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ABSTRACT

A class of games is investigated, where each player has to de-
cide whether to enter a market or not. A player's payoff is
the difference between market profits and entry costs. The
game is symmetric with respect to market profits, but asym-
metric with respect to entry costs. The general solution
concept developed by J.C. Harsanyi and R. Selten is applied
to the situation. The solution is the pure strategy equili-
brium point, where each player inside the market has lower
entry costs than every player outside the market. Examples
will be considered, which are special cases of the class
under consideration.



Equilibrium Point Selection in a Class of Market Entry
Games

by

Reinhard Selten and Werner Gith

Introduction

It is the purpose of this paper to investigate a class of
games, where each player has to decide whether to enter a
market or not. A player's payoff is the difference of two
components, market profits and entry costs. The game is sym-
metric with respect to market profits, but entry costs are
different for each player. Since only the entry decisions
are modelled explicitly each player has two pure strategies.

It is assumed that the incentive to enter is a non-increas-
ing function of the number of players who enter the market.
It will be shown that under this assumption the game always
has equilibrium points 1in pure strategies, moreover, the
number m of players in the market is the same for all pure
strategy equilibrium points. With the help of the solution
concept developed by J.C. Harsanyi and R. Selten one of these
equilibrium points will be selected as the solution of the
game. John C. Harsanyi and Reinhard Selten recently agreed
to change their solution concept in several aspects. Qur
treatment will be based on the new version and not on that
outlined in earlier publications (J.C. Harsanyi, 1975, 1977,
W. Glth, 1978). The solution of the game is that equilibrium
point where the firms with the lowest entry costs enter the

market.

Finally, examples of oligopoly situations will be discussed

which are special cases of the class under consideration.



1. The Game Structure

The game we want to investigate is an n-person game in normal
form where each player i has two pure strategies 0 and 1; here
0 stands for the decision not to enter and 1 indicates the
decision to enter the market.

Each player i has entry costs Ci' The entry costs are diffe-
rent for different players. The players are numbered in such
a way that we have:

(1) C

Let m be the number of players who enter the market. Those who
enter the market receive Rm and those who do not enter the
market receive Sm as market profits. Let = = (nl,...,nn) be a
combination of pure strategies where n. is one of both pure

j
strategies of player i and let m(n) be the number of players

with mso= 1. Then the payoff function Hi of player i is as
follows:

R - C, for n. =1
(2) H, (%) { nix) 1

Sm(n) for ni =‘O

The expression

(3) A =R -5

will be called incentive to enter. We shall assume that A is
a non-increasing function of m:

(4) AL 2 A2 > ... > A

Assumption (4) will be referred to as incentive monotonicity.
In order to exclude border cases,which would complicate the
analysis without adding much to the economic significance of
the resuits, we require noﬁ—degeneracy in the following sense:



(6) C. # Am for i, m= 1,...,n

i

(6) Ci + Cj # Ck + C] for i, j, k, 1 = 1,...,n pairwise

different

For the same reason equality has been excluded in (1).

Obviously, the game is fully specified by 3n real numbers,
namely Cl,...,Cn, Rl""’Rn’ So""’sn-l’ satisfying {1),(4),
(5) and (6). In the following a game of this kind will be
called a market entry game.

Note that we do not assume anything on the sign uf Ci’ Rm
Even if for the application, which we have in mind, the Ci

and § .
m

generally will be positive numbers.

2. Pure Strategy Equilibrium Points

Let m be that integer which satisfies

(7) CFTI<AI'T] orm =0

and

(8) Cri1 > A5

m+1
Since Cm is monotonically increasing and Am is montonically non-
increasing in m and since equalities are excluded by (5), it

is clear that exactly one m exists which satisfies (7) and (8).
As we shall see, m is the equilibrium number of players who
enter the market.

Let n = (nl,...,nn) be a pure strategy combination and let n%
be a strategy of player i, then n/n% denotes that strategy com-
bination which results from = by substituting n% for T and
leaving all other components of n unchanged:

{(9) n/né = (nl,...,ni_l, n%, n1+1,...,nn)

With the help of thisnotation an equilibrium point in pure
strategies can be defined as a pure strategy combination



1% = (nf,...,nﬁ) with

(10) H,(n®) = max H,(n%/n.)
i i i
Tt1.€II_i

for i = 1,...,n where s is player i's set of pure strategies,
in our case the set {0,1}.

