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SECTION O : INTRODUCTION

Let ¢ = {l,..,n} denote the "set of players" and

v be the system of

in

et B=ia) =45 | 3

coalitions of players. ( /Q (-) denotes the power

set.) If v : P =-IR satisfies v(P) = 0 then we

write v € WV and call (a,;P,v) a sidepayment game.

Similarly, a mapping V : P - ;,ﬁR”j constitutes a

game without sidepayments (o .,B, V) if V satisfies

certain regularity conditions. Essentially, this means

that ¥(S) 1is a nonempty, closed and comprehensive

n
5

coordinates i € S); for the details see e. g. [14].

subset of IR, (the subspace of R" spanned by the
¥ denotes the space of mappings obeying the condi-

tions as indicated,

There is a natural imbedding
Vi - ¥
defined by

Xz & wEs))
The set A c W of additive mappings is identified
with R"; thus x € R"™ and the mapping

Xt =R . {5 = £ X (5 EBE}

are regarded as the same objects.



(1)

The Shapley-value (SHAPLEY [15]) is a mapping

s : W -A=R"

which intuitively associates a "fair" or
"expected" payoff to every game. Thus, given

v € W, #.(v) 1is player 1i's expected payoff

1%
and {¢1[v],...,¢n(v]] = &(v) represents a
"fair" distribution of money or ufiiity available
from the game via cooperation of the "grand

coalition" Q.

There are several systems of axiaﬁs characteri-
zing the Shapley value as well as formulas in
order to perform a computation. A possible way of

definition is as follows (cf., [15]).

Define v =el €V (for T €P) by

eT(s) Y5 27T
0 (5 &T7)
(the "unanimous game" for coalition T) and put
o(e’) = &' (T ep)
where UT €E A denotes uniform distribution over

T (ui =77 1;(1)). The e’ (T € ) constitute

a basis of VW , hence v € W allows for a unique

representation

Now put

—
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I. e., the Shapley value is linear extension of
uniform distribution,.

Observe that the coefficients in (1) are obtained
by "Mdbius inversion":

A S R

Conceivably, (2) represents the fact that s is
a linear mapping. Linearity of the "fair value"
{also required by the axiomatic definition in
SHAPLEY [15]) is a somewhat dubious property. It
may be justified in a more or less convincing
manner within the framework of sidepayment games.
However, it has to be abandonded whenever attempts
are made to generalize <= to non-sidepayment

games.

for: 1T 8B 5 A EIR? (closed and comprehensive),

x® € R" with x$ €A ,letV=E , 0€EW be
defined as follows:
S| i ) .
V({i}) = {te t.';e){_l:, (i € Q)
Y5 = 5 Wik [a& 1]}
i€S
Vis) | = a8 2 Wi (S o 7)



- . : t
E o0 1is the unanimous game (of 1%
T.A.X

0

kinﬁ}

of T over A with x as threat point.

(For the details see [14].)
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For general ¥ € W , the threat point

is defined by
x;(V) = max {t | te' € V({i})}
Q

and, of course, E{ET,A,x”} = X The
B . T

¥ = (Ve W | V= ET,A,x“ T

A convex ; xﬂ EIRn . x?

admits of the NASH-value (NASH [61)

0 n
w s ¥ =-IR

x(V) € R"

class

€

na
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v(V) 1s readily obtained as the maximizer of a
function gur over the Pareto optimal and

individualiy rational points of V(Q) ; here

and T(V) 1is the set of those players that may
possibly exceed their threatpoint payoff in a

suitable coalition.

v 1is & nice mapping which, in particular, commuts

with permutations of the players and affine

transformation of utility.

e
5
!
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Given the natural embedding of W dnto W, it

i5 se&n at once that 3 and 'y coingide on the
("small") system of unanimous "sidepayment"
functions of the type ET,ﬂ,xo . However, it is

of larger interest to define a value ¥ on some
system V¥ c ¥ such that ¥ coincides with v

and ¢ on their domains of definition respectively.
Several authors did address themselves to this
question, see e. g. HARSANYI [1],[2], MIYASAWA [5],

SHAPLEY [16], OWEN [8].

We shall give a joint representation of the first
three of these values in sections 1 and 2. Sections

3 and 4 will serve to sketch a possible application.

Remark 0.1

For TEP, a€R . x®€eR" =/A , define
- 0
e AR s w fps sT e v w?

Then ¢ satisfies

0 -
afe * 52y = (o = 12T # &° (T €
i Tov(T), £ (1) %e(vg)
o(vr) = a(e g ) (T ¢

Moreover, ¢ is uniquely defined by (4) and (5).

fvT denotes the restriction of v € W on T E

L

=4
S

o=

=



(6)

For the proof see e. g. [12].

Note that (4) and (5) define ¢ recursively

without using the fact that 4 is linear on ¥

In fact, defining ¢ on (generalized) unanimous

0
games ET’l’x by (4) is immedjately appealing.
(5) however requires the players to somehow compute

vie) = ilc1yF 7

T =
SgT

il B ?(vg)

as a result depending on values of the same game
restricted to proper subcoalitions. Thus values
{utilities) are added (for each player separately)

but not games (functions v).

Note also that tT{v,¢}(Tj < v(T) dis not
necessarily required. But, fortunately, ¢ 1is
defined for all v € W , superadditive or not

and (4) takes no notion whether xG{T} < a holds
true or not. For the recursive definition (5) it

suffices to have a primitive version of ¢ defined
0
AR

only on the unanimous games e available -
but this version must necessarily be defined for

& X1y Ead ror x%T) 5 .



SECTION 1 : GEMERATION OF VALUES

0
Ts oy X

As e corresponds to ET,A,XD in the

sidepayment framework, it is close at hand to
generalize (4) and (5) via replacing e*"" by
E.... However, it is then feasible that the

recursive definition takes advantage of the fact

that xE €E A is not necessarily true, i. e. the

"threat point" is not feasible.

