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Simple Decision Procedures

An Expository Paper

Hans W. Gottinger

The modern approach to statistics can be characterized by the words inference and
decision.

In many statistical contexts the two concepts are used in a mutually exclusive sense,
but at least one important development in modern statistics has convincingly shown
that the key ideas of statistical inference fit into the broader framework of Bayesian
decision theory. Thus we will argue here that it will deepen our understanding of
inference if we explore certain facets of decision theory by examining several simple
decision procedures.

This viewpoint has been consistently emphasized and further developed in R. Schlaifer
(1959), H. Raiffa and R. Schlaifer (1961) and recently been summarized in conjunction

with statistical methodology, Gottinger (1975).

1. An Example: A Quality Control Problem.

Consider an automatic machine that has just been adjusted by an operator, and we

are uncertain as to how good an adjustment has been made.

In principle it is possible to make an exhaustive and mutually exclusive list of

events or states of the world that are relevant to the problem: one of these events
surely obtains but we are uncertain as to which one. The events of the example can

be described by the probability p that the machine will turn out a defective part.
Suppose ﬁhe adjustments of the machine can be described by four values of p: p = 0:1,
.05, .15, .25. One can think of p in terms of betting odds. If p = .25, for example,
you would be indifferent as to which side you took of a 3 to 1 bet against a defective
item, assuming that the wager involves stakes comparable to those involved in a friend-
ly poker game in which the maximum potential loss or gain is not so large as to dras-—
tically impair or improve your total assets, yet still large enough for you to take

it seriously.

Whichever p is of the four possibilities - .01, .05, .15, .25 - we assume that it

will remain constant during the production run which consists of 500 parts.

If we knew that p = .01, which represents the best possible adjustment, we would not
tinker with the operator's adjustment. If, on the other hand, we knew that p = .25,

we might be tempted to change the adjustment in the hopes of improvement. Suppose there
is a master mechanic who can, without fail, put the machine in the best possible ad-
justment. The time needed by the mechanic to make the necessary adjustment should be

valued at $§ 10. The problem is to decide whether or not to incur this $ 10 cost.



We shall in this case assume that just two acts or decisions might be taken:

(1) acceptance of the adjustment, that is, do mot check it,

(2) rejection of the adjustment, that is, have it checked by the master mechanic.
All the information can be summarized in a payoff table the entries of which show

the expected incremental profits or costs for each event-act combination.

Table 1
Payoff Table

Event Act

p Acceptance Rejection
.01 g 2% g 12
.05 10% 12
.15 30 12*
.25 50 2*

Best act for given event.

Acceptance is clearly the better act if p = .01 or .05, but rejection is better
otherwise, as is indicated by the asterisks in Table 1.

If the event is known, the best decision is obvious, but the problem is a problem
because of uncertainty as to which event obtains. Your decision depends on your
assessment of the probabilities to be attached to the four possible events. To make
that task easy, suppose that there is extensive evidence on the history of the fraction
of defective parts in 1000 previous long production runs under similar conditions

in the past, and that this history is summarized in Table 2. Other information being

judged negligible by comparison, the needed probabilities are assessed by the relative

frequencies.
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Table 2.

History of Fraction Defectives

Fraction Defective

Relative Frequency

.01 .70

.05 .10

515 .10

.25 .10

1.00

(Number) (1000)

The basic criterion for decision can now be applied: choose that act for which

expected cost is lowest (or, for which expected net revenue is highest). For each

act, we take costs from Table | and probabilities from
by the probabilities. The expected cost for acceptance

(.70) $2 + (.10) $10 + (.10) $30 + (.10) $50

Similarly, the expected cost for rejection is

(.70) $12 + (.10) $12 + (.10)$12 + (.10) $12

According to the decision criterion, the better act is

decision must be made without getting more evidence.)

2. Definitions and Concepts

Table 2, and weight the costs

is

$10.40.

$12.00.

to accept. (We assume that a

Let us first recall a brief but formal description of decision theory. Start with

the payoff table, which gives acts that might be taken, events that might obtain,

and utilities for each actevent combination. For simplicity, consider events that

can be described by the possible values © of a discrete-valued parameter 8 ; the

tilde distinguishes the random variable or function from a particular value of the

function. Denote any possible act by a. The utility of taking act a if event 6

obtains denoted by U(a,8).

Strictly speaking, utility is not directly determined by a parameter but rather by

things that happen - future observationms.

Thus, in the example above, utility is determined by the number r of defective items

in a production run of 500 items, not by p.
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Hence we really should write U(a,r) instead of U(a,p). But p defines a binomial
distribution of ¥ , fb(rISOO,p), and expected utility is % fb(r|500,p)U(a,r), which

we denote by U(a,p).

For simplicity, however, we call U(a,p) - and the general expression U(a, 8) -
'utility' rather than 'expected utility'.

Besides the payoff table we require a (prior) probability distribution of 8 , P(8).
Assume first that an immediate terminal decision is to be made. For any act a compute
its expected utility g P(8)U(a,08).

Finally, choose that act for which expected utility is maximized. The maximum expected

utility is written
(1) max EP(G)U(a,S).

(For simplicity, assume in this section that a unique maximum exists in all cases).
Suppose now that sample evidence, represented by the symbol x, is obtained before

a terminal decision is made. By application of Bayes' theorem, the prior distribution
P(8) of ¥ becomes the posterior distribution P(Glx). Then any act a is evaluated by
its expected utility éP(e‘x)U(a,G,x). Choose the act for which this is maximized,

and call the maximum expected utility.
(2) max_ EP(Glx)U(a,G,X).

We write U(a,B8,x) instead of U(a,®) to emphasize that it may cost something, directly
or indirectly, to obtain x. This cost of sampling is a sunk cost when the final de-
cision is made; that is, it is the same for all a and 6, and so can be either inclu-
ded or ignored without affecting the decision. For the next problem, however, the
cost 1s not yet sunk.

Next in order of complexity, consider a specific sampling plan that promises an
observation of the random variable 2. What is the expected utility of carrying out
this sample and then making a terminal decision in the light of P(6|x)? Work back-
wards from the solution to the previous problem. The prior distribution P(8) in
conjunction with the proposed sampling plan implies a predictive distribution P(x)
for ; in the usual way; that is P(x) = éP(G)P(xIG), where P(xle) is the conditional
distribution of X given © for the sampling plan. For any x the maximum utility is give
by (2), that is maxagP(Glx)U(a,G,x).