Theorem 1: Let 1 = (El,...,En) be the following pure strategy
combination

(11) - 1 for i 1,...,m
1 g for i m+l,...sn

where m is defined by {7) and (8). The strategy combination =

is an equilibrium point in pure strategies.

Proof: Obviously, the payoffs for = are as follows:

; R= - C;  for i ly...,m
(12) Hi(x) = S- for i = m+l,...

i

]
=
+
—
=

Consider a player i with i = 1,...,m. If he deviates to

L 0 he receives

(13) H.i(n/'ﬂ.i) = Sr-"‘],

In view of {3) and (7) this is smaller than Hi(E). Now, con-
sider a player i = m+l,...,n. If he deviates to =, = 1 he re-
ceives

(14) Hi(ﬁ/ni) = R=,1 - C;

In view of (3) and (8) this is smaller than Hi(£).

Theorem 2: The pure strategy combination n¥={ n? ,...,ng) is
an equilibrium point if and only if the following conditions

are satisfied:

(15)  m(xz#) = m



L
[y

(16) C; < Aﬁ for every i with n*
i

1
o

(17) C; > As.q1 for every i with n?

Proof: In the same way as in the proof of theorem 1 it can be

seen immediately that each player looses by deviating from a
strategqy combination 2% satisfying (15), (16), and (17).
This proves the if-part of the theorem.

Now suppose that =% is an equilibrium point. We must show
that (15), (16), and (17) are satisfied. Define m* = m(n*).
Inequalities (16) and (17) must be satisfied with m* instead
of m, since otherwise in view of (3) a deviation would be
profitable for at least one player.

It remains to show m# = m. Suppose that m# < m. Then at

least one of the players i = 1,...,m employs the strate-
gy n? = 0. For this player i we have Ci < Am*+
This nlayer i could gain by deviating to L 1.

1 since A #,>A-.
Suppose that m* > m. Then at least one of the players i=m+l,...,n

employs the strategy n? = 1. For this player i we have C1>Am*,

since Aﬁ > Am*' This player i could gain by deviating to =n. = 0.

This shows that n* cannot be an equilibrium point unless we
“have (15).

Remark: The proof of theorem 2 shows that all the pure strate-
gy equilibrium points are strong in the sense that every
player looses by deviating to another strategy.

3. Elimination of Dominated Strategies

It can be seen easily that a player i has a dominated strate-
gy if and only if either

(18) Ci > A
or
(18) C, < A

holds. In case (18) the strategy =, = 1 and in the case (19)

the strategy n, = 0 is dominated. In both cases we have strict



dominance, weak dominance is excluded by (5).

It is intuitively clear that the game situation remains
essentially unchanged if the players with dominated stra-
tegies are fixed at their undominated strategies. In this
way, the original game can be mapped into another game where
the set of players is reduced by the elimination of those
who have dominated strategies in the original game. It can
be seen without difficulties that after an appropriate re-
numbering of the remaining players the new game is in the
general class of games considered here. Therefore, we do
not suffer a real loss of generality if we restrict our at-
tention to games where no player has a dominated strategy.
Accordingly, we shall assume

{20} C. % Al for i l1,...,n

(21) C, > A, for i 1,...,n

It may, of course, happen that new dominated strategies
occur after we have gone through the process of eliminating
strategies once, but after a finite number of repetitions
we shall receive a game without dominated strategies.

The solution concept developed by John C. Harsanyi and Rein-
hard Selten specifies a reduction procedure which among
other things eliminates dominated strategies {Harsanyi 1975,
1977, Gilith 1978). It could be formally shown that the app-
lTication of the solution concept Teads to the result that

in our case instead of a game with dominated strategies that
game must be solved which is received by iterated elimina-
tion of dominated strategies. In order to avoid lengthy de-
tails we shall not do this here. We shall restrict our at-
tention to games satisfying (20) and (21). Such games will be
called reqgular market entry games.

4, Formations

The solution concept requires us to look at certain sub-
structures of the game called formations. Consider a game



which results from the original one by restricting the pure
strategy sets of the players to nonempty subsets of the ori-
ginal pure strategy sets; the new payoff function is the old
one restricted to the new set of strategy combinations. Games
which arise in this way are called formations if for every
player i the following is true for every joint mixture of
pure strategy combinations of the other players in the new
game: Player i's best replies to this joint mixture are the
same in the original and the new game.