Therefore, in what follows, let J°% = ¢ be

such that

Wede: o 0 [ T8E ; «7 6K

e . A cIR2 convex}

(the definition of £, , , 0 makes no use of a

oo

requirement " x$ E-A " kel satisfying (1)

is called a suitable subclass of W . A mapping

68 N St
p = ¥V - IR is called a primitive concept

(for W’%) and (V°°,p) will sometimes be termed to

be a primitive pair.

THEOREM 1.1.

oo

Let (¥ “,9) be a primitive pair. Then

there is a unique subclass W c V.,

oo

WP < w® and a mapping

v = ¥ . y? - RN

such that



—
el

[N

W (V) = (V) R
e = n = o =,
Sk T ST T B 1 E S )

SgT

¥® inherits all invariance properties

from .

Again, vT denotes the restriction of ¥V on T
4 suitable definition of this (not violating the
regularity conditions) is found in [14].

Let us write

el = = w By .
SgT -
such that (3) reads

w(UTj = ${ET,U{T},tT{H,?]}

in accordance with (5) and (6) of SECTION O

The Proof of the Theorem is rather strajghtforward.
Existence and uniqueness follow via the recursive
definition implied by (3) ; the class W’ s given
by all those function guaranteeing that during the
recursion the term ¢(E_=.=.] on the right hand
side of (3) is always well defined, i. e., that
E.,.,. is an element of W°? . The fact that
“invariance properties" {i. e., invariance under
afffine transformations of utility and under per-
mutations of the players) are inherited takes some
computations which are performed during the proof

” 1

of Fheorem 2.11. and Lemma 4.312. of [121.



SECTION 2 : CHARACTERIZATION OF VALUES

The aim of this section is to show that all
values mentioned in SEC. 0 are generated by the

appropriate primitive pair via Theorem 1.1.

Consider

3 i 0 n
(Et.a,x° T'& £ 4y A convex, %7 ‘& 1R

X$ £ A, {x EIR? - 5E B - x$} bounded}

Then we may rephrase Theorem 4.13. of [12] as follows.

THEOREM 2.1.

There is a mapping

v: ¥-R

such that U!?D is the Nash-value.

v is invariant under affine transformations
of utility and permutations of the players,
thus generating a pair (W’,¥") with the
same properties. In addition, v obeys the
"Zeuthen-Nash-principle", i. e., for

vV = ET.R,xD E W, X : =v¥) and h the

normal vector at the Pareto surface of A

in x, we have

I s const (1 & T(¥} 3

signalizing that utility at X = w(V) is

equal for every (essential) player if it



is compared at the local rate of transfer
defined by the tangency hyperplane at

% = wf¥)

Thus, v¥Y represents the following philosophy:
Coalitions successively compute values and
threatpoints (blisspoints) according to (2) and
(3) of Section 1, but the ”5uq{p1us” compared
to the threat point (or the "deficit" compared

to the blisspoint) in any coalition is distri-

buted according to the "Zeuthen-Nash-principle".

Note that those ideas also appear in MIYASAWA [5].
However, his definition uses an underlying normal
form. Also, MIYASAWA's value is a correspondence
which frequently ends up to cover the individually
rational part of the Pareto surface. In addition,
no invariance properties are proved. However,
sometimes ¥” dis a selecting function of this

correspondence.

For & EWm™ , 4 #® 0. Tet 3t s [i_,...,lnj
z a
1 n
where éf = B 1T B e 0 . Also, let
i

f.(x) = ax (X €R") and denote by

Wif, = (R A | 4,00 2 f,(x) (x 6 A))

the set of maximizers of the function. fa taken

-~

gver some subset A of IR“.



Given

0 =l ;
max {t ER | x; + tag €E A}

-
-
=
—

n

=i

£

=

[

: 1 s
max {t €IR | gT(U} + ta;” € V(T)},

provided a; # 0, and
T(v} = B for & = 1

T
A mapping e=wv, ! y -IR" is then given by

] -1

(4) va(V¥) = x° + 1h(V)ay

1

x(V) + t,(V)ag (V = Eg a,x0)

R
4
|
|
_
T
AT W ( L -

Clearly, {ﬁ,w} is a primitive pair.
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THEQREM 2.

2

PROOF.

1St Step.

o :
let By b o=l = b generated by {H,ua]

via Theorem 1.1. Assume, for some
- I‘:l
a EIR”+ and V¥ € W 2

v (V) € Myo)f

d

Then v (V) 1is an Harsanyi-value (say,
d

in the sense of Section 6, CH. IV, of [14]}.

We shall assume that a > 0 within the
first two steps of the proof. If a z O
then the statements below hold true with
due modifications, however, a great many
technicalities will burden the proof.
Similarly, in step 3, we shall assume

a >0 by the same reasoning.

Now, let a >0 , a EIR"™ be arbitrary.

% to be the linear trans-

Define L = L
formation R" - R" satisfying

Koomt Plgaaaii o ] = RS P

For any V € W , L induces a mapping
LY & ¥ [=see S5EC. 25 CH IV, of [14]].
Since the threatpoint commutes with

affine transformations, we find in view

of the definitions. (3} and {4} [with



(7)

ZE'I

Step.

1

r LYY = max {t | x={LV) + te} € LV(T))

= max {t | Li(%7(V)) + tipazl € Lo(V(T)))

(x(V) + taZl) & L(v(T)))

(V) + ta}l g€ V(T)}

= mak | L

=4

and similarly

valLV) = x(LV) + r (LV)er?

¢ 5 "1'\.
= Lx(V)) + =,(V)L(a7])

= L{x(¥) + 7 (v)a7t)
= L{vy(V))

Next, since ¢® dinherits all invariance

properties from ¢ , it is not hard to see

that (7) implies for v =y 4

Yo (LV) = L(¥,(V))

Note that (8) is not generally true but

for L = L® . However, (8) is & consequence
of Theorem 1.1. (or rather of Theorem 4.11.
of [12]) and & direct proof would have to

repeat the computations offered in [12].

