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L.P.-games are n-person cooperative games arising from a
linear program as studied by OWEN and BILLERA-RAANAN.
Employing a version of nondegeneracy of games developed

by H.-G. WEIDNER and the author, we show that methods

from the Geometry of Numbers are the suitable tool in
order to obtain lower bounds for the number of players

of each type that ensure that the core and the competitive
eugilibrium coincide.



Introduction:

The term L.P.-Game stands for linear production game or linear
program  game. These games were introduced by G, OWEN i R

who showed that the core of these games converges to the set

of competitive equilibrium, that is to those payoffs to the
players which are induced by the shadow prices (optimal solution
of the dual programme of the grand coalition). OWEN uses the

well known technique of introducing "replica markets" in order

to state his convergence theorems. On the other hand L.J. BILLERA
and J.RAANAN [ 1 ] considered the same type of games in the non
atomic frame work. These authors showed that OWEN's result holds
true in the sense that every measure in the core is induced by

an optimal solution to a dual problem. They also considered the
(asymptotic) value of L.P.-Games and were concerned with exact-

ness of such games.

A11 authors were aware that L.P.-Games are a special case of
market games and that, therefore, many results may be obtained
by applying the well established theory of market games either
for the replica case or for the non atomic case. However, many
proofs are much easier due to the linear structure imposed on
the game and thus the L.P.-Game exhibits certain structures and
properties that cannot be found in the general frame work of
market games,

This paper is an attempt to link convergence theorems about the

core and the competitive equilibrium with a version of nondegeneracy
(for additive set function or for games generated by such functions)
which was introduced in [ 5 ]. As was pointed out in [ 5 ] extensively,
"nondegeneracy" has something to do with extreme games and their
solution concepts. Moreover, it is a result mentioned in [ 5 ] that
nondegeneracy may be guaranteed if "sufficiently many small piayers”
are participating. The term sufficiently many can be made very



precise: Depending on the relative size of the initial allocations
alloted to the players there are sxact bounds for every type of
player in order to guarantee that a2 game is nondegenerate.

In previous papers this result was applied to studying the question
of characterizing extreme games. In this note it is shown that non
dégeneracy may also serve in order to formulate the equivalence of
core and competitive equilibrium in a finite frame work, at least as
L.P.-Games are concerned. As it turns out a certain version of non-
degeneracy is sufficient to quarantee the coincidence of core and
competitive equilibrium. Therefore, in principle it is possible to
obtain exact bounds for every type of player, depending on the
relative size of the initial resources such that, if these bounds
are reached and sufficiently many players of each type available
{in particular, sufficiently many "small" players), then core and
competitive equilibrium coincide. It should be stressed that this
shows that the coincidence does not depend on the replica model:

We have a much more precise notion of "a large player set" then is
offered by either the replica version or the non atomic version of
a market (note that OWEN of course is aware that the convergence is
finite in case of a unique dual optimal solution).

Hence the result of this note may roughly be stated as follows. In
the frame work of L.P.-Games there are player sets of "medium size"
such that the core and the competitive equilibrium coincide. In
order to define "medium size" exact Tower bounds for every type

of player may be specified. The clue to link the equivalence theorem
and the exact lower bounds is nondegeneracy theory as developed in
€L 16308

1=

Indeed, nondegeneracy theory leads to problems of the "Geometry of
Numbers” (MINKOWSKI's 2N thecrem}, more exactly, to the problem of
determining certain lattice constants. The determination of these
lattice constants yields the desired lower bounds. Heﬁce, by contrast
to the replica or the nonatomic version of a game or a market, the
study of lattice constants seems to be closely reiated to the study
of games with “medium sized" player sets.



&} L.P.-games and nondegeneracy

The following introductory definitions are due to OWEN [ 3 ],

see also BILLERA and RAANAN [ 1 |. The clue of this section is

the definition of the system of "weak additivity sets" Q of

an L.P.-Game; see Definition 1.5., Theorem 1.6., and Corollary 1.7.
OWEN and BILLERA - RAANAN were implicitly working with this set.

The first author, because he is working "along the diagonal" - and
diagonal sets are elements of 0§, and the latter authors because
they are working "close to the diagonal ".

Let Q= ;6 A T _denote the set of plavers. For J = 1l....,m
let bl € FIE . bd s interpreted as an additive set function
(over @) by the convention
o) (S) = = by
p ==

and describes the distribution of resources j over & . Hence,
b = {hl,...,bm} is a "vactor-valued measure", we write

b (5) = £bo{5)s:s b 8T,

Next, let A = (ajk} >0 bean mx 1 matrix

] 5 A
st el

{"input-output-matrix") and let c € 121 . Given such a tripel

nn

OL= (A,b,c)
we consider, for S @

v(S) = -..rml:S} = max {c ¥ | xeﬂi, A x < b(S):

which defines a function v = vJL iR~k EE+ , Where P 1is the

power set of o (the coalitions).