Now take the expectation of (2) with respect to P(x):

(3) iP(x)maxagP(Glx)U(a,B,x).

This is the expected utility, as seen in advance, of executing the sampling plan

in question and then taking the best act after the sample evidence x is available.



Now recognize explicity that U(a,8,x) has two components: U(a,8), as originally
defined (ignoring sampling costs), and an expected cost of sampling (not necessarily
measured in monetary units), denoted C(x), where C(0) = 0 and x = 0 represents the
dummy outcome of a sample of size 0, that is, no sample at all. If, as is often

reasonable, U(a,8,x) = U(a,8) - C(x), we can decompose (3) as
(3a) 2P (x) maxagP(9|x)U(a,9) - %P(X)EP(9|X)C(X).

The first term of (3a) is the expected utility, ignoring sampling costs, of carrying
out the sample plan. The second term which simplifies to % P(x)C(x) is the expected
cost of sampling. The expected value of sample information, EVSI, is defined as (@D)

subtracted from the first term of (3a):
(4) %P(x) maxaEP(6|X)U(a,9) - maxagP(e)U(a,G).

The summation of the second term can be written gP(G)U(a,G) = iP(x)gP(8|x)U(a,9);

by substitution in (4) the EVSI can be expressed as
(4a) %P(x) maxaéP(Glx)U(a,G) - maxaéP(x)éP(9|x)U(a,9).

From (4a) it is apparent that the EVSI can never be negative.That is, by tailoring
the act a to the sample outcome x, we cannot lose expected utility: a posteriori

we would always be free to take the act that was best a priori, in which case (4a)
would be 0. If in the light of an observed x we choose a different act from the one
preferred a priori, we do so only because the expected utility is larger. Moreover,
we can gain in expected utility only if some sample outcome x will change the choice
of acts. If no sample outcome could change the best a priori decision, the EVSI is O.
In words, the EVSI is the weighted average posterior expected utility, the weights
being given by P(x), minus the prior expected utility. The fact that the EVSI can
never be negative can be expressed by saying that the weighted average posterior
expected utility cannot be less than the prior expected utility. But this does not
rule out the possibility that the actual posterior expected utility can be less than
the prior. Suppose, for example, that no sample outcome could change the best act,
that is, the EVSI is zero. Then unless sampling is completely uniformative--P(8]x) =
P(8) for all x--there will typically be some outcomes for thich posterior expected
utility éP(Glx)U(a,O) is lower than prior expected utility maxaéP(G)U(a,G), and
others for which it is higher.

Finally, examine the problem of choice of a sampling plan or, as it is often called,

the problem of sample design. For all proposed sampling plans—- all methods of drawing

the sample, all sample sizes——compute (3a) and choose that plan for which the result
is largest, that is, the expected value of sample information minus the expected

cost of sampling is the greatest.
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Among the sample plans contemplated, there is a dummy plan in which sample size is
zero, that is, no sample at all is taken. For this dummy plan, (3) reduces to (1.
(Alternatively, we could avoid reference to a dummy plan by saying, "choose the

sampling plan for which the expected‘value of sample information exceeds expected

cost of sampling by the largest amount, assuming that this difference is nonnegative.

Otherwise the optimal act is to take no sample at all, and make an immediate terminal
decision." That is, there is no point in taking a sample if even the best sampling
plan has an expected cost in excess of its expected value).

The problem solved by (2), which is called terminal analysis, is simpler than the

problem of sample design solved by (3) or (3a). For analysis, we start with the given
¥ = x. The fact that ¥ might have exhibited other values is of no interest, either

in calculating P(8|x) or in carrying out (2). Given the payoff table and prior distri-
bution we must make the inferential step that carries from P(8) to P(Glx), and

carry out the expected value computation of (2) for each act. For evaluating even one

proposed design by (3), we have to do this for every possible x, and also calculate

P(x) and take an expectatlon over all possible values that might be exhibited by x

There are special devices for specific problems that can make both analysis and
design less cumbersome than this abstract descriptioh makes them sound. Moreover,
the analytical framework may be of value even when it cannot be carried out comple-
tely, that is, when informal analysis is used to extend a partial formal analysis
to a final decision.

In the remainder of the paper we examine special cases.

3. Two~Action Problems with Linear Utilities

In the machine-setup problem of Sec. .1, the conditional utilities (megative of

costs) for each act were linear functions of p. If a, denotes rejection, we write
(1) U(al,p) = - 12 + 0.p = — 12.

If a, denotes acceptance, we write

(2) U(az,p) =0 - 200 p = - 200 p.

Each utility function is a linear function of p, as shown in Fig. 1. The horizontal
coordinate of the point of intersection of these two curves, p = p£ = .06, has a

significance that we shall see in a moment.
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Fig. 1

Utility Functions for Machine-Setup Problem

LJ B, = .06
0
205 .10 .15 2’
|
B b L U&al,p)
20 | ’
tJ(aa)P)
-30 |-
4o L

To choose a terminal action in the light of a prior distribution P(p), apply Sec. I
(1), to compute expected utility for a and a, in the light of this distribution.

Recalling the properties of expectation,

(3) EUCa,,p) = - 12+0 . E@) = - 12

and

(%) E U(a,,p) = 0 - 200 E(P).

For the prior distribution of Table 2, E(g) = ,052, so E U(az,%) = - 10.40. Since

- 10.40 exceeds -12, a, is indicated.
In comparing (3) with (1) and (4) with (2), we see that in each case p has been
replaced by E(%). The expected utilities of (3) and (4) are evaluated by treating

E(p) as if it were p. This is possible because the utility functions U(al,p) and

U(az,p) are linear in p.

We can view the analysis even more simply. From (1) and (2), the breakeven or indiffe-
rence point Py between values of p indicating 2, and those indicating a, occurs

when =12 = -200 Pps OF Py = .06. We prefer a, if p>.06, a, if p<.06. Since we can
treat E(%) = ,052 as if it were p, we see that a, is preferred since .052<.06.

The analysis would proceed in the same way for a posterior distribution P(p[r,n).

