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Abstract

A Markovian Decision Process (MDP) 1is considered in which
it is not permitted to observe the state at any observation
point as well as the associated cost.

it is shown that for a particular class of a MDP with un-
countable state space and finite action space the Howard
Policy Improvement Routine (HPIR) cannot be used for find-
ing an optimal policy. Some {mmediate results out of

this model are presented.



A MARKOVIAN DECISION PROCESS WITH HIDDEN STATES
AND HIDDEN COSTS

Hans W. Gottinger

INTRODUCTION

A Markovian Decision Process (MDP) is a stochastic process that describes the
evolution of a dynamic system controlled by sequences of decisions or actions.
For a general reference book, also listing varions applications, see Derman [2 ]_

Consider the MDP defined by the following objects;

State Space S = {1, 2, 3, ...., N }, for finite N,

Action Space A = {a a } , for finite M,

1* 72 7T T

Cost Set C = {C(i, aj) :  ieS, aJ.eA },

a

Transition Probabilities = {qij(ak

Discount Factor o, such that o<a<l.

} ¢ 1,je8, aKEA} ,

The problem is to find a policy for taking actions which minimizes the
total expected discounted cost over the infinite future, given the

initial state of the process.

A stationary policy for a MDP is defined as a map £ : § + A,

Howard [ﬁ] analyzed MDP's having finite state and action spaces and

proved that an optimal stationary policy (i.e. a stationary policy

which minimizes the total expected discounted cost) always exists.

The Howard Policy Improvement Routine (HPIR) is a method by which an optimal

stationary policy for MDP may be found.

Suppose now, that we are given the MDP as defined above, but
that we are not allowed to observe the state at any observation point
t=0,1, 2, ....,i.e, the state is hidden.

Suppose also, that we are not allowed to observe



_2_
the cost C(xt'dt) at any observation points t =0, 1, 2, in
other words, the total cost will be assessed at infinity. Finally,
suppose that we are allowed to observe the initial probability distri-
bution over the state space $. In this paper we develop a model for

analyzing this problem and present some preliminary results.

THE MODEL
In an effort to analyze the above problem, we define the follow-

ing objects.

S = {All probability distributions over S}

N

= (P = (PI’ Pos ons PN) eEN :oj_Pi:j,iEI P]-I.

i=1, 2, ..., N},

where Ey i3 N-dimensional Euclidean space and we let Pi be the

probability of being in state i;

the set A = A = {al, Ay, e an; the transition

matrices : Q(aK) = [qij(aK)]; and the cost vectors

E'(aK) = (C[I,aK], N C{N.akl).

We note that if the distribution over S is PeS and we take action

a cA, then the new distribution over S will be given by Euaﬁh(aK).

The expected cost, g(?}aK), of having the distribution P and taking

action ag will be given as the inner product

N
c(P,a,) = <FZE\aK)> = ]El PiC(i’aK)‘



_3..

AL this point, we note that the new distribution P~ depends only on

the current distribution P and the current action a,, i.e. F’=FQ(aK).

therefore, we see that we now have an extepded Markovian Decision Process

EMDP defined by the objects
State Space i;= {all probability distributions over S} ,
Action Space A = A = {a],az,...,aM} , and
Cost Set.E = {C(FZaK) : ﬁki} aKef}
Discount Factor o, such that o<a<l.
The set of ail stationary policies for EMDP is given by
F={f :8 ~ A=A}. For any such fef and initial state ?;eé; the

total expected discounted cost is given by

_ o t - P
ve F) = E ot c(FLFIFD)

[l
Nir-18
o

(F}.ETf(f%)]),where

Fo= P QfIFD) o (FIFD) ... (FIF,_ 1) for t=1,2,3,...
The EMDP as defined above (having uncountable state space and

finite action space) belongs to the class of problems analyzed by

Blackwell [1]. His analysis showed that an optimal stationary policy

always exists and that the HPIR may be

extended to this problem., However, in the finite state-finite action problems

the set of all stationary policies is finite and, therefore, the

HPIR will produee an optimal stationary

policy in a finite number of steps. |In the uncountable state-finite

action problem, the set of all stationary poilicies is uncountable and,

therefore, the HPIR cannot, in general,

be used as a method for actually finding an optimal policy.