Let us recall the content of Definition 6.2.,
CH Iv, of [14]. Accordingly, given a suitable
B o= €W &5 dofiund recursively

as Ttollows:



I‘-.u'lzi_'l}zl : =5

2. Given w(S) and pg for all s € 2,

151 <« 5 , define, for T E B T =
o
tT v = B ap uS
SET 2
g o =max {a B | ) ap £ VT

(Again, uT € A is uniform distribution.)
Obviously, this is & construction we have
employed previously. In fact, Remark 6.3.

aof CH.IV, [14] , shows that

o

t7 = tT(v,v) (T € P)

for ¢ = Defining

i 3 5 "

X' = L. pg (T 6 B}
ST

we therefore obtain similarly and by the
same Remark 6. 3. that

= x(2) = ¥ (V)

As V was arbitrary, we may replace V

by LV where L = s

is taken to be the
same linear transformation as in step 1.
Thus, (9) implies

, . LY
@eELV] = bW

Combining (8) and (9) we obtain



(11)

(12)

(13)

]
LEd
—
=

L{¥ (V)

n-+

New, if a €R is such that (a > 0 and)

(V) € My o) Fs

(see (5)), then, in addition, the following
holds true. Put X : = vz(V) for the moment.
Then, by (5)

X = max fax | x B Via)}

i

1]

-
TN ]

S

x € V(a)} (L

max { £ L{x)
i€Q

max {y(2) | ¥y € LV(Q)}

i

s

Here, vu generally denotes the element
of ¥ obtained by admitting sidepayment

in ¥V ("maximal joint utility"). Thus,

wtV (o) = swtV) (@) = L(R)(a)

= ax = va{i}

We now call upon Theorem 6.4., Ch IV,

of [14]1. This Theorem states that (11)

~and (13) are necessary and sufficient in

order to identify X = ¥z(V) as an

Harsanyi value, q. e. d.



(14

The next value concept to be considered requires

the existence of max {ax | x € V(T) = A} for
gkl A =EE i 5l in the domain of definition of

*
the primitive concept. Let W denote the system

of those VY = ET 5 59 for which A 1is compactly

generated. For ¥ = E_ o define

V) o= x(v) + (BT - xquvy(m))al!

for & = 0 4 ar £.0 4 and: E = A Gf course,

S0V E e SNy AT an =i

. 0>
'.__
et D
o
- Frma
| < T
| y N
{ //I-}'I| i\ et
£ |'z .-""FH_H_F
j S e
; O et &
I
-
// o
I-’\‘ 2 e P A S . (1 S
[
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Iy
L



THEDREM 2.3.

o :
Let ¥% ; = @V be generated by f",va?

yia Theorem 1.1. Suppose, for some
- n+ = e
a EIR ., @ £#£0, and V € V¥

{15 ?E{Uj e Vi{ia)

-

Then ?a{U] is a Shapley value. (See

SHAFPLEY [1&]. alzo Section by CH IV of [14]:)

PROOF.
15% Step. MNote that
WYY = x(v) + (vI(T) - x(v)(T))es?
(16) = x® + (vI(T) - xO(T))eit

5l P e R R s

Comparing (16) with {(4) of section 0,

we find

(17) 1) = ageT e i
whenever V = ET,A!XD {and, of course,
vV(T) = max {x(T) | x € A}). As is easily
established )

(18) . = UET,A,XG ) eT,vv{?j,xD 1
thus (17) implies

(19) sHwy e (V2 Ep 0 € i

Next, we want to verify that
(20) ve (V) = o(vh)
This is done by proving

(21) v (Vr) = a(vi)



¥ia dnduction ov. iT1 . Indead, [21)
follows from (138) for TI = 1 and the

induction step is

L =P B
¥ 'l."'rT} = liET,‘Jr{T;, o (_:}t E'gelz.'l'lsj:l
StF:T
st g L Y
R
ST
x
(17) T,vv(T},SzT(-ljt's¢{vg}
= @EE Ei
= o(vq) (by {5) of section 0).

This prooves (20). Of course, inferring

(20) from (13) is ‘nothing but to apply the

o e a . % Y
simple fact that v inherits invariance

properties from v®

2nd Step. Using the defining equation (14) we

verify at once

1

v YTy - xLvy(T))er?

W (LY) = x[L¥) # {

-1

i BT Pl JETRS

)
(22)
= Ll:w)alfv:lll a

1

and calling again upon the inheritance

v® and +? , we conclude

properties of
that (22) implies

(23) sS(LY) = L{v?(V))



3Td Step. Suppose now, a EIR"™ satisfies the

additional requirement of cur theorem,
i. e. (15).

Using {<3) and replacing ¥ by LY dn
(20), we find
Led (V) = wS(LY) = ovtY)
Moreover @E € V(n) implies

-

Le? € LV(Q)

However, according to SEC. 5, Ch IV, of
[14]), (24) and (25) characterize a

Shapley value, q. e. d.

Remark 2.4.

The existence of a €IR" , 32 # 0 , as
specified in theorems 2.2. and 2.3. is,
of course, established via a fixed point

theorem.



SECTION 3. LOCATION CONFLICTS

In the course of introducing the system ¥ we
have clearly left superadditive territory. For
; = : 0

an imous game Y = E. it % A
unan g Fohoxd N h T £ ,

it is not the threatpoint which is represented

by § ¥ Rather, this is a situation where all

players 1 € o might in fact prefer x° to

anything feasible but are forced to retreat to
some point on the feasible set. Thus x° wil]

be called a blisspoint. The primitive concepts

discussed in section 3 as well as the values
generated by them are.applicable to blisspoint
situations. In sections 4 and 5 we shall sketch
a possible economic background for "values of
blisspoint games". The details will be found

in B3

DEFINITION 3.1.