In general, suppose that there are two acts 1 and 2 with conditional utilities given

by U(al,e) = c, + b]e, and U(az,e) = ¢, + b,B8, where the c's and b's are real numbers,

1 2 2

n
b]>b2, and 8 is a symbol for a value taken by an uncertain parameter 6. We want to

choose a, if E U(a],8)> E U(az,g); otherwise, unless the two expectations are equal
and either act is optimal, we want to choose as. Since both utility functions are
linear functions of 8, making use of the expectation to obtain E U(al,g) =c, + b1

E(¥) and E U(az,g) =c, + b, E(S).
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0y i ;
Therefore choose a if < + b1 E(3)>cq + b2 E(8), that is, if
n, o
(5) B, 2~ %1
b1 = b2 b
We use O, to denote the breakeven point; we prefer a] to ans are indifferent to,

b
or prefer, a, to a,, according as E(g)>9b, E(g) = Gb, or E(8)<9b. (it must be

2 L7

ny
assumed that Gb lies within the interval of values of 6 that 6 can exhibit; other-

wise one act is dominated by the other and can be discardedfrom consideration without

regard for the probability distribution. If b1<b2, the direction of the inequality
(5) is reversed).

The direct calculation of expected utilities for each act is more laborious. It does
not exploit the fact that the mean is the only fact about a distribution--prior or
posterior--needed for a terminal decision. This follows from the assumed linearity
of the conditional utility functions. Since for linear utilities the mean is just

as good as the entire distribution for the choice of a terminal act, we speak of the

mean as a certainty equivalent. Whenever for a specific decision we can replace a

probability distribution by a number computed from that distribution, that number
serves as a certainty equivalent. There is a parallel between the concept of cer-
tainty equivalent and that of sufficient statistic. A -
sufficient statistic tells all we need to know about a sample in order to reach the
same posterior distribution that would have been obtained from analysis of all the
sample evidence. A certainty equivalent tells all we need to know about a distribu-
tion in order to reach the same decision that would have been indicated by a direct
analysis of the entire distribution.

Two key quantities must be computed for the choice of a terminal action in a two-
action problem with linear utilities: E(g) and Gb. The first comes from the proba-
bility distribution and has nothing to do with utility; the second comes from the
utilities and has nothing to do with probability.

It is meaningless for the purpose of terminal decision to inquire about the standard
error of a certainty equivalent. Suppose, for illustration, that the utilities are
linear in Y, the mean of a normal process, and that the breakeven utility is My -
Suppose also that the prior distribution ofﬁ is diffuse, so that the mean of the
approximate posterior distribution is x. Then the decision is made simply by compa-

. = . v — : ;
ring x with ub. The standard error of U ——Gl/wn or s|¢ n -- is irrelevant.
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We now turn to the more complicated problem of evaluating the expected value of
sample information, the EVSI. Repeating eqs. (4) and (4a) of Sec. 2, for conve-

nience, for the discrete case the EVSI is

(6) %P(x) max, EP(GIX) U(a,B) - max EP(G) U(a,0),
or
(7) ZP(x) max, @P(elx) U(a,8) - max_ IP(x) EP(GIX) U(a,8).

In the application of this section, two special features facilitate evaluation of

(6) of (7). First, there are just two acts, a, and ay- Supposing for concreteness

that a, is optimal a priori, then for all x such that ay is still optimal a posteriori,

the corresponding terms of (7) are zero.

We may therefore rewrite (7) as

(8) IP(x) FP(8]x) U(a,,8) - ZP(x) LB (8]x) U(a;,8)

{x:a,opt} {x:a, opt}

2 2
= 3P(x) IP(8|x) [U(a,,0) - UCa,,0)] -

{x:azopt}

The second special feature is the linearity of the utility functions U(al,e) and

U(az,e), which implies

9) U(az,e) - U(al,e) = (c2 = c]) + (b2 - bl)e
C2 - C] :

= (b] - b2) (Gb - 8).
Substituting (9) in (8) we obtain the EVSI

(10) 3R(x) FR(B]x) (b, - by) (8, = 8) = (b = b))  IP()(8, -~ E(8]|x),
{x:azopt} fx:a,0pt}

where E(%lx) = é 8P (8] x) .

We can express (10) in a convenient computational form. Each possible x defines a
posterior distribution of B, P(Slx), by Bayes' theorem. Denote the mean of this
distribution by 8. Before ¥ is observed 8" is a random variable, with distribution
P(8") induced by P(x). The prior distribution of 8 and conditional distribution of
X given 8 serve to determine P(x), also P(8|x) for each x, and therefore P(08").

From the work on posterior terminal analysis, we know that for b1> b2, a, is optimal

if and only if 6" <9b.



_]0__

Hence we can rewrite (10) as

(1) (b) = by) gugP(®") (O - ") = (b, - b, [6, P(§'<8)) -ez.<eg§(e"ﬂ.

We have derived (11) on the assumption that a, was best a priori. Had we assumed
a, best, the same reasoning would have led to

(11a) w, -b) [ & e"r@E" -6 pE>0)].

1 2 "
6" > Sb

To evaluate (11) numerically, we need to deduce the distribution of %", and evaluate
Py« Gb) and v 8"P(8"). To illustrate how this is done we consider a two-action
8" <8
b
problem on the mean y of a normal process of known variance ¢ 2, with a normal prior
distribution for ﬁ, fN(u!g',o//ET). Using x" to denote the posterior mean, the
counterpart of the left-hand side of (11) 1is

u
e b

(12) (by = by [

(Ub _ ;{u) D(}-E")d}—(".

We wish to deduce D(x"). A sample of size n is considered. The predictive density for
Ay, - :
x is therefore f (x[x , O/— * %). For any value x that % can exhibit, we would be

led by the usual formula to a normal posterior density £ (Uix" o/vn"). In advance of

sampling the only uncertainty about £ (U‘x" o// n") is the uncertainty about x"
The uncertalntx about ; , in turn,mstems from the prior uncertainty about x, that is,
; = (n' %'+ n ) /n". We see that x" is a linear function of the normally-distributed
random variable g, which has predictive density fN(x‘x ,0 %w + B). Therefore the prior
distribution of i” is normal with mean

n'x' +n x' =

Y
(13) Pl = BE FWR o

and variance

2 %, 2 1 1
(14) o (x") = =) ( i + E)
n o2
= T -;l
- R v
Summarizing, the prior distribution of x" is given by the density fN(x”]x',G "),
WY
where ¢(x") = /-E" -9 ., Substituting in (12), we have

(15) (b, = by) ‘g fyg, = E")fN(§"|§',g (x™))dx"



- 11 -

Ny Y

Using the substitution u = (x" - x") /o (x™), dx" = o(x")du, and writing
- U - ;(' on_ ot v
py - xS (X")[ e 1 = o(x") (uy = u),
O(X") G(X")

we can express (15) as
"

u.
(16) (b, - b, o(i") Sb (, = WE(u]0,1)du,

1

where u = (ub -x") / o(x”) The integral of (16) is easily evaluated as Uy FN

(ub!O,l) + fN(ublo,l). In conclusion, the EVSI for the normal case, assuming a, best

a priori, 1is
v
a7 (b, = by) oGx"[uy F (u ]0,1) + £ (ub|o,1)] .

