wl, Uz)
is always smaller than that for (wl, Vz). Therefore a switch to (W, U2)
can be excluded. The remaining two possibilities are (Vl’ V2) and (W, wz).
The corresponding switch points are as foliows:

2a -1

v-2b
v

from (wl, V2) to (Vl, Vz) : t12

from (wl, VZ) to (NI, Nz) :otg =

We know already that tg < t8 holds. The ineguality te < t12 is satisfied
for a > u/(u+l), which is true in case (3).

We have

ti, < tg for b <« v(l-a)

tg <ty for b > v(1l-a)

The final result of the tracing procedure is V for t12 < t8 and W for

t8 < typ- In the former case V is the solution and in the latter case W
is the solution.

We now turn our attention to the subcase (Nl, Vz) of figure 8, For the
same reasons as above the switch from (wl, Vz) cannot go anywhere else
than to (Vl, Vz) and (Wy, wz). As before the corresponding switch points
are ty, and tg. The solution is V for t;, < tg and W for tg < t;,.

In order to get a better overview over the results we prove that in case (3)
u-a 2 v+l
b« L4 OH) ynpries @ < u(l-b)
and u-v ' 2
a > u{l-b) implies b >
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In order to prove the first implication we rearrange the first inequality
with b on the left hand side as follows:

(u—a)2 o Eﬁfv

In view of u > a an equivalent transformation yields

a<u-=-u V_-\Il-l— b
Since b < v/(v+l) holds we can conclude:

a<u-u sz = u(1-b),

The second implication follows by the fact that a > u{l-b) implies

a>u-=-1u ‘(%I b

which yields

2
2 _uv
)<

The results obtained for case (3) can now be summarized as follows:
[

(u-a

u
U for a < viT

2
forv_i.l_.(a and b<_(ﬂ)_21v_+1_)_
uv
?
v for V%T < a and iE:ElQLXill < b < v(l-a)
uv

W for V%T <a and v(i-a) <b

2
and _(U_‘a_)_zjV_"'ll<b
uy

XI. Application of the tracing procedure to the bicentric prior in
case (4)

The payoffs for the pure strategies against the opponents bicentric prior
strategies are as follows

L(G)

n
>

.

Hy(Uy pp) = u(1-b)
Hy (¥ pp) = Y52
Hy (W4 py) = a
Ha(py Up) = 5%
Holpy Vo) = v(l-a)
Ho(py Wo) = b
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These equations yield the following conditions for the relevant payoff
inequalities:

Hi(Up py) > Hy(Vp p,) if oop > b
Hl(U1 pz) > HI(N1 p2) if u(l-b) > a
Hl(V1 p2) > Hy(W, p2) if v(’-a) > b’
Holpy Up) > Hypy Vp) if 2> 15y

Ho(py Up) > Holpyp W) if u(l-b) > a
Hy(py Vo) > Halpy Wp) if v(1-a) > b

These conditions remain valid if everywhere "<" is substituted Tor ">".

We now shall exclude the possibility that Vl is player 1's only best reply
to p,. This would require the following inequality
uy=-v

v(l-a) > b > T
In view of a > u/(u+l) we have l-a < l{u+l). Therefore the above
inequality yields:

v_ o uvev
u+l uv-1

which is incompatible with u > v. We can also exclude the possibility
that V2 is the only best reply to Py- This would require:

" which is incompatible with u > v too. The payoff inequalities show that

Nl is the only best reply to Py if and only if wz is the only best reply

to Py- In both cases the same conditions must be satisfied. We can

conclude that the conditions under which the nine pure strategy combinations
are on]y-best replies to p are those shown in figure 9.



- 27 -

2 2 2
U. a < u(l-b} excluded excluded
Vl excluded excluded excluded
Wy excluded excluded u(l-b) < a

Figure 9: Only best replies to the bicentric prior in case (4).

Since both (Ul’ U2) and (wl, wz) are strong equilibrium points we do not
really have to apply the tracing procedure to p. For a < u(l-b} the
solution is ¥. For u(l-b) < a we have to apply the tracing procedure

to the centroid of {U, V} .

XII. Application of the tracing procedure to the centroid prior combination

in case §4!.

With the help of figure 5 it can be seen immediately that the only best
replies to the centroid ¢ = (cl, cz) of {U, V} are as described by
figure 10. '




Yz . .
2 <) <l
Uy excluded v v
b<§ 2<b
Vi excluded excluded . excluded
l%<a l21~<a
Wy excluded v v
b < 3 3 < b

Figure 10: Only best replies to the centroid of {U,V} for
T (G, p) = W in case (4).

