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Abstract

This paper attempts to show how a particular concept and measure of
complexity, as derived from autamata theory, can be meaningfully inter-
preted in a program of 'limited rationality' regarding individual or social
choices. The complexity measure appears to be a natural consequence of
locking at a decision rule as a finite-state machine that computes prefer-—
ences bounded by. computational constraints. By factoring the social
decision process into camponent processes it is demonstrated how searching
for improvement depends on 'structural' and 'computational' limitations.



COMPLEXITY AND SOCIAL DECISION RULES

HANS W. GOTTINGER

1. INTRODUCTION

The notion of 'global rationality' underlyinc the
construction of 'economic man' that is cenerally accepted at
least in normative economics has come increasingly under at-
tack by those who care for more fruitful behavioral assumptions
in economic reasoning. This notion is intrinsically related
to various optimization programs that have been implemented
in economiecs but that have been found only of limited use in
realistic, complex situations. I.A. Simon [8] deserves credit
having observed the limitation of global rationality and
suggesting a modification of this program by introducing his
concept of 'limited rationality.' To a areat extent these
ideas were carried forward in studyinag human thought processes
where it was found that decision-makers, for purposes of Drof-
lem-solving, go through several stages of goal formation, a
hierarchical representation of goals, super- and subgoals,
where at every stage goal attainment rather than optimization
is called for. Such programs are motivated by the complexity
of problem-solving tasks that are treated successfully by de-
composing problem-solving in a sequential way and by associat-
ing to every stage of the process the attainment of a subgoal.

Goal-oriented behavior, therefore, is non-optimizing behavior



and only improvement-related with respect to the attainment of

the next goal in a sequence. (G.W. Ernst and A. Newell [2]).

Simon [11]1relates a need for revision of the 'econo-
mic man' to the limitation of access of information and compu-
tational capacities being available to human decision-makers.
The computational dimension is probably the most important
aspect of characterizing '1imited rationality', in fact, this
point has been brought up in a similar connection by H. Leiben-
stein [g!] where he interprets 'rationality' in terms of 'calcu-
latedness' (computability) and tightness or looseness of calcu-
latedness is supposed to cover the whole spectrum between ra-

tionality and limited rationality.

The computational dimension of limited rationality
as avpplied to the social choice process 1is analyzed here in a
more rigorous fashion than has been done before. It turns out
that complexity is an essential tool for analyzing constraints
on the decision process. Moreover, any axiomatic system of
'limited rationality', vet to be defined, must contain com-

plexity as a orimitive notion.

The papver attempts to show how a social decision
function can be constructed, by unconventional tools, such that
it is compatible with individual decision functions. Complexi-

ty enters the construction as the basic limiting factor.

2. CHOICE PROCESSES AND COMPLEXITY

Oon the level of individual or social choice problems

complexity relates to the ability or inability of human beings



_..3.._
to make effective choices in a consistent or rational way. In
this regard complexity exhibits some kind of uncertainty that

cannot be treated properly in terms of probabilities.

one clear indication when complexity enters individual
decision-making is given by not being able to prove that a uti-
lity function representing preferences or choices does exist.
If this proves to be a legitimate question on the level of indi-
vidual decision-making, it is even more so on a social choice

1)
level. F.S. Roberts [9,p.127] proposes two ways out of this

dilemma:
' 1. PR : .
... one approach to the decision-making is to descrioe
a procedure whereby we can rodify or redefine or make exnlicit
our preferences in the course of decision-making in order to
become more “rational" (i.e., that such a utility function
will exist).'
A second approach, somewhat less demanding, is to settle

for a utility assignment which best approximates the utility

funetion.

It is doubtful that the first approach leads to a
satisfactory solution. Since even if it is possible to teach
individuals how to act more rationally than thev used to behave,
they will never be 'perfect computers' and there is a threshold
of complexity beyond which thev cannot effectively handle si-
tuations, for instance, making cholices among many alternatives.
Put in a different way, you can trv to teach subjects how to
make optimal decisions in a simple course of actions, as J. Mar-
schak [7) suggests on the basis of psychological studies on
that matter. But still teaching optimality does not cope with
the problem that people simply make mistakes because of com-
plexity or 'embarras de richesse' in selecting among many alter-

natives -- in the same way as people may understand simple



arithmetical rules but cannot solve complicated arithmetical
problems in the large because of time, resource and computa-

tional constraints.

The alternative then is that people adobt reasonable
behavior strategies (in the sense of being within their 'compu-
tational budget') which cope with the intrinsic complexitv of
' (social) choices, e.q. those rules axhibitinag non-optimizina

behavior.

Regarding the second approach, much of the contri-
bution by measurement theory has been in the direction of
weakening preference reguirements {(for example, Luce's semi-

order theory, avoiding indifference, but admitting thresholds) .