A primitive formation is a formation which has no proper
subformation. Consider a pure strategy equilibrium point

o= (nl,...,nn) which is strong in the sense that for
i=1,...,n player i's equilibrium strategy =, is the only
best reply to n. Clearly, we receive a primitive formation

if we restrict every player i's pure strategy set to the
single strategy T It may happen that a game has primitive
formations which do not arise from strong pure strategy equi-
librium points. As we shall see, this is not the case 1in

the games considered here.

In the solution concept developed by John C. Harsanyi and
Reinhard Selten the primitive formations are of special
significance. In a game which cannot be further decomposed
or reduced the solutions of the primitive foramtions are
considered to be natural solution candidates which must be
compared with each other in order tb eliminate all but one
if this is possible.

Theorem 3: In a market entry game the primitive formations
are exactly those substructures which arise from a pure stra-
tegy equilibrium point = = (nl,...,nn) by restricting every
player {'s strategy set to his equilibrium strategy n..

Proof: As we have seen at the end of section 2, all pure

strategy equilibrium points are strong. This shows that they
yield primitive formations. It remains to show that no pri-
mitive formation can have more than one strategy for any
player. Let C be the set of players which have two strate-
gies in their restricted pure strategy set. Since the other



players are fixed at their formation strategies the players
in C find themselves in a situation which after an appro-
priate renumbering of the players is equivalent to a game
in our class. Therefore, by theorem 1 the formation has a
strong pure strategy equilibrium point. It follows by the
definition of a formation that this equilibrium point is

a strong equilibrium point of the whole game, too. This
shows that the formation is not primitive.

5. Payoff Dominance

As we have explained before, the solutions of primitive
formations are regarded as natural candidates for the so-
lution of the game. They are called initial candidates.

The set of all initial candidates is referred to as the first
candidate set since in the process of finding the solution

a sequence of a finite number of candidate sets may have

to be considered.

In our case the initial candidate set is the set of all
strong equilibrium points.

We say that an equilibrium point ¢ payoff dominates an equi-
Tibrium ¥ 1if we have

(22)  Hi(o)sH;(¥) for i = 1,...,n

The next step after the determination of the first candidate
set consists in the elimination of all initial candidates
which are payoff dominated by other initial candidates. In
this way one receives the second candidate set.

In order to see how in our case the second candidate set
differs from the first one we investigate the circumstances
under which one strong ecuilibrium point ¢ = (ml,...,¢n) pay-
off dominates another strona equilibrium point ¥ = (Wl,...,wn).

We first observe that the following equations hold for players
who use the same strategy in ¢ and ¥:



(24)

=
-
—_——
=
S
1}
p g
—
——
=]
S
1]

Rﬁ - Ci for 9, = ¥; = 1

Since payoff dominance is defined by strong inequality we
must have

(25) 95 F ¥, for i = 1,...,n

if ¢ payoff dominates ¥. Therefore a payoff dominance relation-
ship requires

(26) n = 2m
since those players who are in the market in one equilibrium

point must be outside the market in the other. If o payoff
dominates ¥,thus the following conditions must be satisfied:

H
—

(27) Re = C_i > S- for i with 9

"
Q

(28) 5= > Re - Ci for i with o,
On the left hand side of the inequalities (27) and (28) we
find the payoffs in ¢ and on the right hand side those in V.
This shows that the players i with o; = 1 and ¥ = 0 must be
the players 1,...,m. Consequently, ¢ cannot payoff dominate ¥
unjess we have

(29) (1,...,1,0,...,0)

S
H

(30) 14

1}
_—
o
-
w
o
-
[
-
»
[
—

This shows that the second candidate set either agrees with
the first one or has exactly one candidate less, namely
(0y...,0,1,...,1).

6. Risk Dominance

In order to narrow down the second candidate set a notion of
risk dominance is employed. For any two equilibrium peints
it can be determined whether one risk dominates the other.
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It may also happen that there is no risk dominance rela-
tionship between two equilibrium points. The definition of
risk dominance is based on the idea that for the purpose of
comparing two equilibrium points ¢ and ¥ one has to look

at a hypothetical situation where one player i is convinced
that either ¢ or ¥ is the solution and that ail other players
know which one of both equilibrium points is the solution.