Obviously W is the solution for a > u/2 and b > v/2. In the other three
subcases of figure 8 we have to look.at the path of the tracing procudure,
We begin with the subcase (Ul, V2). The switch points t5, t6’ t, and tg
have been computed in section VIII. As before u > v implies t7 < t5 and
t8 < t7 holds in view of b > v/(v+l). We have

t6 < t8 for bu <« av
t8 < t6 for av < bu

Therefore the switch goes to (W;, V,) for bu < av and ‘to (Uy, Wy) for
av < bu. :
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Suppose that we have bu < av and consider the game Gtﬁ. ATl strategy
c%mbinations (ql, V2) with q; = (_l-a)Ul + awl are equilibrium points of
G0 since player 2's payoff for (ql, U2) is a decreasing function of «
and his payoff for (ql, UZ) is constant. The path of the tracing procedure
goes through these equilibrium points. We must Took at the possibilities
for the next switch. A switch from (Nl’ V2) cannot go to Uy or U2, since
player 1's payoff for (U1= Vz) and player 2's payoff for (wl, UZ) are
decreasing in t whereas the payoffs for (Vl’ VZ) and (wl, W,) are
increasing and constant respectively. The switch must go either. to

(Vl, Vz) or to (wl, wz). The corresponding switch points t12 and tg have
been computed in section X. As we have seen there t8 < 1o holds for

b > v(1-a), a condition which is always satisfied for T(G, p) = W in
case (4). Therefore the second switch goes to (Nl’ wz) and W is the final
result of the tracing procedure and the solution of the game.

Suppose that we have av < bu and consider the game Gts. A1l strategy
c%mbinations (Ul’ q2) with qy = (1-a) Vo + aw2 are equilibrium points of
G 8, since player 1's payoff for (Vl, qz) is a decreasing function of a«
and his payoff for (wl, qz) is constant. The path of the tracing procedure
goes through these equilibrium points. We must look at the possibilities
for the next switch. A switch from (Ul, Nz) cannot go to Vl or VZ’ since
player 1's payoff for (Vl, NZ) and player 2's payoff for (Ugs Vz) are
decreasing in t whereas the payoffs for (Ul’ Uz) and (wl, wz) are
increasing in t and constant respectively. The switch must go either to
(Ul, Uz) or to (wl, wz). The corresponding switch points te and tg have
been computed in section VIII. As we have seen ther‘e-.t6 < t9h01ds for

a > u{l-b), a condition which is always satisfied for T(G, ¢) = W in

case (4). This shows that here, too, W is the final result of the .tracing
procedure and the solution of the game.

In the subcases (U, wz) and (W, Vz) of figure 10 the situation is
essentially the same as in the subcase (Ul’ VZ) after one of the two
combinations (Ul, HZ) and (wl, Vz) have been reached by the first switch.
For the same reasons as before a switch from (Ul, Wy) or (W, VZ) must go
to (Nl, NZ). This shows that W is the solution in these subcases, too. We
can conclude that W is the solution in case (4) whenever T(G, p)} = W holds.
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The results gbtained for case (4) can be summarized as follows
U for a < U(l-b)

L{G) =
W for u(l-b) < a

XIII. The solution for all cases

It is important to point out that our results obtained in the cases (1)
to (4) hold only with the exception of border cases. Some of these
border cases are on lines inside the open regions which appear in the
formulas for L{G)}, since we have neglected cases where two payoffs or
two switch points are equal indriving our results.

In the following we shall combine the results for all four cases, in
order to derive an overall picture. In order to do this it will be
useful to amalgamate several smaller regions into one bigger one. of
course the results may not hold for the borders of the smaller regions,
but this does not matter since we negiect border cases anyhow.

As we have seen in section V the solution in case (1) is always U. The
following regions are adjacent to the region of case (1): the first
subregion for U in case (2), the first subregion for U in case (3), and
the region for U in case (4). These four regions can be amaigamated

into one. We obtain:

L(g) =U for a<yy and a <u(l-b) and b<%‘§.‘f

there are two additional regions with L(G) = U, one for case (2) and one
for case (3).