The weaker assumptions aim at reducing the computa-
tional burden of decision-makers, yet they fail to make explicit

the complexity bounds in forming decision rules.

Many chdce processes in the real world, in contrast
to theoretical constructs used by choice theorists, renresent

essentially ill-structured problems to the extent that solu-

tions of these problems are not readily available and they
involve an excessive amount of computational nower.

In general, a problem is considered to be well-structured 1if

it satisfies a number of criteria, the most important of which
relate to the existence of at least one problem snace that pro-
vides for solwability with the help of a practicable (reasonabla:
amount of computation or search. Apparcntly well-structured
problems such as theorem-proving and chess playing in ar-

tificial intelligence turn out in many instances to be 1ll-



structured, given the problem-solving power of problem-solvinc
methods. There seems to be an intrinsic relationship between
well- or ill-structuredness of a problem and the threshold
of complexity (in von Neumanr's sense) below which a system
shows a reqular, stable and predictable behavior but beyond
which often quite different, sometimes counterintuitive modes
of behavior can occur. A pnrohlem can he well-structured in
the small, but ill-structured in the large.. According to
H. Simon [13] 'the difficulty stems from the immense aap

between computability in principle and practical computapi-

lity in problem spaces as larae as those of games like chess.’

This generally applies to complicated choice processes.

Therefore, the nproblem of comnlexity is similar to
the problem a chess player faces when searching for a 'satis-
factory' strategy in chess. The social choice problem re-
sembles the choice of strategies in chess-playing to the ex-
tent that the decision-maker is involved in a choice problem
of combinatorial dimension. To search for all game-theoretical-
lv possihle alternatives goes far bevond the comnutational

ability of the human beina.

One conclusion, therefore ampmears to be obvious:
we have to dewnart from behavioral hypotheses involvince opti-
mizing behavior, as convenient as it miaght bhe in mathematical
terms, since it does not come to grims with non-trivial choice
nroblems in complex situations. We do not have to leave the
arounds of rationality, a rule-of-thumb method may be rational

in a restrictive sense, thus we have to view it in terms of



'limited rationality.' Rule-of-thumb methods may he applied
for various reasons: either because the individual faces ex-
pected costs of computation to be far bevond expected utilitv
of further searches in choice-theoretic behavior or he (she)

is faced with an immense mass of alternatives to the effect
that he (she) is psychologically outstripped by the ensuing
'comolexity of computation.' Chess plavers tend to choose
simpler decision rules, they do not consider all possibhle
strategies and pick up the best, but denerate and examine a
rather small number, making a choice as soon as they discover
one that they reqgard as satisfactory. According to H.Simon
[12], 'limits of rationality in chess involve (3) uncertainty
about the consequences that would follow from each alternative,
(b) incomplete information about the set of alternatives, and
(c) complexity preventinag the necessary computations from being

carried out.' N

All three properties may be subsumed under a more dae-

neral concept of complexity in choice-theoretic situations.

For example, uncertainty and lack of information may here as-
sume different aspects to what is widely known in statistical
decision theory and the economics of uncertainty, e.g. uncer-
tainty resulting from computational incapability when faced
with a large number of choice alternatives. These are essen-
tially non-probabilistic situations. Thus, complexity is an
important tool for evaluating decision rules, in fact, it may
prove instrumental for an axiomatic analysis of 'bounded ra-

tionality' which is still lacking.



3. SOME FORMAL PREREQUISITES

We present here some formal definitions towarcé de-
veloning a more general theory of complexity for social choice
situations that may prove useful to understand the concepts
to be used throughout the following section. In this par-
ticular context, such a general theory of complexity has been

introduced earlier by C. Futia [3},more generally see Gottinger

{1} If A is a non-emnty set of symbols, then let A% re-
oresent the set of all strings whose members are elements of
A, i.e. A% = {(a1,...,an) :n > 1 and aj eA}l. Then we define
a sequential machine as a function f: 2%>B where A i3 the
basic input set, B is the output set and £ (aq,...,an) = bn

is the outout at time n if aj is the input at time j (1<i<n).

mhis is the external description of a seruential machine by

specifying a function £ : A* » B.

The internal description involves a circuit (A,B,Z,3,8),

where A and B are defined as above, 2 is the (nonempty) set of
internal states, 65:ZxA+B is the output function, A:ZxA+Z 1is the

next-state function. The step from the external to the internal

description of a system is referred to as jdentification. It is
a problem to show that given £ we may find a C and a zeZ such

that C 8realizes' £ with £ = Cz.

For examnle, let c,: A% » B be the system glven by
startina ¢ = (A,B,%Z,X,6) in state zeZ, then C, is defined in-
ductively in a straight-forward way:

C, (ay) = 6(2,a1)

c. (a

2 1,...,an) = C (a

A

...,an) for n » 2.
(z,a1)

2!