Had a, been best a priori, the same argument would have led to
N

(17a) |b, = b,| o™ [£Cu [0,1) - uy GN(ublo,l)] .
Both cases, and the corresponding result when it is assumed that b2> bl’ can be

subsumed under
"

(17b) |b, - b, loGe™ [ £ (e, 10,1) - lup |Gy C ubllo,l)] ;

The expression in brackets in (17b) can be evaluated numerically by Tables II and III

of Schlaifer (1959). Alternatively, Table IV, Schlaifer (1959), gives it as a single

function called G(D), where D = lub| .
In this notation the EVSI 1is
n
(17¢) {b] - b2| o(x") G(Iub|).

By examining (17c) we observe:

(1) The EVSI is directly proportional to the absolute difference of the slopes of the
utility functions, lb 2| Ay

(2) One effect of 1ncreased uncertainty, as measured by the standard deviation o(x"),
is a proportional increase in the %VSI. A second effect of increased uncertainty is

a decrease of |ubl =1ub - §'l/0 (x") in inverse proportion. G(lubl) is a decreasing
function of |ub!, so this effect also increases the EVSI. In summary, increased
dispersion of the distribution of x" entails a larger EVSI, other things the same.

(3) lu } is directly proportional to the distance between the breakeven point Uy

and the prior mean x'. Since G(\ubl) is a decreasing function of |ub|, the EVSI
decreases as this distance increases, other things the same.

It is int%resting tg examine what happens to the EVSI as N300 .

Since o°(x") = %ﬁ'%T’, the limiting ﬁtandard deviation is ET since;%~———»1 as

n-ogo. The limiting distribution of x" is thus normal with mean x'and standard devia-
tionb/JE". It is, in fact, the prior distribution of ﬁ. Equating n— g with perfect
information, we can call this limiting EVSI the expected value of perfect information,

or EVPI.
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In general, the EVPI gives the maximum EVSI, and so sets an upper bound on the amount
we would be willing to pay for sample information. If the EVPI is smaller than the
cost of even a small sample, this upper bound gives the useful information that
sampling is unlikely to be worthwhile. If the EVPI is large compared to the cost
of a small sample, detailed investigation of the EVSI may be warranted.
In the %wo—action problem on a normal mean, the EVPI is obtained from (17¢) by repla-
cing (x") by the prior standard deviation 0(%) =g/Y n' :_
M T

!

(18) ‘b - b I(O//ﬂﬁw) G(lu 1), where u
b ° > o/

An interpretation of EVPI in terms of loss functions can be based on (15); for n—7 o0,
we can replace x" by U to obtain:

. o
(19) (b, = by) [0 Gy AE|E 0/ 2" )an.

-0

Assuming that b] = b2> 0 and’ that a, is best a priori, the loss function for a and

< My is

(20) L(a]’U) = U(al,U) - U(az,U)

(c1 - c2) + (bl - bz)u
= (b, = by (=)

since My = (c2 & C])/(bl - b2). For u>ub, a, is the desired act, so L(al,u) =0,
Combining (19) and (20), we see that the EVPI is

H - M _ -
(21) g b L(a W Egu|x",0//a")du = (b - b2>5b (= ) Ep(u|x",0 /¥ n")dp,
—-00 =00

that is, the expected loss, in the light of the prior distribution, of the act that
seems best a priori. Roughly, for each u(ub, we multiply the loss of taking a by
the probability of incurring such a loss, and add up these products for all u<ub.

A geometrical interpretation is given by Fig. 2.
Figure 2

Loss or
Density

L(a), k) = (b;-b,)(K-)

s/

fy(“';':U/VET)

i, E(p)=x"
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Since a posterior distribution serves as a prior distribution for a new sample,

we can also interpret the EVPI by replacing the prior density fN(dé‘,O//HT) by the
posterior density fN(p{g",o//;“). Computed from a posterior distribution, the EVPL
serves in exactly the same way as before to set an upper bound on the value of

further sample information. Note that while o//n" is irrelevant for determining the best
decision in the light of the posterior distribution, it is needed to compute the EVPI

or EVST. An even cruder indication of the value of further information is given by

the risk of error in taking the act that looks best in the light of the posterior

density. If x"> Uy » the risk of error is the tail area of fN(plg",O/V n") to the

left of Uyt

Uy _ _
(22) £ (u|x",0// 0")du = F (u |x",0// 0").

N N'"Db

=00
This is illustrated in Fig. 3. In terms of EVPI, the risk of error would be the EVPI
if, contrary to assumption, L(a],u ) = 1 foru< My s L(al,u ) = 0 for u z_ub. In other
words, if y is on the wrong side of the breakeven value Uy s the actual loss is the
same regardless of the distance>|u—u bl . We now give two examples of computation
of the risk of error.  Densipy BLRURE O B

Risk of Error in Taking a

fn(“I;hJa//;w)

.Risk of Error

1

(1) Under the original prior distibution of the machine set-up example, E(g) = ,052,

Py = .06, so acceptance was the best terminal decision. The probability of error is
P(P > p,) = P(.15) + P(.25) = .10 + .10 = .20.

(2) Suppose that the approximate posterior distribution of ﬁ is normal with mean x
and standard error s/v n, and that X Uy - Hence a, is indicated if an immediate ter-—
minal act is to be taken. What is the probability that a, is really not best? We seek
FN(ublg, s/v n), that is, a left-tail area of the posterior distribution of ﬁ-

We have -

_ b T X
FN(Ule, s/vn) = F( =y |0,1).
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If My = 0, x =2, s =10, n = 100,, we have
B - X -
FN( _jl__f_ IO’]) = FN( __0-2 ‘ 0,1)
s/vn 10//7 100

FN(—ZIO,I) = .,0228,

Using the Table III, Schlaifer (1959). Geometrically, we have found the left-tail

area shown in Fig. 4. -
Figure 4

.0228
I .. S R — e '
-3 -2 =1 0 1 2 3 b 5 6
4. Bayesian Point Estimation
Suppose that each value x of a random variable ; corresponds with an action

that might be taken. For example, ¥ might be the number of perishable items de-
manded. Each possible x is not only a possible realization of %, but it is also
a possible stock level of a retailer. How do we determine the best stock level
in the light of a probability distribution of X? Denote the probability distri-
bution of X by P(x) and a proposed stock level by X.