It may happen that 9; = ¥ In this case player i does

.i
not have to know whether o or ¥ is the solution. He just

can play o5 = ¥y-

Consider a player i with 05 $ Y3 he must have a subjective
probabjlity z for v being the solution. With this probabili-
ty z his expected payoff for playing a pure strateqy ™ is
equal to

(31)  E.(n;.2) = zHi(o/n5) *+ (1-2)H (¥/n,)

We say that T is a best reply to z if s is a pure strategy
which maximizes Ei(ni’z)' Let r? be that mixed strategy of
player i which assigns equal positive probability to all
best replies to z and zero probability to all other pure
strategies. It is reasonable to suppose that player i will
use the strategy r? if his payoff expectation is given by (31).

He has ho reason to prefer one of the pure best replies to z.

For each of the players i with 9 ¥ v, we define a strategy Pi
which can be thought of as a preliminary theory on his be-
havior. Since this strategy plays a similar role as a prior
probability distribution it is called player i's prior stra-
tegy. Assume that z is a random variable uniformly distri-
buted over the interval [0,1]. If this is the case the pro-
bability, with which any pure strategy n, is used by player 1,

i
is given by the following integral:

(32)  pylxy) = £ xy (ny)dz

O

Fquation (32) defines player i's prior strategy.

We shall first define risk dominance for the case that we
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have 94 ¥ ¥ for 1 = 1,...,n. The definition is based on the
application of the tracing procedure to the prior strategy
combination p = (pl,...,pn). The tracing procedure which will
not be described here in detail {see Harsanyi 1975,1977) can
be thought of as a mathematical model of a reasoning process
which starts with a prior strategy combination and ends with
an equilibrium point. The initial non-equilibrium strategy
combination is gradually changed into an equilibrium point.

In the case o, ¥, for 1 = 1,...,n we say that ¢ risk domi-
nates ¥ if ¢ is the equilibrium point which results if the
tracing procedure is applied to p.

If for some players i we have o5 = ¥ the definition of risk
dominance requires that the tracing procedure is not perform-
ed in the original game but in a restricted game; the re-
stricted game is derived from the smallest formation which
contains both ¢ and v by fixing the players i with 9y = ¥4 at
these strategies. QObviously, in our case this formation con-
tains both strategies for all players i with 9; ¥ Y- The re-
stricted game differs from the original one by the fact that

it has fewer players, namely those with ¢. # Y. The payoffs

.i
in the restricted game are derived from the original ones by
fixing the pilayers with 05 = ¥y at the strategies.

p risk dominates v if the application of the tracing procedure
to the prior strategy combination in the restricted game yields

p as the final equilibrium point.

Since it may happen that neither ¢ nor ¥ results from the appli-
cation of the tracing procedure it is not excluded that neither
one of both equilibrium points risk dominates the other.

In the analysis of the market entry games investigated here
it will not be ‘necessary to apply the tracing procedure. It
is known that the result of the tracing procedure is the best
reply to the prior combination if this best reply is a strong
equilibrium point. This is the situation which we find in the
risk dominance computations arising in the analysis of our
model.
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7. Strategic Distance and Maximal Stability

Not all risk dominance comparisons between elements of the
second candidate set are regarded as equally important. Com-
parison between equilibrium points,which are in a certain
sense near to each other,are given priority.

Ideally, one would want to select an equilibrium point which
risk dominates each other equilibrium point in the second can-
didate set. Unfortunately, this is not always possible: In
view of this fact it seems to be reasonable to look for equi-
1ibrium points which are undominated by other equilibrium
points within a large neighbourhood. One would 1ike to make
this neighbourhood as large as possible.

In order to make these ideas more precise it is necessary to
introduce a measure of strategic distance. The measure adopted
in the theory of Harsanyi and Selten is closely connected to
the way in which the prior strategies are computed. For the
sake of simplicity we shall explain the distance measure for
the case o; $ Y. for i = 1,...,n. If we have 9y = ¥4 for some
players the same definitions apply to the restricted game.

Let rZ be the following strategy combination

(33) %= (ri,....r))

where the r? are defined as in section 6. We call rZ the average
best reply to z. The interval 0 < z < 1 is divided into a fi-
nite number of subintervals where different strategy combina-
tions are average best replies to z. Some of these subinter-
vals are single points. Those strategy combinations,which are
average best replies on a subinterval of positive length, are
called essential for the comparison between o and V.