. S .
{2) Tet f: A% + B a machine. Then f~, the semigroup of I,

is given by the congruence =, on A* where for t,r,e A*, t = r if
and only if f(e¢ t B8) = f{e r 6) for all a, 8 ¢ A* U{1}. Then,

if [t]f denotes the equivalence class of the eguivalence re-
lation e containing t, we have fS={[t]f: t ¢ A%} and [t]f-[r]f =
= [trlg (where tr denotes the product in A* and - denotes the

product in fS). {1} is the emoty string.

(3) A semigroup S is combinatorial if and only if each

subgroup of S is of order 1.

(4) A right mapping semigroup or right transformation

semigroup is a pair (X,S), where X is a nonempty set, and S5 is

a subsemicroup of FR(X) the semigroup of all mappings of X into

¥ under the multiplication (f.q)(x) = g(f(x)). For each
X e X, s ¢ S8, let xs = (x)s. Then the following conditions are
satisfied:

(1) x(s1sz) = (xs1)52.

(2) SqrSy € S and s, # S, imply Xs, # xs, for some x ¢ X.

(5) {Wreath Product) Let (Xj'sj) be richt mapping semi-
groups for 3 = 1,...,n. Let X = Xn X a.. % XKoo Let S bhe the
semigroup of FR{X) consisting of all functions ¢y : X » X satis-
fying the two following conditions:

(i) (triangular action) If Pyt XXy denotes the kth projection
map, then for each k = 1,...,n there exists fk:XkX...xX1+Xk'

such that

pkw(tn"'°’tk+1'tk""'t1) = fk(tk,...,t1)



for all ti £ Xi, i=1,...,n,

(ii) (kth component action lies in S)) We recuire f, ¢ S,,
and, for all k = 2,...,n and all a = (tk_1,...,t1)sxk_1X...xX1,
the function g eFR(Xk) given by ga(yk) = fk(yk,tk_1,...,t1) is an

element of Sk.

Then (Xn,Sn)l...l(X1,S1) = {X,S) is the wreath product

of (Xn,Sn),...,(X1,S1), and (xn,sn)w...w(x1,s1) is the abstract

semigroun determined by (X,S8).

(6) Let (X,8) and (Y¥,T) be right maoping semigroups.
Then we write (X,S) | (Y,T), read (X,S) divides (Y,T), if and

only if (1) there exists a subset Y' of Y and a subsemigroup T!
of T such that Y' is invariant under the action of 7' (i.e.,
Y'T'c Y'); and (2) there exists a map 8 : Y' ++¥ (»+ means onto)

and an epimorphism ¢ : T' »+5 such that 8(yt} = 6(y)¢(t) for all

v e Y, £t e T'.

(7) (Krohn-Rhodes Decomposition 18]) Let (X,S5) be a
right mapping semigroup. Then the (grour complexity #F(X,S) =
= #G(S) is defined to be the smallest non-necative inteager n sucn

that

; ,
S (Y Cw(X G ) wWe oW (¥, Cw(Xy,Gw(Y,,Co)

holds with G,,...,G, being finite groups and CO,..Cn finite

1'
combinatorial semigroups (flip~-flops), i.e. the minimal number
of alternations of blocks of simple groups and blocks of com-
binatorial semigroups necessary to obtain (X,S). Hence by

making full use of decomposition results on sequential machines

one could redefine complexity in terms of the phase space de-

composition.
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Therefore, complexity finds its group-theoretic
roots in the fact that the transformation semigroup can be
simulated (realized) by the wreath product of all pairs of
component machines whose semigroups are simple groups and
those machines whose semigroups are finite combinatorial semi-

groups (= flip-flop machines). Intuitively Speaking, a combina-

torial semigroup corrasponds to a machine that virtually does

no computation but rather switches inputs and outputs amonqg

various input-output configurations. This property reminds us
of information theory when selecting events which have infor-

mation measure zero. These types of machines generate regular
patterns to be expected, they do not yield any surprise. There-
fore, their behavior does not produce information. Since every-
hody understands it, it cannot be complex. This result has some
immediate impact on possible applications. It suggests that if
we are able to detect subsystems that behave like flip-flops

we could erase these subsystems without chanoing the structural
complexity associated to other subsystems but, nevertheless,
decreasing the computational complexity in terms of length of

computations.

On the other hand, simple groups conform to machines
that perform simple arithmetic operations (such as addition,
multiplication,...). Many examples of that sort have been given
by John ~hodes [8]. A simple group constitutes the basic
(irreducible) complexity element which increases the complexity
of the machine by just one unit. Hence punching out groups of
that kind in the decomposition lowers complexity at most by one.

Mow what is the sianificance of the Kroh-Rhodes theory? It shows
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us to which extent we can decompose a machine into components that
are orimitive, irreducible and that the solution depends on the
structure of components and on the length of computation.