The retailer would be happy-—incur no opportunity loss—-if it happens that the
value x exhibited by ¥ is exactly the same as . In this event, the number of
units demanded would exactly equal the number stocked. If the number demanded
exceeds the number stocked, it is assumed that the opportunity loss is the lost
profit per unit times the excess demand. If the number demanded falls short of the
stock level, it is assumed that the opportunity loss is the cost per unit (less
salvage value) times the deficiency of demand. This simple inventory problem has
been called the 'newsboy problem'" because of the following kind of illustration.
A newsboy buys each paper for 4 cents, sells for 5 cents. Each unsold copy has

salvage value of 1 cent. Hence the loss per unit shortage of stock is 5-4 = 1 cent.
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The loss per unit overage of stock is 4-1 = 3 cents. Given a distribution of demand
P(x), we shalllshow that the best stock level is any .25-fractile of the distri-
bution of %, the .25 being computed as 1/(3+1) = .25. That is, the best stock
level % ("x-hat star") is any x g5 on the distribution of X. (1f % were conti-
nuous, we would say the .25-fractile; discontinuity raises slight complications).
We now give an abstract discussion of the newsboy problem in terms of "point
estimation". The discussion applies not only to the newsboy problem but to many
others that are formally identical. We couch the exposition in terms of an obser-
vable random variable %, but the development applies equally well to an unobser-
vable parameter ¥ and point estimation thereof. The distribution of % is a pre-
dictive distribution: it is not a true, unknown distribution, but a distribution
assessed by the person making the point estimate.

Let x denote the best act and Ran act we can choose--a point estimate. Unless

we choose % = x, we incur a positive opportunity loss. If & >x,, we describe this
as an opportunity loss of overestimation; if %<x, we describe it as a loss of
underestimation. In many problems, of which the newsboy problem is one, the con-

ditional loss function for any proposed X can be described by

(1) L(%,x) ko(ﬁ - x) if ¥ > x,

L(%,x) ku(x - X) if ¥ < x, k , k >0,

== u (6]

The losses are proportional to the overestimate or underestimate, and the
constants of proportionality are called ko and ku’ the subscripts "o" and "u"
suggesting "overestimate' and "underestimate".

Geometrically, there is a "V-shaped" loss function for each possible point estimate

X, and any one such functipn can be obtained from any other by horizontal displace-
ment or translation. Fig. 5 shows schematically three such functions, correspon-

and X,.

ding with point estimates ¥,, ¥
g p A’ B’ C

Figure 5

Loss
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The absolute slope of the left-hand branch is kO, the loss per unit overestimate;

the absolute slope of the right-hand branch is ku, the loss per unit underestimate.

The loss functions of Fig. 5 are so drawn that ku = 1/3 ko, as in the numerical
example above with ku = | cent and ko = 3 cents. 5

The choice of an estimate % depends on the assessment of the distribution of x,

the uncertain best act. In Fig. 6 such a probability distribution--a normal distri-
bution, for illustration--is superimposed on the loss functions of Fig. 5.

Consider first the continuous case. Denoting the density of ¥ by D(x), we define
expected loss for a possible point estimate x:

~

X a0
(2)  EL(%,%) = JLO k_(%-x) D(x)dx +_fA k (x-%) D(x)dx.
Figure o
Loss or
Density
A » ',‘
XA QB XC X

The minimum expected loss can be found by elementary calculus:

(3) d o
e E L(X,x)

k [2D(®) + P(3< %) - 2D(R)]

+

k [-%D@) + 2@ - (1-PG< 2]

kPG ) -k, (1-P(x< 2]

AT
(ku + ko) P(x< X) ku'

We find the minimizing X, call it X*, by setting (3) equal to zero; £% is thus

computed from

(4) P(¥< %%) = —o .
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(That %% really gives a relative minimum can be seen by noting that the second de-
rivative of (2), (k -k ) D(X), is positive since k 0 ko, and D(X) are positive)
The best point estimate is the [ku/(k + k i - fractlle of the distribution of X

For example, in Fig. 6 X_ is the best p01nt estimate because 3ku = (remember

B
that ku and ko define absolute slopes), whence ku/(kO - ku) = ku/(3ku + ku) = 1/4,
and iB is the .25 fractile of the distribution of Fig. 6.

The discrete case is more tedious, but it frequently occurs and the argument gives

added insight. Begin with the expected loss
(5) EL (R,x) = <<R ko(x x) P(x) + xR ku(x %) P(x).

We want to find the ¥, call it &%, that minimizes (5). Consider first a tentative
il that is certainly not too large. Suppose we now contemplate iz = il + 1.

The change in expected loss in going from i] to 22 will reflect two effectsi

(1) For each x i_i ythe new conditional loss of overestimation is ko

1
units greater than the old, so the first summation will be increased

z _ ST
by PP ko P(x) = ko P(x i_xl).

-1

(2) For each x> il, the new conditional loss of underestimation is ku

units smaller than the old, so the second summation will be decreased
L

x>
1

k P(x>x )< k P(x <X ), and, in general, it pays to stop at xl—x] +

-1 if for the first time k P(x> i)< ko P(x f_xi). Since P(x >%. )

by k P(x) = k P(§>§ ). It therefore pays to stop at il if

l = P(x E_xi), we may substltute in this inequality and solve for
N
< X.):
P(x < Xl)
\ ku
(6) P L P eyt
u o

Thus %i is the desired %¥ if it corresponds with a jump in the cdf that for the
first time takes the height of the cdf above the height ku/(ku + ko).
~ . : y . . v
Thus XX is a ku/(ku + ko) - fractile of the distribution of x.
The previous paragraph does not mention the possibilities that before X* is
reached there can be one or more preceding values for which expected loss is the
. . A o N & N o
X =
same as it 1s at XX, At such a value, say R. 4> we have kuP(X>Xi—l) ko P(xﬁxi_l),
which implies P(x < x ) =k /(k + ko). The sample cdf has height exactly
ku/(ku * ko> at Xi-]’ -1
has height ku/(ku + ko) at ¥,

so Xi 1s also a ku/(ku + ko) - fractile: the sample cdf

e and jumps higher when 2= = ii is reached.
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In this kind of problem the ku/(ko + ku) - fractile is a certainty-equivalent:

the fractile is all we need to know about the distribution. The point estimate

is the best point estimate; "best" not in a universal sense but best for the problem
at hand. Moreover, had the x's been transformed into some other scale, such as log x
then the logarithm of the point estimate would have been the best estimate in the
transformed scale. In general, if %X is the optimal Bayesian estimate of x, then
f(%%) is the optimal estimate of f(x); hence Bayesian estimates are said to be
invariant. This is true because a Bayesian point estimate is essentially a descrip-
tion of an act, and the best act is in no way altered by changing its description
from one language to another.