A location conflict is a tripel

E = .80}

I

where @ = {1,...,n} represents the

set of players, B EER] is convex and

closed {(the "planning area") and

U = |{L.|1I]|1E?d is & family of "utility
i

functigns™, u' : B + R , which are

concave, bounded, and continuous such

that every u has satiation points, i.

g



.i

(1) Mgu™ # P

Intuitively, players i E o have been
found eligible to receive a public
facility (swimming pool, park) Tocated
within their vicinity {i. e. B). Each
player prefers the object to be closely
located to his own location (the satiation
points of his utility). Drawing the
contour lines of the players' utilities,

we obtain the following familiar picture.

contour lines of .
i's utilities

__.-"" —'--—--\.._\ e
it
'f ’F'_._‘““! /
location M . B
25 A0 S RS o L —
player I'[ {‘ s / o e
;'; :. ,// i T _L\\
\ T ﬁg}h\‘ T s \ jE
-\\ : i a\;/.f' o
~ | I. e / ;,.
N \ | : ]
./J! | | - "H.__‘// r
g )'. ! H "\x. ._’,- .
| e 7 . x“"-u.\_\__
L . ] _\_\1_"_"‘,’-"'
S o 2 public facility
\\. - /_, % !

. S e ¥
. - "
\k_/--f.



The problem for the players (or a planner appointed)

is Lo find a "fair location"™ for the object.

Such a problem might be treated by methods of

Game Theory as discussed in sections 1 and 2.
Indeed, there is a natural transformation of the
location area into the utility space by means of
the utility functions. If £ denotes the set of
location conflicts, the mapping L -V may e. g.

be defined by ¢ - VZ where
V.(S)

I

(x ERg | 3y €8, x; = u'(y) (i€s)).

WE{S} represents the utilities available for
coalition S if planning is performed only with
regard to the needs of S . (The usual interpreta-
tion of Game Theory according to which 5 "commands"
the utility vector in V¥(S) via cooperation is

no more feasible.)

To make {2) more appealing, we might as well
replace B by a family {BS)SEP of planning
areas, each one available to each coalition. However,

this has no bearings concerning our general discussion.

Given a value v , defined on a subset Ug_g "
it is conceivable that w(V_) denotes the "fair

distribution of utility" (provided, however,

V. e v, If v = ¢® then V_ € V® has to be

= i



accounted for.). In the present context we are

even more interested in "fair location®.

No confusion will arise by writing

o(E) ¢ = fy & B | (uMy))sey = €V

I

Thus, ¥(z) denotes the value locations of =

In general, this version of v 1is defined on a

subset 2% of 2 only.

On the other hand, the values developped in section 3
are not the only ones available. "Values for location
conflicts" may be developped axiomatically or as
functions representing gertain aspects of public
choice theory. We refer to values studied by

A. OSTMANN [7] and W. F. RICHTER [91.[107.[111,

see also [131].

In any case let us assume that a version of a
value v defined on some £ 2 is given in
order to consider an even more specialised version
of a blisspoint problem connected to general

equilibrium theory.



SECTION 4. PUBLIC GoODS

DEFINITION 4.1.

An economy

W= (% xR'™,U,4,b.Y)

is defined by means of the following data:

0 = Ll represents the set of players;

¥ = R™x I represents bundles of private
goods; the last coordinate
being monetary (a booking
account);

i: s represents bundles of public
goods ;

5 (0 g 5 U € HWR' <R

represents the Mutility

functions" of players i € o

€ %

represents the initial

allocations of players i € g

(private goods oniy);

b £ m1+ represents an initial outfit
of public goods;

lé_EIRm+1 x R'T represents the aggregate

production set of the public

sector.



ek

As this section again is only providing a sketch

of a model, we shall not be too specific with

‘respect to the conditions imposed upon the data;

however, u’ (i € 2) should at least be continuous,
monotone, and concave, while 4 is assumed to be

at least closed, convex, and contain O . There is
also a notion of taxes in our model. Taxation is

used as a means to decentralize the decision of

producing a certain bundle of public goods.

DEFINITION 3.2.

i e R
i€ }iEQ is specified

by a set of continuous, monotone, and convex

A taxation scheme [ =

(at least) mappings
¢! i r't =R (i € q)
If € : = {C | C is a taxation scheme} ,

then €% < € 4s said to be a taxation policy.

A taxation policy is an exogencus quantity: society
has certain notions in advance about those tax
schemes it consideres applicable by customs, tradi-

tion, or institutional regulations.

Let us mention two particular versions of a taxation

policy. Clearly

af ER :c'(y) = q'y + o (yER "))

is the affine taxation policy. A taxation scheme




(4)

™
CEQC T may assign different tax rates to the

various players. If this is considered to be at
variance with the standards of society, then e. g.

q € m]+ :

LL

B o s i
=5 5 (g }iEQ

o BT & chey) s

1]

Gy +4 {y ER )}
may be chosen as the taxation policy; here the
rates are equal for all players, thus mg is the

equalizing affine taxation policy.

m+1 IRm+I

Now, let IP denote the price simplex in

m+1 Siid

(prices for private goods). Given p EP
a real number w , representing the wealth of
player i , as well as a bundle of public goods

y E m1+ , player 1 will maximize his utility with
respect to private goods within his budget con-

straints, 1. e., he will assess a utility

°p i i
U] B S max fucix.y) | gk s Wl

to the pair (y.w) (provided the "max" exists at
all)., If a taxation scheme is at hand, then his
wealth may be computed according to his initial
holdings a' € 4 , and the benefit of the initial

public good b has to be
3 i i i
W= pa“* (b)) - £ (¥ 3

assuming that he pays c?{y} towards the public

‘bundle y



Thus, given prices p and a tax scheme C ,
player i's utility attached to a public goods
bundie y is actually

L
uPC Yy)

]

api{y,pai + cifb} s cif_y}l}
= max {u'(X,y) x €%,
px = pai + c'(b) - c'(¥)}

W 5
0f course, the existence of aP€ 1 has to be
stablished. The essential requirement are positive

prices (p > 0) and increasing marginal costs (e. g.,

c' strictly convex) versus decreasing marginal

utility (e. g.. u strictly concave). More details
may be found in [13]..If the necessary requirements

are satisfied for all members C of a tax policy

o a

¢ are said to be compatible.

cC , then W and ¢

Let us quote

LEMMA 4.3.