Hence complexity does not depend only on how long a chain of
components there are, but also on how complicated each compo-
nent is. Therefore, complexity takes account of the total
number of computations in a chain (the computational asvect)

but alsc of the inherent complexity of the subsemigroups (sub-
machines) hooked together via the wreath nroduct (the structural
aspect). The structural aspect can heuristically be represent-
ed by the amount of 'looping' in a computer program that com-
putes S on X. This has been proposed by C. Futia [3] for

2)

computing secuential decision or search rules. These are

the key features of an algebraic theory of complexity.

4, AN EXAMPLE OF A DECISION COR SEARCH RULE

The subseguent example has been adapted as an illu-
stration from a similar search problem presented by Futia [3].
An individual, as a member of society {or voter) is subsequent-
ly confronted in a 'large' market of public goods to choose
among different kinds of commodities or services (nuclear
energy, missiles, health care, etc.) offered to him for sale
by different government agencies at different prices (i.e. tax
rates). In order to receive a tax rate quotation (or possibly
some other relevant information) from any given agency, the
voter must incur some (not necessarily monetary)} cost con-
stituting his marginal search cost. The voter's goal is:
given a certain bundle of public goods that satisfies his aspi-

ration he wants to search for low tax rates such that his final
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taxes (plus total search costs) will be kept as low as possible.
This problem can be formalized as follows:

Let ti denote the tax rate quotation of agency i. Let

t = (t1""'tn) be the tax structure and suppose tie[0,1] = I.
Denote by I" the n-dimensional cartesian product of I, and
define a probability density F on i representing the voter's
initial belief about which tax rates the agencies are likely

toc quote. The order of quotations presented to the voter is
considered to be irrelevant, thus, feor simplicity, it is assuned
that F is symmetric, i.e. if p is a permutation of {1,2,...,n}

and if tF = then F(t) = F(t").

(tp(.l),...,tp(n) ) r

The set-up of this problem enables to construct a de-
cision rule which prescribes to the voter, for each i,
whether to stop searching after receiving i quotations or
whether to continue searching on the basis of the i éuotations
he has received. 2 decision rule is assumed to he a manping
from a set of observations into a set of actions. In this proh-
lem, for each i, let the gét of actions be A={'accept',k 'reject'},
and the set of observations be Oi=Ii. Then a decision rule is

a seguence of functions D = (D1,...,D ), where Di:oi+A if

n-1
(t1,...,ti)soi, then Di(t1""'ti) records the voter's deci-
sion to either accept the tax rates that have been quoted to him
and choose (by vote) the cgiven bundle of public goods »nre-

sented to him, or to continue searching and reject tax rates

tqreeertye

1

Now it is perfectly leacitimate to ask for this kind cf problem
what is the voter's ontimal decision rule? This auestion
could be answered by the machinery vrovided in statistical

decision theory to find ortimal sclutions for search nroblems



(see Gottinger [5al).

Instead, here we are interested in the basic ill-structured-
ness of the problem given bv the comnlexitv of the decision
rule. To this end, on the basis of the previous section,

we proceed to associate with every decisicn rule D a (com-
pvuter} program fD which computes D. This permits us to de-
fine the complexityv of the procram by the amount of 'loopina'
between subprograms (comnutational complexitv) and the intrin-
sic complexity of the subprograms (structural comnlexity).
lence, a sequential machine is used as a metaphor for deter-
mining complexity of sequential decision rules. This can be
further illustrated bv elaboratinq.on the nroblem above by
using the sequential machine framework.

Let A

set of observable tax rates = finite subset of [0,1].

Let B {'stop', continue to i+1, i=1,2,...,n}. Then the ma-

it

chine fD is defined inductively on the length of the input

sequence by

D,(t,) ifm=1, or if

1

— ] ] —
fD(t1,...,tm_1) = 'stop' or = Di(tm-i""’tr)

1

if fD{tT""'t )=

mi—1

continue to i+

The computational length and the structural complexity of sub-
systems that are needed to compute fD reflects a measure of
complexity for fD (equivalently for the decision rule D).
Obviously, optimal is a rule that is generally more complex
and more expensive but which may very well be beyond the compu-

tational power and sophistication of the voter. Hence the
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voter, facing an ill-structured vroblem wants to make it well-
structured by seeking a decision rule which matches his corouta-

tional ability and sovhistication.