Thus if 100 units is the best stock level, then the common logarithm of 100, or

2, is the best stock level in units of the common logarithm.

Returning to the continuous case, we consider, as an example of an EVPI calculation,
a normal predictive density fN(Xlg",OVEw-+ 1). To avoid cumbersome notation we
temporarily denote this density as fN(x|uP,Op), the subscript "p" suggesting

"predictive"; when there is no danger of misunderstanding we shorten this to

fN(xj. The EVPI is the expected loss of the best point estimate XX, Since fN(Xiup,

o] is the density_of %, we substitute in (2):
P) ﬁx 0
e U = 2% _ax :
(7) E L(x%,x) \Sooko(x x)fN(xlup,op)dx + \£¥ ku(x X )fN(xlup,op)dx
g Qo

- an SHY) e X (1= o

k [%7F (3%) _éo x £ (0dx] + kut_éx x £, () dx-RF(1-Fy(R )] .
We now show how to evaluate the integrals on the right hand side. First,

L X

g% 8% x—p SRR . )

- py 1 2> 0 dx . 6x
\S X fN(x)dx GP \S ( ) e P + upFN (a lO,l).

Op vam Op

=00 =00
With the substitution u = (x = pp)/Gp,and the further substitution t = %uz, and
. . & s
using the notation 4* = (X -~ u_)/0_, we conclude
B - P p
- A% A
(8) f; x £ (x)dx = —Opr(u o, 1) + My FN(ux|O,1).
=00

The second integral of (7) 1is up - (8), so we have

(o29]
(9) S = £ (x)dx = o, £y (8%[0,1) + u (1 - F (8%[0,1)).

P
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Substituting (8) and (9) into (7) and rearranging, we write

(10) E L(&,%) = (k, + k_ o Ey (@0, 1) + &% Sl Fy (@0, - Kk, (1-F  (G%[0,1)].
but GX is determined so that the expression in brackets is zero, so we conclude
-
(\I -~
(11) E L(%,%x) = (k_+ ko £ (3%]0,1), 6% = -—-——E
u o’ pN Ob

The EVPI is proportional to the sum of the unit losses of overestimation and
underestimation. The larger the standard deviation of the predictive distribution,

the larger the EVPI: (1) Op appears as a factor in the formula; (2) for a given
g - Up’ the standardized normal density increases aS'Op increases unless &% = up
s

that is, unless the median is the best point estimateR
Finally, for fixed k + k , the EVPI is smaller as E-—%~E» departs from %3 since
this increases |&% - up]and hence the normal density Ydecrlases.

A word about the meaning of EVPI with respect to a predictive distribution:

the "perfect information'" in question refers to X, the realization of ;. If we

knew this, we would set %* = x and incur no opportunity loss. An infinite sample

from the normal process would remove uncertainty about the parameters u and o of
the process, but not about X: the predictive density £ (xlp T ) = f (xix",OVfﬁ + 1)
would become £ (x|u,0 ), but we would be uncertain about X.

So far the loss of underestimation of overestimation has been taken as proportional

to the amount of underestimate or overestimate. Consider next the loss function
& ~ 2
(12) L(%,x) = k(X - x)" ,

where k is a positive constant. In words, the loss of % at x is proportional to
the square of the discrepancy between X and x. Roughly, small discrepancies are
not serious, but big ones extremely serious. It can be shown that X¥--the X for

which expected loss is least-—is the mean or expected value of the probability

distribution. We show the development for the continuous case, letting D(x) be an
. y . " . . . _ a N
ggbitrary predictive density for which the mean exists. Since E L(X,x) =

\ﬁ k(i—x)2 D(x)dx, we have
@0

d N ki
(13) 5z ELGEX = % Jog  (F®) D).

Setting (13) equal to zero, we see that X%, the minimizing value of X, is

[0, 0)

(14) 2= = 5 D(x)dx = E(X).
(6:8)
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The mean serves as a certainty equivalent in two different decision problems:

The two-action problem with linear utilities (Sec. 3) and the point estima-

tion problem with loss proportional to the square of the discrepancy of the point
estimate.

The EVPI for L(X,x) = k(i—x)2 is easily calculated. For any predictive distri-

bution for which the mean E(%) exists we have, remembering that g* = E(%),
n n "
(15) EL 5y = kgt - %)% =% - 56y 17 = wi),

whefe 02(§) is the variance of the predictive distribution of(;. The EVPI 1is
simply k times the variance.

So far we have considered point estimation for an immediate decision problem.
Now examine another kind of point estimation problem in which the decision is
at least one step removed from the point estimation. To illustrate, suppose
that we have a random sample of n from a normal process with known variance

02. The unknown mean U is of interest because we need to know 1, and others
parameters as well, in a subsequent decision problem. Since pis unknown, we can
assess a joint distribution for ﬁ and the other parameters.

But the use of the entire joint distribution in the subsequent decision problem
may unduly complicate that analysis. In order to simplify the analysis we might
replace the marginal distribution of ﬁ by a single number i and act as if u
were 1 Ideally yJ would be a strict certainty equivalent. Under some conditions
it may be possible to find such a certainty equivalent. For example, if the
utility of each possible act in the final problem is linear in p, and if u is
independent of all the other random variables in the final problem, then EQJ),
the expectation of the marginal distribution of p, is a strlct certainty equi-
valent. A special case of this is given by the two- actlon problem of Sec.10-3
Often, however, the substitution of a point estimate G for a distribution of B
does not lead to the same result as a full analysis: a strict certainty equiva-
lent cannot be found. Even so, the practical difficulty of a complete analysis
may be so great that we take the short-cut anyway. We still seek the '"best"
point estimate 8% of 8. The criterion of "best" is as follows,

Assess subjectively an estimation loss function L(6, 6) that depends for any

~

proposed 8 on the discrepancy between 8 and 6. This loss function together with
the dlstrlbutlon of ¥ permlts calculation of expected loss for the proposed 6
Then pick that 6, say 0”, for which expected loss is least.