The strategic distance e{¢,¥) is defined as the number of ave-
rage best replies which are essential for the comparison bet-
ween ¢ and V.

If two strong equilibrium points ¢ and ¥ are compared the
distance e(¢,¥) is at least 2 since ¢ and ¥ are always es-
sential average best replies.



- 13 -

The distance measure e(¢,¥) has the following interpreta-
tion: It counts the number of critical subjective probabili-
ties z where at least one player shifts from one best reply
to another. The greater this number of critical probabilities
is the greater is the confusion which arises in the risk do-
minance comparison between ¢ and ¥. In this sense e(p,¥)
measures the intensity of confusion. We may say that a prefe-
rence for more clear cut comparisons is involved in giving
priority to comparisons at small strategic distances.

The diameter e of the second candidate set is defined as the
greatest distance e{¢,¥) between two equilibrium points ¢ and
¥ in the second candidate set. For a given equilibrium point o
in the second candidate set let o(¢)be the greatest number k
among the integers 1,...,e such that the second candidate set
contains no ¥ with e(g9,¥) < k which risk dominates ¢. This
number c(g¢) is called the stability radius of ¢. Let ¢ be

the maximal stability radius of equilibrium points in the
second candidate set. The elements ¢ of the second candidate
set with o{(9) = o are called maximally stable.

[f the second candidate set contains only one maximally

stable element then this equilibrium point is the solution of
the game. The determination of the solution is more compli-
cated if there are several maximally stable equilibrium points.
Fortunately, this more difficult case need not concern us

here since the analysis of our model will exhibit a unigue
maximally stable equilibrium point.

8. Strategic Distances in Market Entry Games.

If a regular market entry game has only one pure strategy
equilibrium point then this must be the equilibrium point T
described in theorem 1. Obviously, © is the solution if the
game has no other equilibrium point. We can restrict our at-
tention to the case that there are at least two strong equi-
Tibrium points.

Consider two different strong equilibrium points ¢ = (ml,...,wn)
and ¥ = (wl,...,wn). Let M be set of all players i with

9 - Y. The set M is the player set of the restricted game
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for the risk dominance comparison between ¢ and v. A player
i in M must have an incentive not to enter if there are m
other players in the market and he must have an incentive
to enter if there are m-1 other players inside the market.
Otherwise he could not have different strategies in both
equilibrium points. Hence

< Ci < Aﬁ for all €M

(38)  Ajs
In order to compute the prior strategies p, and the strate-
gic distance e(¢,¥) we must determine the best replies to z.
Consider a player i with 90; = 1 and vy o= 0. For =. = i and

L 0 equation (31) assumes the following form:

(35)  E.(l,z) = 2(R= - C;) *+ (1-2)(Rayy - C5)

Z Sﬁ,]_l

(36) Ei(O,z) + (1-2)Sz

Let Z(mi) and Z(wi)’ respectively, be the subintervals of

0 <z ¢l where o, and v, are hest replies to z. It follows
by (35) and (36) that we have

(37) Z(g:) = i M ! for 9. =1
C. - A
m+1
(38)  I(v:) = |0, pm—g—— for ¢. = 1
! m m+1 )

Now consider a player €M with 0; = 0 and v, = 1. Here we

have

(39) Ei(l,z) z(Rﬁ+1 - Ci) + (l-z)(Rﬁ - Ci)
(40} Ei(o,z) = z Sﬁ + (1-z)Sﬁ]_1

This yields

A- - C.
(41) Z((Pi) = !jg—_—,ﬁ—— s 1 for 0; = 0
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A- - C.
(42)  Z(¥.) = (o, ———-—A——T — for ¢. = 0
1 Am m+1 1

"

Equations (37),(38), (41) and (42) show that player i shifts
from his best reply Y to his best reply 9 at the follow-
ing critical probability Z:1

(43)  z, = K_-——K—C" BLATES PN
! m  m+l !
Aﬁ - Ci
(44) Z; = P for p; = 0
m - Az

In view of (34) it is clear that 0 < z, < 1 holds for

i =1,...,n. Suppose that any two z. are different from each
other. It can be seen immediately that in this case there

are |M! + 1 different essential average best replies r?

where IM! is number of players in M; the IM| critical pro-
babilities z, subdivide the interval 0 < z < 1 into IMI + 1
subintervals. This yields e(g,¥) = IM! + 1

The distance may be smaller than IM| + 1 if several of the
z, are equal to each other. In view of (1) two Z, of the
form (43) for different players cannot be equal to each
other; the same is true for two z, of the form (44). There-
fore for i # j we cannot have z, = Zj unless both players
use different strategies in o¢. Suppose that for o, = 0 and
;5 = 1 the critical probabilities z, and Zj are equal.