The regions for W in case (2) and case (4) are adjacent . We amalgamate
the region for W in case (2) with that part of the region for W in
case {4), where a < u/(v+1) holds. Since a = u{1-b) is satisfied for
a=u/{vtl) and b = v/{v+1} the inequalities u(l-b) < a and

a < v/(v+l) imply b > v/{v+1). Therefore the joint region can be
described by the inequalities below.

2
L(G) = W for (v-b)7(u*l) . 5 « V%T and u{l-b) < a

uv ,
The remaining part of the region for W in case (4) can be amalgamated

with the region for W.in case (3).
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We obtain:

2

(u-a)~(v+1

L(G}) = W for V%T <a and <b and v(l-a) <b

u-v
We have obtained the following result, which holds for all cases with
the possible exception of border cases, some of which may be inside the
seven subregions listed below

f U for a < V%T and a < u(l-b) and b < %%E%
2
for A= (utl) o 4 « u{l-b) and %%E% <b
uv
_ 2
for U <a and b < {ua) (v4l
| 2
_ (v-b)*(u+l uv-v
L(B) = = V for a <-———%;§———l and T © b
. D -
for -v—g-l— <a and —)—21—)-(”'3 V+) b < v(1l-a)
u“v
2
(v-b) " (u+l u Ry
W for » <a _<€1- and u(l-b) < a
for V%T <a and 22 V+1_ <b and v(l-a) <p

Figurés 11 and 12 show graphical representations of the regions for U, V
and W in the two special cases u = 1.05, v =1.04 and u = 4.0 and v = 3.2 .
As one would expect - since u is greater than v - in both cases the region
for U is larger than the combined aereas for the region of V. In the second
case the region for W is smaller than in the first one, Moreover the second
region for V vanishes in the second case. An increase of u or v increases
the region of case (1) where always U is the solution and thereby narrows
the space left for other solutions.

In order to obtain a non-empty second region for V one has to choose u and
v very near to 1 as in the example of figure 11,

-

W tends to be the solution for relatively high opportunity costs. This
is plausible since under these circumstances the risk of bargaining is
great: It is not unreasonable to expect coordination of expectations at W.

For re1ativé1y Tow opportunity costs the solution is U. There the situation
is similar to the 2x2-game which results by eliminating. the strategies Nl
and Nz.
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b Aa=(v—b G u+l)
1 uv .
1
i
]
& ‘
fe
3 U
N
uy-v \K\K

v+l |
|
| N [[[llw
| Z.
P
|
| 2
_(u-a)~(v+l)
L o
0 u
o+l 1 a

Figure 1l: risk-dominance-diagramm for u = 1.05 and v = 1l.04

)
T
SL Q\:q(i‘b
N

|
|
|
| |
| N
|
| -

0 1 a

Figure 12: risk-dominance-diagramm for u = 4.0 and v = 3.2
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If the opportunity costs are relatively high for one player and relatively
Tow for the other, it can also happen, that V is the solution. In the
first region for V¥ player 1 has relatively high opportunity costs and
player 2 has low opportunity costs.It squite understandable that this

may improve the bargaining position of player 2 such that his preferred
alternative V emerges as the solution.

In the second region for V the same intuitive argument points in the
opposite direction. Here player 1 has high opportunity costs and player
2 has low opportunity costs. One would expect that under such
circumstances U is the solution. This is in fact the case in the third
region for U where the opportunity cost constellation is similar to that
of the second region for V. At Teastat firstgiance the second region for
V looks somewhat strange. However the way in which this region arises in

the application of the tracing procedure to the centroid of {U, V}
suggests @ nossible interpretation.

In the second region for V player 2's opportunity costs are not Tow enough
to make W less attractive to him than U. Oﬁ the other hand V is more
attractive to player 2 than W. For player 1, however W is more attractive
than U in view of his high opportunity costs. At the end player 2's
interest in V turns out to be stronger than player 1's tendency to prefer
W, which is not unreasonable since V is more favorable than W for player
1, too.

Whereas the first region for V is due to risk dominance, of V over U, the
second region for V is due to tracing the centroid of {U, V} in situations
where W is the result of trac¢ing the bicentric prior. Unlike the bicentric
prior, the centroid seems to favor player 2's interest, since his best
reply to the ®ntroid is VZ’ if his opportunity costs are sufficiently low,
whereas player 1's best reply to the centroid is Wy,if his opportunity
costs are sufficiently high. Even if it is not quite clear whether this
feature of the theory is a desirable one, the above 1ntérpretation ’
indicates that it is a defendable one.
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