5. COMPLEXITY OF DECISION RULES

We suppose that the decision-maker idertifies alter-
natives in his choice space and does exnress nreferences bLet-
ween at least two alternatives by simply comnuting, else he
finds alternatives 'undecidable' or 'incomrarable' that cannot
be computed. Preference statements are therefore translated
into computing devices, indifference statements are kent out
because of vpossible vaaueness. The decision-maker renpresent-
ed as a simple finite state machine, can be decomposed accord-
ing to merforming these tasks. 3) In the first case the job
to be done, e.g., comnuting preferences, is achieved by a simple
group machine (that is a decision machine acting as a simple
groun in the mathematical sense), in the second case the acti-
vity consists of a combinatorial machine, acting as a 'flip-flov'

4)

which does not compute anythinag. Realizing a decision-rule
therefore means a decomposition of the decision process accord-
ino to the decomposition of machines into component machines
that 'hooked' together (via the wreath vproduct) realize the
overall machine. 0Of course, the complexity of decision rules
may vary; a 'sophisticated' decision-maker may activate more
simple coroups, less flip-flops, or groups that compute faster,
more accurately and more reliably. This tvne of decision-maker

will carry more structural complexity in the sense aiven in

the nrevious section.
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A (social) decision rule is a seguential decision rule
and as such is considered to be a finite state machine (as-
sociated to a finite semigroup), and according to complexi-
ty theory it has a finite decomposition. 1In this regard the
results of Krohn-Rhodes complexity theory apply. The idea in-
volved here is to factor a social choice process into parts
(components) where the global process is modelled as a trans-
formation semigroup associated to a social decision rule,
and the local parts are represented by transformation subsemi-
groups. The new tools originate'from decomposition results

in automata theory.

Consider a choice set of finitely many alternatives
X= {a,b,...,x,y,z} and let Di = 1 iff i prefers x to y,D; =0
iff i is "undecided' about x and vy, D; = -1 iff i prefers
Yy to x. Let p be a nonempty set of decision rules Di’ X a non-
empty collection of subsets of X, a social decision function
(SDF) then is a function F:XxD+P(X), P(X) being the power set.

A SDF for individual i is given by F({x,y},Di), x,ysk.

Social decision functions are in fact decision ma-
chines in the sense that they decide on propositions about
accepting or rejecting social states, computing them by dis-
c¢rimination, (prgference, non—-preference). By doing this,
they generate as outputs decision rules and induce next states
representing changes in preference profiles or configurations.
There is good reason to argue that we should leave out in-
difference statements since they cannot clearly be distinguish-

ed from the phenomencon of 'undecidability'. Intransitive in-



difference arises in situations whre a chain of indifferences,
each of which seems reasonable, adds up to a sufficiently
large difference to yield a definite preference between

the first and the last items in the chain. We would like

to aveoid intransitive indifference, therefore we require

the decision machine only to accept preference rather than

indifference statements.

.In order to construct such a decision machine let
us state the following
Problem: Let X' = X1x...xxn be the social choice set when
the DM is confronted with a sequence of finitely many social
alternatives. Let AOeA1§...=-,'—_An. be those sets of alternatives
in which the DM can actually find comparisons (in the sense
that he prefers alternatives in these sets and finds himself
in a position to compute preferences). Let 4 be a nonempty
collection of all AO'A1""’An‘ Then he constructs selection

functions PorPqrer-tPr Py ¢ X%54 such that for all xiexi,

n i
p(xi)eAi. In a way, oy constitutes a reduction mechanism by
reducing all possible alternatives with which the DM is con-

5)

fronted to those which are computed as actual choices. It

is said that the DM accepts the decision rule Di(x reeer %)

o]
if p(xo,...,xi) e A;, more explicitly, accept Do(xo) if .

p(xo) e A, accept D, (xo,x.]) if p(xO,XT)E A,, etc.

There is an upper bound, representing the éomplexity
bound of the DM, beyond which he is unable to compute his
preferences. The upper bound somewhat restricts him in se-
lecting decision rules which are 'beyond his complexity.'

Therefore, let k(D) be the largest integer satisfying the
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b . . _
ound such that Ak(D)-1 §an(D) How is the bound to be

determined?

In a different context, regarding the complexity
of (dynamic) finite-state systems, I distinguish between design

and control complexity.

To recall (cf. Gottinger [5]),under design complexity
I understand that complexity (number) associated to the trans-
formation semigroup in which full use of the system potential
is made. Under control complexity I understand that specific com-
plexity (number) that results from computations which keep the en-
tire system or at least part of it under complete control. A guali-
tatively stable decision rule would be a rule for which design
and control complexity coincide. However, in most practical
cases design complexity will exceed control complexity. Since
one cannot assume that the control complexity of an average (un-
sophisticated) DM can be increased by teaching him how to behave
in a rational manner one should pick up designs of decisions

6
rules for which there is a reasonable understanding and control. )

Example, 1In a game of chess the number of all possible
strategies to achieve a chess-mate corresponds to the design com-
plexity of a chess-playing program. The number of all actual
strateqgies chosen by a particular chess player to achieve suc-
cess corresponds to his control complexity. Given two chess
players both initially endowed with the same knowledge of how
to play chess, then if in a sufficiently long sequence of re-
petitive plays one does better than the other, he exhibits a

better understanding of the game, e.g. a higher control complexi-

ty.
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In a certain way both concepts are naturally associat-
ed to 'programs of optimization' and 'programs of satisficing
or bounded rationality), respectively. That is to say, design
complexity pertains to that decision rule (which is best in
some appropriate sense), in general an optimization principle
is involved, which, however, cannot be realized given the li-

mited computational resources of the DM (control complexity) .