1If M and ¢° are compatible, then, for

m+1 14

p>0,pEP and € E 2% , 4P Y s

continuous and concave. Moreover
Ts
H ]+upc 1 F.D
IR
y
GPe i

T By has satiation points (i £ ).

For the details see ZECKHAUSER-WEINSTEIN [17] or [13].

Clearly, the lemma states that player 1i's utility

{u"'1j will have satiation points if, for large



public bundles the marginal cost to him with
respect to the public goods eventually exceeds
his marginal utility {u1{-,-]] w.r.t. the public

goods.

2 S
Let us write UPC = (aPS T

Then we have

COROLLARY 4.4.

Let W and t° be compatible. Then, for

P EIPm+l i pos O and B8 B

PC . = (g, BR'Y, (PG

is a location conflict.

Clearly, players i € o will in general have
conflicting notions about which public bundle

should be chosen. Given prices and taxe;, this
depends in fact on their utilities apc11 A T
the satiation points of which might well be
different. In the light of our analysis of location
conflicts in section 3, it is suggested that the
"fair" public bundle to be produced is just the fair
value of the location conflict. The notion of "value",
dgain, is exogenous. Society has to agree upon which
idea of fairness should be applied, i. e., a "value"

¥ should be specified in advance.



Given ¥ and assuming that PC is within the
domain of definition of ¥ , the "fair" bundle
is ?{zpc] once p and C are fixed. Now the
question occurs as to whether y = ?{:pcj is
feasible in the sense that it can be obtained by

the production technology. For, by construction

.
of uPC !

, each player will maximize w.r.t. the
private goods. The maximizing bundles of private
goods together with the "fair" public bundle
should constitute a feasible state of the economy.
As this cannot be expected a priori, we are thus

led to the following definition of equilibrium.

Denote by ﬁ(p,c1,y} the set of maximizers in (5),
; TP - P
“pc‘i

i{p,ci,y} = [J{ € 'i" Uil:}(,_‘y':l =u EF]"‘

(assuming that existence problems are taken care
of by "compatibility"-requirements. In fact, in

many cases X 1is a u.h.c. correspondence).

DEFINITION 4.4.

Let W be an economy and let v be a

value defined on 2°c £ . Also, let

t© = ¢ be a taxation policy, X = {i1]ie ”

(x' € %) a collection of bundles of

b+ a bundle of

private goods and y € IR
public goods. Furthermore, let p € Pt

be a price system for private goods. Then



«Hha¥]) B P™1 x g0 «x 2" x Rl

[

(b,

is said to he a w‘EO~Equ111brium if the

following holds true:
1

P
P M, and t° are compatible..

As a first example, let us consider the LINDAHL-
equilibrium ([3], see [4] for a survey). Values ¥ ,
as discussed in the previous sections, enjoy the
property that the value coincides with a blisspoint
if the blisspoint is feasible ( or with the threat-
point if the threatpocint is Pareto optimal). The
LINDAHL-equilibrium assigns different tax rates to
the various players butr thereafter every player
maximizes his utility w.r.t. public and private
goods given his budget constraints, i. e., he
achieves his blisspoint of the corresponding location

conflict. Indeed, it is not hard to prove

THEOREM 4.5.

Let M be an economy and let @ denote the
affine taxation policy (see (1)). Then a

LINDAHL-equilibrium is a wv-Q-equilibrium



for every v satisfying
w(V) = x(V) whenever x(V) is Pareto

optimal and feasible.

Imagine however that the (general) affine taxation
is not feasible by institutional reasons and that
the players have agreed upon the decision that
only equal tax rates should be appliied. In other

words, consider the equalizing affine taxation policy

@° (see (2)). Now, every taxation scheme C = {ci}ieQ
€ @° s of the form

c'(y) = qy + a

1+

for certain g €1R ,2 EIR . Moreover, the budget

restriction employed on the right hand side of (5)

reads
pX s pa' + cﬁih} - Citr}
= Pai +qb = qy
or
px + gy = pai + gb
Obviously, o« does not enter at all, hence it is

sufficient to describe C € QD by the associatad g
We may then write qu instead of Epc and an
obvious meaning is attached to the phrase that

(p.q) - ¥(zP9)

is required to be continuous.



THEOREM 4.6.

Let MV be an economy and let Q° denote

the equalizing affine taxation policy. If
Pq,
I

(p.q) = ¥(cZ

is continuous, then there is a ?-mu-equ11ibrium

{given further conditions concerning compati-
bility of M and WU and concerning

appropriate properties of'% )

The details of conditions and proofs are stated
in [13]. It should be noted that a sufficient
condition for ¥ is in fact that

(pq) - ¥(zP9)

is an u.h.c. and convexvalued correspondence.



REFERENCES

11] HARSANYI, J. C.:
A bargaining model for the cooperative
n-person game.
Ann. Math. Stud. 40, 1959, pp. 325-356.

(2] HARSANYI, J. C.:
A simplified bargaining model for the
cooperative n-person game.
Int. Ec. Review 4, No. 2, 1963,
pp. 194-220.

(3] LINDAHL, E.:
Just taxation: a positive solution.
Classics in the theory of public finance.
(R. A. Musgrave and A. T. Peacock, editors),
MacMillan, London, 1967.