Then it follows by (43) and (44) that we must have

(45) C_i + Cj Aa + Aa+1

In the case g,
satisfied. In view of the non-degeneracy assumption {6)

there can be only one pair i,J with i # j such that (45)
holds. Suppose that i,j is a pair of this kind and that

both players are in M. Then e(gp,¥) is equal to IM].

1 and 95 = 0 the same condition must be
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Sinee the number of players in the market is m in both
equitibrium points, IM| must be an even number. For IM|=2
the distance is either e{g,¥) = 2 or e(¢,¥) = 3. For IMi=4
the distance e{o,¥) is either 4 or 5. Obviously for IM| > 2
the distance e{gp,¥) is always greater than for Ml = 2.

As we shall see, a regular market entry game has one and only
one equilibrium point, namely = as defined by (11) which is

not risk dominated by any other equilibrium point at a distance
of at most 3. From what we have said, it is clear that nothing
more has to be shown in order to prove that = is the solution.

9. Risk Dominance in Market Entry Games

For the reasons mentioned above it will be sufficient to 100k
at risk dominance comparisons between eauilibrium points ¢ and
y with only two players using different strategies in ¢ and ¥
or,in other words,with IM}I = 2. Let i and j be the two players
in M and assume

(46) 0; = 1 and v = 0

It follows by the definition of P in {(32) and by (37), (38),
(41) and (42) that we have

Aﬁ - G,
(47)  piley) = g A=

m m+1

C. - A=
(48)  pi(¥,) = e

m m+1

C.-A=-
(49)  pylog) = FEpe

m m+1

As - Cj
NN R=- R

m m+1

———
=3
St

I

(50) p

Player i's strategy =, = 1 is his only best reply to P in

the restricted game if



> Pylog) Sgoq *+ ps(¥s) S

This inequality compares player i's expected payoff for his
strategy Ty o= 1 with the expected payoff for L 0. (51) can
be written as follows: ‘

(52) pj(Qj)(Aﬁ - CT) + pj(?j)(Aﬁ+1 - Ci) > 0
With the help of (49) and (50) it can be seen that this is
equivalent to the following condition:

(53)  (Cy - Amyp)(Ag = C5) > (Ag = C)(C; - Azyi)

Here we have used the fact that in view of (34) we have
A= > A- The case Aﬁ = A

m m+1- m+1
but by the assumption that there are at least two different

is not excluded by the model.

strong equilibrium points. Suppose that we have Ci < Cj. It
can be seen with the help of (34) that all factors in (53)

are positive. The first factor of the left-hand side of (53)
is greater than the second factor on the right-hand side, and
the second factor on the left-hand side is greater than the
first one on the right-hand side. In this way we can see that
{53) holdsif and only if Ci is smaller than Cj, i.e. for i < J.

Player j's strategy ny o= 0 is his only best reply to Pj in
the restricted game if

(54) pi(mi)sﬁ + pi(wi)sﬁ~1

> p1(¢i)(Rﬁ+1 - C) + pi(wi)(Rﬁ - Cj)

J
With the help of (47) and (48) it can be seen in the same way

as above that (54) is equivalent to (53). Consequently, player
j's best reply to P; is 93 if and only if Ci < Cj holds.

It is now clear that both 95 and 95 are the only best replies
to the prior strategies in the restricted game if and only if
we have C, < Cj' (Note that the 1imiting case Ci = Cj is ex-

cluded by (1)). If the tracing procedure is applied in the
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restricted game for the comparison of ¢ and v the final re-
sult will be ¢ in the case Ci < C‘j and ¥ in the case Cj < Ci‘
If (46) holds for a comparison with [Mi= 2 then g risk domi-

nates ¥ if and only if Ci < Cj holds.

10. The Solution of Regular Market Entry Games

It now can be shown without much difficulty that = as given
by (11) is the solution. For this purpose we shall prove two
assertions (a) and (b):

(a): Let ¥ be a strong equilibrium point with e(71,%) < 3
and v 4 7. Then 1 risk dominates V.