To which extent this bound can effectively be deter-
mined by experiments appears to be a problem in experimental
psychology. However, it is possible, at least in principle,
to give a set of criteria under which it can be determined
whether a DM chooses decision rules violating his bound of

7)

complexity. Whenever individuals violate in experiments a

set of consistency postulates (such as transitivity), namely
those which they have accepted at the very beginning, they will
realize that they have committed computational errors. Thus
carmitment of errors or violating consistency postulates seem
to be suitable criteria for determining complexity bounds of
computation. In experimental situations, subjects then have

to be confronted with various decision rules of a different com-
plicated chafacter and the class of decision rules in which no

errors or almost no errors occur constitute those which satisfy

the control complexity of the DM.

Those decision rules are called gualitatively stable.
Only qualitatively stable decision rules guarantee that social,
economic and political processes can be controlled in any effec-

tive way by social choice, otherwise the amount of error, mis-



representation of preferences, etc. could easily lead to a
desfabilization of the social system, and some degree of ratio-

nality can no longer be maintained.

5. A CONSTRUCTION OF COMPATIBLE SOCIAL DECISION RULES

Let P1,P2,...lbe sets of computable preference pro-
files for i = 1,2,... individuals of the social grcup achieving
a common social decision rule D (matching the preference profile
of the social group). Let there be D1,D2,... decision rules

acting as sequential machines such that D, computes the pre-

k
ference profile Py . Then we define the complexity of the social

decision rule D,98(D), to be equal to min {B(Dj):j = 1,2,...%.

In short, the complexity of a social decision rule is
bounded by the minimum complexity of any individual decision
rule Dj which is able to generate any individual preference pro-—
file matching the preference profile of the social decision
rule. We proceed to associate a social decision rule (SDR) D
for the social choice problem with a finite semigroup S(D).

We could envisage the social choice process as a transformation
semigroup (X, S(D) where X is the set of social choice alter-
natives each individual (in the social group) is searching for,
while elements of S$(D) will be finite sequences of preference

gquotations generating the preference profile.

We could define X ={*}UA0UA1U...UAn_ with (Jdisjoint.

1
This is the set of the DM's choice histories. Then
p(x1,...,xi)eAi represents the history of the DM's preference

statements who has completed i searches and has made choices

OVer Xqr-«:rXj-
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A DM will stop searching if further searching will
violate reasonable consistency criteria. The stop rule of
searching is imposed by the complexity bound of the social de-
cision rule. By construction, the complexity of D, 8 (D), is
equal to the complexity of $(D), €(s(D)). Again the complexi-
ty of the SDR D is bounded by the minimum complexity of the
individual decision rules Dj (finite state machines) which by

interacting realize a compatible social decision rule.

The procedure how to generate a computable SDR when
all members of the society set up their own individual decision

rules can be described as a sequential game among the members.

If the game has a von Neumann value we agree to say that a

compatible SDR has been realized.

For simplicity, let us assume that there are only
two members of the society which after having computed their
individual decision functions want to find a compatible SDR

{(which satisfies both).

Assume that the game starts in C, with strategy o
constituting the selection rule of the firsz member of society,
then the circuit C = {(A,B,%Z,A,8) is the preference profile with
% : AxZ-7 and & : ZxA>B. Let A be the set of social choices
that have been made by Player I (and the configuration is re-
vealed to Player II). Then B is the set of resulting social
choices of Player II that adjust to the preference profile of
Player I. Z is the set of adjusted social choice configurations

of the game as they appear to Player I. a(z,a) and &(z,a) are

interpreted as follows: if z is the adjusted social choice con-
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figuration, as it appears to Player I, and a is the choice

which enters as input to Player II, let z-a be the soccial choice
coenfiguration after the choice a is made on the configuration z.
Let D{(z-a) = b be the decision rule generated by C when the
position presented to C is z-a. Define 6(z,a) = b = D(z*a)

and furthermore define A (z,a) = {(z*a)*b =(z-a)-D(z-a}, where

Z, is the initial position. Suppose ocur SDR can be put in binary

form, whenever the 'compute preferences' key is followed we assign

1, otherwise O.

The latter case will be interpreted as meaning that no
consistent preference statement can be made since the number of
choices involved is too large and therefore we have to eliminate
redundant choice alternatives. Then under these circumstances,
we could consider for at least two players the construction
of a compatiblelSDR to be equivalent to a game tree with binary
outcaomes.