[4] MILLERON, J.-C.:
Theory of value with public goods. A
survey article.
Journal of Ec. Theory 5, 1972, pp. 419-477.

(5] MIYASAWA, K.:
The n-person bargaining game.
Ann. Math. Stud. 52, 1964, pp. 547-575.

(6] NASH, J. F.:
The bargaining problem.
Econometrica 18, IQﬁD,_pﬂ. 152-162.

[7] OSTMANN, A.:
Fair play und Standortparadigma. Thesis.
Institute of Stat. and Math. Ec., Univ. of
Karlsruhe, 1978.



(8] OWEN, G.:
Values of games without sidepayments.
Int. J. Game Theory 1, 1971, pp. 95-109.
(91 RICHTER, W. F.:
A game theoretic approach to lTocation-
allocation conflicts. Habilitation thesis,
Faculty of Economics, Univ. of Karlsruhe, 1979.
[10] RICHTER, W. F.:

Shapley's value and fair solutions of
location conflicts.

In: 0. Moeschlin and D. Pallaschke (eds.},
Game theory and related topics, Amsterdam
1979, pp. 383-393.

(11] RICHTER, W. F.:

Social choice for blisspoint problems.
To appear.

(121 ROSENMOLLER, J.:

Selection of values for non-sidepayment
games. Inst. Math. Ec., Univ. of Bielefeld,
W. P. 75, 1978.

(131 ROSENMOLLER, J.:

On values, location conflicts, and public
goods.

Inst. Math. Ec., Univ. of Bielefeld, W.P. 86,
197%.

(14 ] ROSENMOLLER, J.:

The theory of games and markets.
To appear.

[15] SHAPLEY & L. . S.:

A value for n-person games.
Ann. Math. Studies 28, 1953, pp. 3/7-318.



S8 e

{16] SHAPLEY, L. 5.:
Utility comparism and the theory of games.
La décision, 1969, NRS, Paris.

[17] ZECKHAUSE, R. J., WEINSTEIN, M. C.:
The topology of Pareto optimal regions with
public goods.
Econometrica 42, 1974, pp. 643-666.



N

Nr. 3

Nr. 6

Nr. 7

Nr. 8

Nr.?ﬁ
Nr.11

MNr.12

Nr .16

Nr.17

Ny .18
Nr.1i9

Nr. 20

C.C. v. Weizsicker: The Political Teonomy of Stability in
Western Countriss = The Wicksell Lectares - Stockholm, 2nd and
dth May, 1972, mibl. at Almquist and Wikseil, Stockholm 18972
C.C. v. Weizsdcker: Modern Capital Theorvy and the Concept of
Exploltation, Julv 1972, publ, in Eyklos, May 197

C.C. v. Weizsicker: A New Technical Progress Function (1962),

-y o

August 1272

C.C. v. Welzsicker: Long Term Global Optimizazicon in Educational
Planning. A Simple Fxample, September 1572

C.C. v. Weilzsicker: Intergenerationelle Einkommensverteilung:

Einfache Beispiele flir Wirkungen steuerlicher Mapgnahmen und fir di

optimale Steuverstruktur, October 1972, nubl. in Neue Aspekte der
Verteilungstheorie, G. Borbach, B.Frev, B. Gahlen{eds.)}, Tioingen
1974

C.C. v. Weizsicker: Kenneth Arrow's Contribution to Economic
Sciences, November 1972, publ, in Swedish Journal of Economics,
Vol. 74, 1572

C.C. v. Weizsicker: Morishima on Marx, January 1973, revised
April 1973, publ. in Fconomic Journal, December 1973

Reinhard Selten: A Simple Model of Imperfect Competition, where

4 are Few and 6 are Many, Februarv 1273, vubl. in Internationai
Journal of Game Theory, DeCember 1973

C.C, v. Weizaicker: Notizen zur Marxschen Wertlehre, Anril 1
Hans W. Gottinger: Some “easures of Information Arising in S
tistical Games, May 1973

Sergiu Hart and Elon Kohlherg: Equality Distributed Corresponden-
cles, July 1973

C.C. v.Walzsglcker: Grenzen der traditionellen Globalsteuserung,
October 1973, publ. in Jahrblicher flir Nationalfkonomie und Sta-
tistik, Band 189, Heft 1/2;1975

C.C. v. Welzsicker: Reply to Mrs. Hobinson; Morishima and Wolf-
stetter, MNovember 1973

C.C. v. Weizsdcker: Substitution-Along the Time Axis, publ, in
Evkios, Vol. XXVII, 1974

John €., Harsanyi: The Tracing Procedure: A Bayesian Approach to
Defining a Soiution for n~-Person Noncooperative Games, Part I
May 1974

Lad

&
3
=
=

)
a=

John C. Harsarvi: The Tracing Progedure: A Bayesian Approach o
Defining a Solution for n~Person Noncooperative Games, Fart 11
May 1274

John—-ren Chen: Produktion, Konsum und Mark: des Nahrumgsmittelis
Reis in Taiwan: Okonometrische Untersuchung und Prognose, May 1374
Reinhard Selten: The Chain Store Paradox, Julv 1974

C.C. v. Weizsicker: Political Limits of Traditional Stabilization

Policy, June 1274

Reinhard bﬂ;tﬂﬁ. Bargaining under Incomnlete Information — A Nunme
rieal Exam 1ly 1974

John Q. Nonlinear Social
Economice have Special Excemption
July 1974

John C. Harsanyi

Reinhard Selten: Reexamination of the
librium Points 1 ]

John~rean ChFﬂ' Abwertuﬁqsq und Aufweritungsef
wirtschalt mi besonderer ‘:E-l_kf?ul::.'!'}i.'{iﬁ?ﬁ-..." = i

Hans W, jﬁhtlhu.ﬁz EH;%LE&C& of & Utility on a Tonolod.ical Seomi-
group, Januarv 1975




Nr.