(b): Let v be a strong equilibrium point with v + T.
Then there exists a strong equilibrium point p with

e(p,¥) < 3 such that ¢ risk dominates V.

It is clear that (a) and (b) have the consequence that 1 is
the only maximally stable strong equilibrium point in the
second candidate set. (We have shown in section 5 that = is
not payoff dominated). It follows by (a) that the stability
radius of 7 is at least 3 and it follows by (b) that the sta-
bility radius of any other strong equilibrium point is smal-
ler than 3.

We now proceed to show (a). Let i and j be the two players
who use different strategies in t and ¥ and assume E1= 1 and
- - 0. It follows by definition (11) of = that we must have

J

Ci < Cj. In view of the result of section 9 this shows that

(a) is true.

1t remains to show (b). The equilibrium point ¥ prescribes
v, = 0 to at least one of th? players 1,...,m and ¥y o= 1 to
at least one of the players m+l,...,n. Let i and j be two
such players. Define ¢ = (ml,...,@n) as follows:

v: = 1, o. = 0 and 0 = ¥y for every k different from i and J.
Since in view of (1) we have C, < Cj it follows by the result
of section 9 that ¢ risk dominates Y.

As the result of our analysis we can state the following
theorem:
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Theorem 4: The solution of a reqular market entry game is
the equilibrium point n described in theorem 1.

11. The Linear Cournot-Market Entry Game

The most obvious example is based on the linear Cournot-model.
The model is embedded in a two stage-game which can be des-
cribed as follows:

Stage 1 (entry stage): n potential suppliers 1,...,n simul-

taneously choose nyo= 0 (no entry) or LIPS 1 (entry). The
choices are made without knowing the decisions of the others,
At the end of stage 1 the vector m=(my,...,®

n) is made known to

all players 1,...,n.

Stage 2 (supply stage): A1l players with LA 1 simultaneous-

1y choose a supply Xs > 0. The choices are made without know-

ing the decisions of the others. For L 0 we define X = 0.

Payoffs: The payoff functions Hi are defined as follows:

(55) ’ {fip - kxi - Ci for ¥ 1
i =

0 for L

1

0
where the price p is given by

(56) p = min [b - ax, 0]
and x is total supply:

(57) X o= Xgt ...+ X

a, b and k are positive constants with b>k. The entry costs
Cl,...,Cn are positive and satisfy inequality (1).

The two stage-game model is a game in extensive form. Each
situation,which can arise at the beginning of stage 2, cor-
responds to a subgame. We call these subgames supply decision
subgames. For every vector n = (nl,...,nn) with = # (0,...,0)
the game has one supply decision subgame - There are no
other proper subgames.

A natural solution concept which can be applied to the ex-
tensive game is that of subgame perfect equilibrium point.
An equilibrium point is called subgame perfect if it induces
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an equilibrium point on every subgame (Selten 1973 and 1875).
In order to find the subgame perfect equilibrium points of
the two stage-model we have to look at the equilibrium points
of the supply decision subgames.

As we shall see each of the r has a uniquely determined equi-
1ibrium point which can be found as follows: For n.o= 1 we
have

(58) H; = x;(b-k-ax) - C;

It follows that for Xs > ¢ the condition

aH .

1 = - - - =
(59) 3;: = b k ax ax 0

must be satisfied at the equilibrium point. Let m be the
number of players with Xs > 0 at the equilibrium point.
summing the necessary conditions {(59) for all i with x, > 0
yields

m
(60)  x=m1 &

This together with (59) leads to the following conclusions:

21 b-k .
(61) X_i = m+l T if X_i > 0
b-k

(62) p =k + 3T

Since p is greater than k a player i with L 1 cannot have
the equilibrium supply X; = 0; a sufficiently small X5 > 0
would still yield a price greater than k and thereby raise
player i's payoff above 'Ci' Consequently, m is nothing else
than the number of players with L 1 and (61) holds for all
these players. It can be seen immediately that the marginal
conditions are not only necessary but also sufficient for equi-
1ibrium. Consequently, we have found an equilibrium point

which is uniquely determined.
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The equilibrium profits for rn are functions of =n; player
i's equilibrium payoff will be denoted by Hi(“)' Equations
(55), (61) and {62} yield

M1 bk V¥ o -1
\ a (|~mf1ti+1,; S or m; =
(63) Hy(m) = ¢
L 0 for n, = O
1
where m(n) is the number of players with L 1l in =

The subgame perfect equilibrium points of the two staae-
model can be found with the help of the truncated game which

results from the original extensive form if every subgame I
is replaced by the corresponding payoff vector
H{n) = (Hl(n),...,Hn(n)). This truncated game will be de-

noted by T.