Example. In this game each player plays zero or one successively --
corresponding to the construction of the decision rule. Let us
assume the circuit C is a player who responds to the action of the
first player, and the circuit C'. W denotes a win for the

.player, I. denotes a loss for the player. The payoff is +1 for

W, and -1 for L; Clearly, the von'Neumann value for this game

is +1 for the player who goes second. Assuming C goes second

the strategies achieving the von Neumann value +1 can be listed

as follows (and read out of the game tree):



(a)
(b)
()
(d)
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Fig. Game tree with binary outcomes

(winning strategies for C)

(¢r1): (afj)r
(6,1), (a,1},
(’bto)r (bto)f

(3.0), (,0),

(c,1},
(c,0),
(£,1),

(£,0),

(g,1), (k,W),

(h,0), (n,wW),

(i, (1,0)),

(3,00,0)),

(p,W),

(qr (1 ro) ) ’

(v, 1),

=
('31

1
¥

a1
2]

)
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Let C = (A,B,%,)r,8)be defined as follows:

b
il

{o,1(0,L), (O,W), (1,L),(1,W}, B = A,

Z = {¢,a,b,c,d,e,f,...r,s,t}.

Then CZ : A*+B induces a sequential social decision rule

to whicg there is associated a complexity, the complexity

of the transformation semigroup (X,8). The broblem is to
find a minimal complexity of the transformation semigroup
that permits a construction of a social decision rule com-
patible with the choice behavior of individual members of
the society. 1In view of (a)-(d) we succeed in doing this by
finding the string of minimal length, i.e. the decision

rule with the minimal complexity. The upper bound for the

complexity follows from the following result:

Proposition (J. Rhodes): Let S be a semigroup of mappings

on the finite set X (sequential choice space). Let r be the
. . . . 2
maximum range (or fixed points) of any idempotent e=e € S.

Then #; (S)x r-1.

Proof. Let I be the ideal generated by the idempotents of

S. Then S/I is combinatorial and I < {£:X*X : [£(x) [ sri=I..
Further Ik' k=1,....,n ére the ideals of FR(X), the semigroup
of all mappings of X into X. Then by the results of Rhodes
et al. [8] it can be shown that #G(S) = #5(1) and #G(Ir)fr-1'

g.e.d.



6. SUMMARY AND EXTENSION

We have noticed how choice processes could be factor-
ed into component subprocesses and how these are associated
to properties of transformation semigroups. A social choice
process could be understood as a sequential game, as an
interaction between individual choice processes in such a way
that the interaction generates a SDR that is compatible with
all individual choice processes. To achieve this, we use
new tools of 'limited rationality', derived from automata
theory, embodied in the system of social decision-making.
Complexity as a crucial factor in the choice of decision rules
is related to limitations of human decision-making in terms
of their capacity to recall, memorize and compute only re-
latively few items among which consistent choices can be
made. In contrast to conventional social choice theory we
only consider preference profiles that are in a certain sense
'computable', thus restricting the social choice process to
reasonable behavior rules. It is not clear so far to which
extent the ideas expressed herein will have an impact on
traditional social choice theory, namely relating to Arrow-
type impossibility or possibility theorems. In actual human
decision-making, alternatives are often examined sequentially,
consequently we consider this approach to be basically of
sequential type, whereas traditional theory is static, e.g.
all alternatives are evaluated before a choice is made. Further-
more, in view of Arrow's assumptions on constructing a social
welfare function (SWF) it appears that the assumption of 'un-

restricted domain' of the choice set will no longer hold be-



cause of imposing strict computational requirementg.

An obvious extension would consist of using complexi-
ty of decision rules as a primitive notion for an axiomati-
zation of economic behavior that introduces explicitly be-
havioral assumptions related to limited computability. The
DM is not only limited in his choice behavior by computatiocnal
requirements, equally important, he is also restricted by acting
as a member of a group or social class where in order to achieve
some consensus {(for example, a common group decision functicn.
he has to adjust his behavior to past choices of other group
members. This is illustrated by looking at the adjustment
mechanism as a seguential game. The determinants of the game
(environmental conditions, previous choice configurations)
are themselves determined as outcomes of complicated cogni-
tive processes, bounded by complexity. Complexity of this

kind virtually covers two aspects: one is structural, the

other computational. Structural complexity here relates to

the ‘'sophistication' of the DM, how he can reason when confront-
ed with difficult tasks, depending on his problem-solving
capability (as discussed in the example of the missionaries

and the cannibals, see Ernst and Newell [2]).

Computational complexity relates to experience,
to the ability to learn deing things, organizing computations.
Both factors are likely to be highly correlated, but to a |
certain degree there will be tradeoffs between both, thus
they are comprised in one complexity measure. For a parti-
cular decision-making design both factors add up to yielding

the control complexity which together with the given design
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complexity provides the fundamental evolution complexity
relation. This again has a clear interpretation in defining

qualitatively stable decision rules.