Nr.

Nr.

Nr.

NE.
Nr.

B

[ o5 ]
n
far

(8
£

k)

4

&5
4E

47

-
o W. Gottl?qer: ”Cﬂﬂﬁ“&ﬁitiﬂ: tor & Static Stochastic
Histarchical Eystem,February 1975
International hurxsuor orn Basic Problems of Game Theory,
‘Bad Saizuflen, Sentember 2 to 17, 1974: COLLFCTION OF AB-~
STRACTE
Hans W. Gottinger: NDecomposition for Stochastic Dynamic Svstems
Part I, April 1575 '
Claude Hillincer: Rezal Income, The Cost-ocf-Living and Consunmer
Surnlus: A Unified Approach to their Conceptual Foundation,
April 1975
Lawpreance H i Co

. Nitz: Machiavallianism an c Conpatitive Soci
tacts in & Limited Information Convention Game, May 19
Hans W. Gottinger: Decompoaition for Stochastic Dynamic Systems
Part II, Mav 1675

Hans W, Gottinger: Seguential Analyesis and Optinal Stomping,
May 1975

John—-ren Chen: The Worlid Cotton Markeset (1553=79£885): An Econoc-
metric Model with Zpplications to Economic Policy, May 1975

T

-

Hans W, Gottinger: Some Applications of a Result in Control
Theory to Economic Planning Models, June 7975

Lawrence H. Nitz: Amsliorative Cpalition Behavior and Indivi-
dual Strategies, August 1573

John-ren Chen: The Effects of an Increase of the Energy Price
on Macroeconomic Activity: A Comparative Static ARpproach,
August 1975

Klaus Rinder: Portfolic Selection: Em uirlscke Untersuchung fir
die Bundesrepnublik Deutschland, August 197¢

Hans W. Gottinger: On a Problem of Gu_lma Search, October 1975
Hans W. Gottinger: Lecture Notes on Concepts and Measures of
Information, October 1975

A.Eoggatt, R.Selten and D.Crockett, 5.Gili, J."ocore: Bargaining
Experiments with Incomplete Information, Novembesr 1575
T.Marschak and R. Selten: Convolutions, Inertia Supergames, and
Oligopolistic Equilibria, November 1975

Dierk Bitter: The Kernel for the Grand Coalition of the Four-
Person Game, January 1976

John-ren Chen: Ein Makrodkonometrisches Msdell £Ur Taiwan,

I=V , May 1976

John=-ren Chen: Ein Makrofkonometrisches ¥odell fir Taiwan

Vi - X, May 1976

Peter Rieca: A Solution Thécry for the Finite Hegotiation Pr
May 1976
Reinmhard Selten: A Simple Game Model of Kidrasmiag, Tune 19
Reinhard Selten: The EBEquity Princinie in Feoonamic Beaavior
July 1576
Siegfried Brune: On the Regions of Linearity for the Nuclegoius
and their Computation, ﬂuqu%t 1% 76
Siegfried Brune: Computation of the Nucleglus for Suseradd)

[

'\?'

(¥}

i

L4=-Person Games, September 3
Pater Rice: A Note on the Hicks Theory of Strike Barsaining,
September 1974

Alfred Zauberman: Note on Assimilad

+

tion of Onatinat Co e}
and Ramifications in Zconomic Plianning Thaory, 5« 1
Alfred Zauberman: Planning under Indecerminacy i
John-ren Chen: Die Entwicklung der "Terms of Trade" s
wicklungslinder von 1660 bis 1975, January 1977
Harns W. Gottinger: Simple Depcision Procedures - An Expository
Pazer, February 1977
R.W. Scholz: Sequential Two Person-iero-:3 rﬂ&;:ﬁa Wwizh Incon-

piete Information and Incidental %cqﬂcrav oz Moves., June 97




-

NT.

NI .

Nr.

63
64
65

67

TR3

10

11

72

P
wrinlara halton: A Hodel of Oligomel stic Size Struccurse and
s P | ] N - s T
PO LAy FILY e DT EnGO HS LEPeVIAHEed

iottt=ren "an in hudonitandelsmodell (e die "Hard=Core'=fFno-
wicxiungslipder von 1960 ~ 14978, Julvy 1977 '
Rolf Stoecker: Altruism and Performance in Bertrand-buopoly-
Fxperiments, July 1977

Reinhard Seiten uand Werner Gith: Macht £inigkeit stark? - Smiel-
theoretische Analysen einer Verhandlungssituation, August 1977
Hans W. Gottinger: Complexity and Social Decision Rules. Sen-
tembear 1977 '

K.=2, Kistner und N. Subromanian: Regenerative Figenschaften
von “iodellen der Zuverliss i gkeitsthecria, Jdgteober 1977

Relinhard Selten: Coaliticon Probabhilitiass in a Non~Ccoherative
Model of Thrae~Person Cuota Game RBarcaining, Novesmber 377

Hans W. Gottinger: A Markovian Necision Process with Hidder
tataes and Hidden Costs, November 1977

Reinhard Selten und Werner Giith: Risikocdominanz in einem Marki-
einkrittsspiel, November 1977

John-ren Chen: The Fffects of Stamilizatiorn Policy uncer Con-
trolled Flexible Exchangs Rates, Januayy 197E

John-ren Chen: The International Transmission of Business

Cycles, January 1978

Rolf Stoecker: Schlufeffokt in einem Preisducpolexperiment,
February 1978

John=ran Chen: Priifung dor technischen, Bkononischen und poli-
tischen Voraussetzungen flirx den Abschlivi eines internationalen
Rohstoffabhkommens mit Mur e rstock, Mindsst- und HEchstpreisen
zur Stabilisierung des Weltmarktes f£lir Baumwolle und baumwoll-
qarne, Fahruary 1973