SPECIAL POLICIES QOF EMDP

convex-stationary policies

With F as the set of all stationary policies for EMDP | we

define the set Fcf, of all convex-stationary policies for EMDP | as

F = {feF : f-](aK) is a convex set for each aKeA}

constant sequence policies

Given the action space A = {a],az,...,aﬁ}, we define AN = AxAX...xA,
N-factors, N = 1,2,3,..., to be the set of all sequences of length N of

elements of A, and we define A = AxAxAX..., to be the set of all infinite

sequences of elements of A. For any finite sequence SeAN, N>1, we define

K

the sequence SKgAN to be the sequence SK = 5,5,...,5, K-factors, and

SmaAw, to be the sequence § = $,5,%,... . For any finite sequences SI
and Sz-we define A(S‘;Sz) = A{SI’SZ} to be the set consisting of the
two action sequences S] and S2 and )

A(s];52f° = A(Sl;sz) xA(Sl;Sz)x..., to be the set of all infinite
sequences of elements of A(SI;SZ)' For any finite sequence § = ars
8y «evs Ay, N>1T, aieA, we define

| t

N —
LS(Ej T th © E(Pt’a

e

),

for 3§§ and 3; = P, to be the cost of starting at P and operating for
N time periods when using the iLH entry in §, I<i<N, as the action to
be taken at the i-t—ﬁ observation time. We say that LS(.) is the cost
of using the finite sequence S, for all initial PeS. If SeA”, we
define the constant sequence policy (S), to be the palicy which uses
the sequence S when starting at any initial §£§J we define (A") to

be the set of all such policies and we use V(S) (.), in place of

L(S)(')’ for the cost of the policy (S).



4. DIRECT PROPERTIES OF EMDP

LEMMA |: The cost function, V(r)’ for any policy (r) e (A7) is

}Jinear on S.

Proof: Let the sequence reA  be given by r = a Now

a,,a,,...
] ’ 2’ 3, _
for any points P, P~, P in S such that F = AF~ + (1-2)F" for some

xelo,1] we have, (with Q(ao) £ the Identity Operator),

Vi @ = E ot a,)
= E ot (Pata) ala)) ... e@), Tla, )
= A d, 0" Frale) ...alay), Tlay,,) )
+(-2) E ot (P ata) ... ela), Tla, )

" ,w(r) (F) + (1-2) v(r) (P
ar

Vi) OP7# DI=AP) = vy )+ (mn) vy (1)

For any stationary policy f and any Fﬁi, we define the

sequence S(P,f) eA ,

5(P,f)

ta }, by a = f(P),

P = tQ(f[Ft]), for t = 0,1,2,..., and PO=P_

t+1

o

We say that $(P,f) is the sequence generated at F when the stationary
policy f is used.

LEMMA 2: For any stationary policy f and any PeS  we have



Vf P) = V(S[F:f]) (P), where Vf (P) is the cost of using

the stationary policy f and starting at P.
Proof: By definition of S(P,f).
THEOREM 1: The optimal cost function is concave on §.

Proof: Let f be optimal. Lemmas } and 2 show that at each Fﬁg

= —_ = 1nf
Ver (P) V(s[F.F4]) (P) o Vi) ®
eA
Therefore, we see that at each point Pe$, Vf*(ﬁ)is the infimum over
a2 set of linear functions and hence Vf* is concave,
Next we prove that the optimal cost function is continuous on
E_by making use of the following representation. Let B be the set
of all bounded metric functions on S, see Dunford and Schwatg[3;]Define a norm on B
by:
[vi]| = sup |v(P)}| , for any ViB.
PeS

Next, define the operator U : B»B by

(W) (B = min {1, (B + av(Pala D)},

aKeA K

In Lemma 3, we state some results presented in Reference [1].

LEMMA 3.
(i) U is a contraction operator
(ii) For any VeB, the sequence Un=UnV converges to the
optimal cost function ka.
(iii) The optimal cost function, Veyi, is the unique solution

to UVf* = Vf*.

We now have the following Theorem.



THEOREM 2: The optimal cost function is uniformly continuous

on S,

Proof: For any uecB, we have

n
un“Uu+V as n=,

f*

We also have

upp P = min (L, (P) + au_ (PQla, 1))
a_ eA K
K _
for PcS. Therefore, we see that since L, (.) is continuous for each
aKeA, each U will be continuous if u = 50 is continuous. The
convergence of Un + Vf* is uniform because U is a contraction

operator, i.e. .

n

llun - Vf*llf_ o ||”'Vft||-
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