ACKNOWLEDGEMENT

Research supported in part by Thyssen-Stiftung,
Cologne (K86ln), W. Germany-.

Most work has been done during my visit to Western
Management Science Institute, UCLA, in summer of 1976. The
help and hospitality of this institution is much appreciated.
In particular, I am indebted to Miss Naomi Yano, Los Angeles,

and Ms. Goergel, Bielefeld, for typing the manuscript.



FOOTNOTES

1)

2)

3)

Likewise, a similar problem arises if you want to capture
(probabilistic) uncertainty by the representation of
finite subjective probability measures. Here it is by

no means clear that the representation is unique.

P. Suppes [14] reports, in referring to Scott's axioms

of finite probability, derived from a gualitative pro-
bability structure: ,

' The more profound difficulty ... is the combinatorial

explosion (my italics) that occurs in verifying the
axioms when the number of events is large. To check
connectedness, for example, we need only consider pairs
of events, and to check transitivity, only tuples of
events. But, it is fundamental for the kind of axiom
schema required to express necessary and sufficient
conditions in the finite case that n-tuples of events

of arbitrary n must be studied as the number of events
increases. As a possible empirical theory of belief,

or as a rational one, this seems impractical, and even
for fairly small experiments, the effort to determine
whether there is a representing unique probability measure
requires the use of a moderate size computer facility.'
P. Suppes then sets out to search for simpler axioms,
which he terms 'inexact measurement', that attempts to
reduce the implicit complexity of finding unique measures
of belief.

In a different context, such a problem—solving machine
transforming 'tasks' into 'satisfactory actions' (con-
trols) as a model for an adaptive mechanism has been
described by B.R. Gaines [4].

This decision-making process, organized in this way, is
somewhat related to the heuristic conceptualization of
the decision-making process as proposed by R. Selten in
his 'Chain Store Paradox' [10]. The simple group machine
pertains to his level of reasoning which is characterized

by a conscious effort to analyse the situation in a ra-
tional way on the basis of explicit assumptions whose

validity is examined in the light of past experience
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and logical thinking. On the other hand, the combinato-

rial group machine applies to his routine level where

tdecisions are made without any conscious effort'.

Now it seems evident that the higher level of reasoning
brings 'sophistication' in the decision process, in-
creases complexity (structurally) whereas routine de-
cisions do not establish structural complexity by itself.
This is not to say, in agreement with Selten, that

the higher level always yields the ketter decision, but
this is to say that decision problems of the problem-
solving variety require the activation of computational
devices with more rather than less structural complexity.
But in general, again in agreement with Selten, it de-

pends on the nature of the decision problem.

According to C. Futia [3}, since combinatorial semi-
groups ('flip-flops') generate no feedbacks, he argues
that feedbacks are only provided by the basic complexity
elements, the simple groups, in the Krohn-Rhodes decom-
position. Since complexity of his sequential decision rule
D, equivalent to the complexity of the associated semi-
group S(D), is considered to be proportional to the amount
of 'feedback' or 'looping' in a computer program that
executes D, it is obvious that he measures only a re-
strictive notion of complexity, what I call structural
complexity. However, he neglects the number of wires or
interconnections between all components within the
Krohn-Rhodes decomposition, i.e. the length of compu-
tations, what I call computational complexity. But only
structural plus computational complexity provides a com-
prehensive measure of complexity for sequential processes.
The distinction between both is important, particularly

in view of possible tradeoffs between both in the design
of decision rules and by comparing decision rules with

different designs.
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7)
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Now this reduction mechanism induces the choice space to
be partitioned into at least two parts, one part which

is ‘computable', generated by computable preference
statements, the other part is 'non-computable', imposed
by indecisiveness in choosing among alternatives. There-
fore the actual choice space generated by the selection
functions is derived from the following equivalence:
computable choice space equals given choice space modulo

non-computable choice subspace.

Another way of looking at it utilizes H. Simon's [13]
distinction between a well-structured and an ill-struc-

tured problem. A stable decision rule is equivalent

t+o a well-structured problem. An unstable decision rule
results from the possible 'computational gap® which

may occur in the problem-solving process. As Simon

[13, p. 186] puts it: '... definiteness of problem
structure is largely an illusion when we systematically
confound the idealized problem that is presented to

an idealized (and unlimitedly powerful) problem-solver
with the actual problem that is to be attacked by a
problem-solver with limited (even if large) computational
capacities!. So, in a way, if the problem-solver's
control complexity is below the design complexity of

the decision rule, he himself encounters an ill-structur-
ed problem, or equivalently, his decision rule is un-
stable. Then, it is desirable to redesign the decision
rule in such a way that his ill-structured problem be-
comes well-structured to the extent that the new design
coincides with the computational power of the problem-

solver.

H. Simon suggests a 'common sense' test based on the

introspective knowledge of our own judgmental process.
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