Hans W. Gottinger: “arkovian Decision Processszs rit, Limited
State Dhservability and i'nohservable Costs, Aoril 1972
Reinhard Selten und Werncr Glth: Came Theoretical Analysis cof

Wage Bargaining in 2 Simple BuBiness Cycle Model, September 3157
Reinhard Seliten: Limited Hationality and Structural Uncgertainty,
September 1978 '

4

John-ren Chen: EnergieverSOfgung, Industriealis:erung undé Enc-
wicklung einer Dualwvolkswi LSChﬂtu mit auderwirtschafilichen Be-

ziehungen, September 1978

Hans ¥. Gottinger: Structural Chax actar;stl;e of Bcononic Modsls
Study in Ccmg-uﬁ¢h3, December

Reinhard Seliten: A Note on EvclatJvna:fj;

in Asvmmetric Animal ho:*"=:c'

Joachim Rosenmillier, Wulif

Projext Standcrispiels, Dezember

Joachim Rozenmiller: Selection of Values for hon-Sidepayment

Gam=2s, December 1978

John-ren Chen: Verlauf der Skonomischen Entwickiung eirer Dgal-

volkswirtschaft in der Phace der endogener Lornbestimmuns - ml

begondarer Berlicksichticung der Probleme de Lnercieverteuerung

und Devisenknappheit, Januvar 1975

Axel Ostmann: On Location Conflicts and the.r Fair Solution Con-

cepts, March 197%

Jonn-ran Chen: Fertilizer and Develcprens ¢. en Agricultural
Economy, March 1979
Hans-W. Gottinger: Complexity, Boundecd Rationaliiiy anc Probliem-
Scolving, March 1979
nHans-%. Gottinger-gnd M.E. Yaari: Lncogenous Changes of Pre-

s R e | < R ta -
ferencasz 1n the chergy Narket, ﬂ;ﬁ_} A9
Mgifram . Ricnter: Social Zhoilce For Biiss-Point Probl:ms, May
1975
1Ens W. Gottinger: The Simple Economics o Ire Praogramg
£ ol - = A - P - a ¥ orpe : “ L - o
Ln AL ztion of Decision Analysis ¢ C caf :




o

Cal

“eter Hammersieini The xcie of Asyametries in Animal Contests
Y e o

Welfram F. Richter: Ein Dynamisches Ungleichgewichtsmodel]
fir g¢ie Bungesrepublik DJeutschlang ter sechzicer Jdaehre,

Juni 1979 :
sonn-ren Coen: rertilizers and Development of 3 Duel Economy.
Juiy 19712

Joachim Rosenmliier: On Values, Location Conflicts, and
Pubiic Geods, Marcn 1979

Hans-W. Gottinger: An Informetion-Theeretic Approach to

_arge Organizaticen, Sertember 197%

Axel Ostmann and Martin Straub: Or the Geometiry bebind thne
rairness taﬁcepts d Ta Rawls and & Ta Koim for Locaticn
Confiicts, culy 1979

Reinhard Selten and Werner GUth: Fowilibrium Point
in a Class cf Market Entry Games, November 1975

einharc Seiten: A Noncocperative Model of Characteristic-

Furct on Bargajining, March 1580
John C. Harsanyi and Reinhard Selten: A ﬂﬂr-“auﬁe
Selution snebvy with Cgenera+'" =p;=1¢at|a
Preliminary Discussion. March 1980C.

John C, Harsanyi and Reinhard Seiten: A Non-{
tion Theaory with Cooperative Applicatiorns, Lk
sequences of Desirabie Properties, Harch 198

f.'i "
ative Solu-
2: Lon-

Joachim Rosenmililer: Values of Non-Sidepayment Zames a.a their Appl

cation in the Theory of Putlic Goods, Apﬂ*? 1980.



14 = e - il el 1 e

WIRTSCHAFTSTHECGRETISCHE ENTSCHEIDUNGSFORSCHUNG®

A series oF books published by the Institute of Mathematica
cconomics, University of Bielefeld.

Wwolfgang Rohde

Ein spieltheorecisches Modeil eines Terminmarktes ( A Game
Theoretical Model of a Futures Harket j

The model takes the form of a multistace game with imperfect
information and strategic price formation by a specialist.
The analysis throws light on theoretlicelly difficulit empiri-
cal pne&aomen

Ly

Yael. 1 176 paces price: DM 24,80

Klaus Binder

Cligopclistische Preisbildung und Markteintritte (0ligopoiistic
Pricing and Market Entry;

The book investigates special subgame pertTect equiiidridm
points of 2 three-stage game model of oligopoly with decisions
ocn entry, on expenditures for market pctential and on prices.

¥ol. 2 132 pages price: DM 22,80

Karin Wagner

Ein Modell der Preisbildung in der Zementindustrie (A Model of
Pricing in the Cement Industry)

A location theory model is applied in crcer to explain cbserved
prices and quantities in the cement industry of the Federal Re-
public of Germany.

Voi. 3 170 pages price: DM 24,80

Rolf Stoecker

Experimeéntelile Untersuchung des fntdche;dung“verhe?tens xn
Bertrand-0ligopol (Experimental Investigation cf Decision-Be-
havior in Bertrand-0ligopoly Games)

The bock contains laboratory experiments on repeatedc super-
games with two, three and five bargainers. Specizl emphasis 1is
put on the end-effect behavior of experimental subjects and
the infiluence of altruism on cooperation.

Vol. 4 197 paces price: DM 28,80

Angela Xicastech
Eingeschrankt rationale Marktprozesse (Harket processes wiih
Bounded Rationa ;1ty:

The book investigates two stochastic market ceis with pound-
eG rationaiity, one model describes an evoiuticnary competitl
market and ihe other an adaptive oligopoiy market with Markovian
interaction.

Yal. 5 price: DM 23,-- aj

Crders shouid be sent to:

Ffeffﬁrscne Bucnhandiung, Aiter Markt 7., 4800 fielafaid 1
West Germany.