Formally the problem is identical with those we have been discussing. For example,

if we have an estimation loss function of the form



>

1

(16) L(é,e) ko(é = 8) if 6 >86

ku(e - 8) if 8 <86,

IA

6 is the k /(k + k ) fractlle of the dlstrlbutlon of G For an estimation

loss functlon of the form L(G 8) = k(e - 8) Ax is the mean of the distribution
of 6.

The difference between the present problem and the earlier ome lies in the
difficulty of assessing loss functioms.If the point estimation and the ultimate
decision are identical, as in the newsboy problem, the loss function follows
immediately from the decision problem. But if the ultimate decision is one or

more steps removed from the point estimationm, it may be very hard to compute

the estimation loss function implied by the ultimate decision problem, even

when the loss structure of the ultimate problem is clearly defined.

And often the ultimate decision problem may be ill-defined, as in Schlaifer's
illustration of the soap manufacturer (Sec. 37.7 of Schlaifer (1959)), who
needed to form some judgement as to the total number of automatic dishwashers
as one component of a decision about development and marketing of a special
detergent for dishwashers. We can always assess the estimation loss function
informally without attemptingto make a full formal analysis of the ultimate
decision problem, as is also illustrated by Schlaifer's soap manufacturer.
The manafacturer was willing to make the judgement that a loss associated with
an error in estimating the number of dishwashers was proportional to the size
of theerror, regardless of the direction of the error. For a normal posterior
distribution for the number of dishwashers, this implies that the 50 fractile,
which is also the mean, is the best point estimate. ‘

The manufacturer may be willing to go one step further and assess the constant
of proportionality in his loss function. He may, as Schlaifer has him do,
assess the loss of a unit error in either direction as $0.02. That is, he would
be willing to spend $0.02 te reduce the error in an estimate by one unit, re-
gardless of whether the estimate was high or low. This, then, defines the EVPI
of an actual point estimate in the normal case by substitution in (11), where
X now represents the total number of dishwashers.

The soap manuafcturer's problem is symbolic of many problems in statistics.
People want point estimates as an aid to some ultimate decision problem, per-

haps ill-defined.
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They are willing to judge that the losses of overestimation or underestimation
are symmetrical (and not so badly behaved as to make the expected loss integrals
or summations diverge). The prior distributions are diffuse, the posterior
distributions are approximately normal. Then the x's or r/n's are the desired
pointlestimates: they are numbers people can carry around in their heads and
treat as if they were the''true'" numbers. The uncertainties attached to these
numbers, measured say by their standard errors, are irrelevant except for two
circumstances:

(1) The ill-defined decision problem becomes well-defined and the entire
posterior distribution is needed.

(2) Whether or not the decision problem becomes well-defined, the question
is raised as to whether it is worthwhile to spend more money to reduce
the uncertainties of the estimates.

In complicated problems point estimates will often be used as a practical matter
even though such a satisfactory rationale for their choice is lacking. In such
problems procedures of sampling-theory point estimation may be useful in sugges-—
ting rule-of-thumb approximations.

We conclude this section with a point of terminology that can be made by an
example. Suppose that we are sampling from a normal process with known variance.
Under many circumstances, ¥ will be used as an estimate of the unknown u.
Frequently, however, we may wish to speak of the random variable g instead of
its particular realization %x. For example, conditional on Y and O, g has a
sampling distribution.

We then refer to § as a point estimator, while x is a point estimate.

The usefulness of this distiction can be seen when we study sampling-theory

point estimation.

5. Classification, Diagnosis, or Discrimination: Simple Dichotomy

Another type of decision problem is a special case of the two-action problem
of Sec. 3. We illustrate this by a cancer diagnosis example.

Suppose that for some reason it is possible to make only one test; perhaps the
test always gives the same answer, right or wrong, when repeated on the same
individual. The present problem is this: given the result of the test, + or -,
should we diagnose that the person has cancer? By 'diagnose that the person has
cancer", a., we mean "pursue a further course of diagnosis or treatment". By

"diagnose not cancer," ag, we mean simply to take no further action.
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In this problem there are just two, incompatible events: 'has cancer," (C) and

"does not have cancer" (C), hence the expression simple dichotomy. We define

the losses as follows:

Act
Event ac aa
C 0 L(aE,C)
C L(ac,a) 0

L(ac,a) is the loss of a false positive diagnosis; L(aE,C) is the loss of a
false negative. Suppose now that the test says +. By application of Bayes' theo-

rem, the expected loss of acis

P(C)P(+]C) P(C)P(+]C) =, _ P(O)P(+]|C) =
(]) -———Pa—)————' . 0+ —————E;—Z—_i_—)———— L(aC, C) = *—P—z:_—l—— L(ac,C).

The expected loss of axzis

C
2) P(gz£§+]c) . Llag ,0) + P(gzi§+ €) 4= P(gi$§+ C) L(az,C).
We diagnose cancer, take ans if (1) < (2), that is, if
e a0) P(C)P(+[C) — P(C|+)

In the numerical example let P(C) = .995, P(C) = .005 and P(+|C) = .05, P(+|C) = .95
Therefore the right hand side of (3) is

(.995) (.05) _
(.005) (.95)

199
1

1y
(3D (g7) = 10.47.

This means that L(a=,C) must be at least 10.47 times L(ac,a) to warrant the

diagnosis a.; that is, the consequences of ignoring cancer when it is present

C;
must be at least 10.47 times as serious as the consequences of further diagnostic
testing or treatment if cancer is not present.

The inequality (3) can also be written, diagnose ag if
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5 5
() ;8 5 TE“E‘C';“ © T(am,0)
The factor P(E)/P(C) is the prior odds ratio against cancer. The factor L(aC,E)/
L(aE,C) is the ratio of the loss of false positive diagnosis to that of false
negative. The ratio P(+|C)/P(+|6) is the likelihood ratio, the ratio of the data
given C to the probability of the data given C. In order to diagnose ass the
likelihood ratio in favor of C must exceed the product of the prior odds ratio
against C and the loss ratio of false positive diagnosis to that of false ne-
gative: (4) provides the criterion for terminal analysis.
In general, there are two incompatible events E1 and EZ’ and acts a, and a,
such that L(al’EZ)’ L(az,E])> 0, L(al’El) = L(aZ’EZ) = 0.