As we shall see, the truncated game T is a market entry
game if the non-degeneracy conditions (5) and (6) are sa-
tisfied. The theory of Harsanyi and Selten can be used in
order to select one of the equilibrium point of T. For

this purpose we can make use of the results obtained above.
Together with the uniquely determined subgame equilibria the
solution of T determines a subgame perfect equilibrium
point for the two stage-model. It is natural to think of
this equilibrium point as the solution of the two-stage
model even if the theory of Harsanyi and Selten has been
developed for finite games only and, therefore, cannot be
applied directly to a game with infinitely many pure stra-
tegies.

In order to see that I is a market entry game if the non-
degeneracy conditions (5) and (6) are given it remains to
show that (4) is satisfied.

In our case we have

2
1 {b-k
(64) Rp = 5'(H?T)

(65) S

I
o



This yields
2 2
(6) - 1[5

Equation (66) shows that A_ is a decreasing function of m.
Assumption (4) is satisfied. If,in addition to this, (5)

and (6) are satisfied the solution of T is given by the-

orem 4. Those m players who have the lowest entry costs

enter the market while the other players stay outside.

This is the result one would intuitively expect. Neverthe-
less, it is important to see that it can be obtained by a
general theory without making use of ad hoc-arguments related
to specific features of market entry games.

12. Further Possible Applications of Market Entry Games

In the following we do not want to describe examples of mar-
ket entry games in detail. Instead of this we shall give
verbal descriptions of economic situations which could be
modelled as market entry games under appropriate assumptions
on functional form and parameters.

In the last section,we have opened up the linear Cournot-
oligopoly model by adding a market entry stage which precedes
the supply decisions. The same embedding procedure can be
applied to many other oligopoly models, e.g. to models with
differentiated products where prices, advertising expenditures
or quality parameters are the decision variables.

It is also possible to look at two stage-models where the first
stage is not an entry stage but an innovation stage. Suppose
that each of n suppliers can adopt a method of production

which saves labour but requires investment costs which are
different for different firms in view of variation of tech-
nical experience. The second stage subgame equilibria will
depend on the number m of suppliers who have adopted the new
production method at the innovation stage.

In a paper by W. Giith and U. Meyer (1979} a multi-stage-oligo-
poly model is investigated which describes a situation where
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a successful production method already used by one oligopo-
1ist can be imitated by his competitors. One may think of a

patent whose time of protection is running out. It has been
shown in the paper that the analysis of this model Teads to
a market entry game.

T.C. Schelling (1973) discusses several examples of game situ-
ations where each player i has just two pure strategies myoT 0
and L 1. Some of these games typically will satisfy all
structural relationships of market entry games. Applying our
results, which are based on the equilibrium selection theory of
Harsanyi and Selten, these games now can be more thoroughly in-
vestigated.

There are many examples in the area of public choice which,

in principle, permit a description in terms of market entry
games even if the application of a game theoretical theory

of equilibrium point selection does not seem to be really
adequate. Suppose, for example, that vaccination against an
infectious disease, say polio, is available on a voluntary
basis. Since the danqger of infection is a decreasing function
of the number of pecople vaccinated the incentive to obtain
vaccination also decreases with this number. Those who obtain
vaccination receive a utility R derived from security against
disease and from which an individually different cost compo-
nent Ci must be subtracted which stands for the inconvenience
of vaccination (it is assumed that utilities are additive in
these components; the assumption that R is eoual to everybody
can be secured by an appropriate scaling of utility units).
Whereas Rm = R is constant the utility Sm obtained by the vac-
cination of m other individuals increases with m. Therefore Am
is a decreasing function of m. Clearly, theorems 1 and 2 can be
applied to this model but it is debatable whether it makes
sense to apply the selection theory of Harsanyi and Selten.
The game model assumes that every player knows the costs Cﬁ

of every other player. If information is incomplete in this
respect a different and more difficult game is played.
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