Given any amount of data x bearing on the problem, choose a, if

P(xlEl) P(Ez) L(a,,E,)
(5) P[E,) ~ P&, ° L(ayE)
or

P(E, [x) L(a,E,)

P (E, %) > L(a,,E )

The EVPI is simple; for as it is
(6) P(E2|x) L(a,,E,).

for ays the EVPI is

(7 P(Ellx) L(ay,E ).

In (6) and (7), P(Ellx) and P(E2|x) are the posterior probabilities computed

by Bayes' theorem. For example,

P(E,) P(x|E))
P(x) ‘

(8) P(Ellx) =

Consider an application involving the normal distribution. On the basis of a
large scale survey of men in a certain age group, it is found that blood choleste-
rol counts are normally distributed both for those who do and those who do not

subsequently have heart attacks in a five year period.
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For the first group (C, for coronary) the mean is 268 and the standard deviation
is 50. For the second group (C, for non-coronary) the mean is 268 and the stan-
dard deviation is 50. The prior probability of a heart attack within the stated
period is well established by frequency evidence to be .05. A particular man

in this age group has a cholesterol reading of 275. First compute the odds that

he will have a heart attack:

275 - 268
.05£,,(275]268, 50) I £ e |0,1)/50 e fN(.14[O,1)
£ (2 19 = =15 -
L95(275[248, 50) 19 " . (275 = 248 . 4y /5 19 £g(-5470,1)
NY 50

_ 1 .3951 _

= 79 * 3448 b

= 2

33 -

Suppose that it is possible, with some expense and trouble, to carry around pills
that may be useful in mitigating the effects of a heart attack if one comes. In
order to justify carrying the pills, the expected loss of carrying the pills if
not needed would have to be no more than 2/33 the expected loss of not having the
pills if they are needed.

In this example, Ho> Mg» Ocs and Og are assumed to be well determined by EC’

ia, ic, ind Sg oi large samples. If there is substantial uncertainty about

Hos HE» Oc» and Oa, more elaborate methods are needed. In such cases the cruder

method given here tends to give an overly optimistic’ impression of the degree of

discrimination--that is, the departure of the posterior odds ratio from unity.

6. An example of a Sequential Decision Procedure

Suppose that we are going to buy a new automobile. Having decided on the make,
model, and accessories, we want to find a dealer who will sell it to us at a

good price. We regard the process of securing a price quotation from a dealer
as tantamount to observing a random variable X from a normal process with un-

. . . . A
known mean U and known standard deviation 0. The prior density for u is

fN(u!;',O//WET).
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Clearly at least one observation X, is needed if we are to buy the car. The
problem is how long to continue the search for a good price. We assume that all
utilities are measured in money .terms, and that the marginal cost of a price
guotatlon is a constant c. ; .. )

natural way to go about it is to proceed sequentially, examining each price
quotation and deciding whether to take the minimum price so far quoted, or to
continue, and secure at least one more quotation.

N .
X,, X ... . Denote by x_. the mini-
22 73 y min,k

mum obtained in the first k quotations. As we accumulate quotations, we modify

; s . n
Denote successive price quotations X,,

. . . v . ; "
the distribution for 1 by Bayes' theorem. The posterior density for y after k

quatations is

(N D(ulxys +ees %, x'om') = fyulxso V),

k

plrens X = (o’ x! 4 nkxk)/n nk =n' % + ¥ X. /k The predictive density

implied by (1) for the k+l-st quotation Xk+1 is

(2) Dlx, |x,s ooes 3o X5 0" = EyCr R0V “k £ 1),

N N .
Suppose that we have observed Xis eves X and want to decide whether or not

to observe xk 1 and then make a purchase. This is a two-action problem: either

a., we stop getting quotations and buy the car for x 0.k
b

1
"
; i > p i < . .
X and buy the car at Xmln,k if X4 2 Xmln,k or at X ., if Xk+lxm1n,k

(The present application differs from Sec. 3, however, in that now there is just

or, a,, we observe

one terminal action--to buy a car.) The payoff table for this decision, ignoring

the cost ¢ of the observation, is

Event a a
1 2
n > x . =X - .
X0l min,k min,k min,k
S .
N
X <%, - X, - X
k+1 min,k | min,k k+1
é

The corresponding loss table is

E

vent a 1 32
n > X . K 0 0
X min,

v & 0
*1+1 © Tmin,k Tnin,k kel
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The expected loss of a , ignoring cost of observation, is

1

v Xmin k L
5) E L(a,, = ’ -,
(5) (al xk+1) SL (x ) fN(x |xk,0¢—ﬁ— + 1)dxk+].

min,k  k+l k1

If we examine eq. (15), Sec. 3, we see that (5) is the same thing in different
"

notation: in eq. (15) replace (b] - bz) by 1, Wy by x by LS and

min,k’
the normal density by the density in (5). Therefore we can use Sec. 3 (17¢c),

to evaluate (5) as

/

1"

I
' R Il x - X
n /1 ' *nin,k T %k
(6) E L(al,xk+1) =0V + 1. Gg ; T
k %i(j -Ek"—‘."'l
\ |
\

We can interpret (6) as the EVSI for a sample of one more quotation. We take

the sample if and only if

on

o X . =
(7 Owﬁi~ +1 . G —22213:::7¥ > C.
o V/E%" + 1
k
(If it should happen that x'< x_. , we would want the negative of the argument

k min,k
of G(.). The analogous phenomenon is impossible in Sec. 3 (17¢).)

This decision rule, applied repeatedly for k = 1,2, ... until it terminates
sampling, defines a sequential decision rule. There are many other possible
rules. We could always stop when k=1, that is, accept the first price quotation;
we could decide in advance to take a fixed number of observations n >1, then
accept the lowest price; or we could follow other sequential decision rules.

How good is our rule compared with the others? It is not obviously best.

The EVSI of (6) is for one observation only. It does not take into account

the possibility that, having observed an X

< x . we might nonetheless
k+1 min,k’ &

find still additional sampling attractive.

It can be proved, however, that our sequential decision rule is in fact the
best of all decision rules, sequential or not, for the problem formulated here.
This conclusion does not turn on normality, only on the utility structure of
the problem.

This simple application is given as a concrete example/of one of the few cases

in which an unequivocally best sampling plan can be found, given present know-

ledge.
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In general, sequential decision rules can offer both advantages and disadvan-

tages as compared with fixed-sample decision rules, and much research on them

is needed,
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