(1)

The tripel

is called and L.P.-game. Because of
(2) v(s) = v(s) = min yB(S) 1y e RT, y A > c)

a core element of this game is easily obtained as follows. Pick an

. A — ; : - m
optimal solution y Tor the "dual g-program yvi.8,, ¥ E EI+
such that

(3) v() =¥ b (a) =min {y b (2) tyeR, yA > ¢},

then ¥ is feasible for (2) (as the constraints do not depend on S)
‘and hence

(4) y b(S) > v(S) .

But (3) and (4) show that ¥ b (v) = J; bi(+)+...4¥, b"() is an
element of the core of v, we write

(5) Y bee(v).

We shall hanceforth assume that b is normalized, i.e.,

(6) b (a) = e = (L,....1) € RY .

For any 2z € R™ et

-+

A,c

(7) fifzy = " [ 2} = mak {c% | xEHl s AR I}

denote the value of the "linear program " [A.,z,c} such that
i

Tl vﬂ; - v{ﬂ’b’c‘ = fﬂ’c B g

Finally, for ¥ € R denote

e e e - R
I‘*:ID = Qﬂl = QD ".!I*r




i€ I&T Emtn §y 2.1 yE B?T, yAhz>c¢l =y 2}
(8) = {z & B%T | ¥ is a dual optimal solution for (A,z.c)}
={zEET;ﬂyEET,yﬂic implies y z >y z}
={ze R} 1 f{z) =¥ z)
Remark E.1.0 1. If ¥y is optimal for the dual @ -program

(c f. (3)), then clearly

2. Suppose that, in addition, ¥ 1is the unique
optimal solution for the dual G-program
Then, it is not hard to see that there is
e > 0 such that for iz-el<e it follows
that z ¢ QD' That is, an =-neighborhood of
b (@) = e is contained in Q.. Hence, ¥y is
the {unique} optimal (dual) solution for

(A, 2, c) (1z-ei<e) or
fl{z) =¥z [lz-6i=<e) .
The feasible set of (2) and (3), i.e.,

iy ER; [y h>e)

is @ convex polytope. Let » be sufficiently large such that

3tk m i !
(9) Lo e R Lo, el

contains a (relative) neighborhood of all extreme points of this

nolytope. Then we have



5 b (1)

1

Lemma 1.2. Given A and ¢ , let ¥y € }tT be an extreme optimal

sglution for the dual o-program , i.e., ¥ satisfies
{3) and is extreme in Y. Suppose that

¥ R

are those vertices of Y that are adjacent te ¥. Then

=

m

G.={ZER. L (F-F) 2320 (psle..an)

+

If the dual 0O-program is non degenerate (in the sense of Linear
Programming), then gq = m.

No proof shall be offered as this is standard procedure in Linear
Programming and Convex Analysis.

Lemma 1.3. Given A and ¢, et ¥ be an extreme optimal solution
for the dual &-program , i.e., y satisfies (3) and
is extreme in Y.

Then there is a matrix A = {h?j n=1 q such that
J=l i,
— “ _' m -~
g, s ER_ ) Aoy

P

the rows of which are the vectors ¥"-y given by Lemma 1.2.

If the dual a-program 1is non degenerate (in the L.P.-sense), then

]

=m, T.., A is an mx m matrix which is obtained as follows.

Introduce slack variables Sqsee-aSqyp 3 i.e., define a mapping
g - RT ot ]Rm+1+1 by

y — (Y, 313 ’51+1} = )
Wla 59 '—}'rﬁu_k “\_,k » lfr]_, _.-: 2



{where A-k is the k'th row of A). Alsc let

i
/ayq -0 3 .]

Bl

-1 0
01
/

o seilead T iyt g BT

such thet S &Y —%¥" 151 -1.

Now, if ¥' = S{¥) corresponds to y , then ¥' is a vertex of Y',
Define d' = {1,....m1+1} by

dto=dd Fg =8y

then 1 J'| = 141 (nondegeneracy). Now
{13]. (i. k € {1 m+1+1))
JJEJ! Lo RS ]
ke J !

is the "simplex tableau" corresponding to ¥' , i.e.., defined by
I - k i b
.Ir!'u = E .}'-j .rq tk f L] :I
B g i

(the AX ~ (jeJ') being Tinear independent). Write



J
1 0
A= " LT -:u?‘ ..... 37
D 1
J! 'Jrﬂ
1 +1 , m

Then A 1is obtained by cancelling ail rows from A' that correspond

to slack variables, i.e.,

(//f J
N = K \\\\..... 1? o e Jie m

—
(e

Again, no proof is offered; the technique employed is standard in
L.P.-framework in order to find the adjacent vertices ?p {p=1,...,m)

of y 1in the non degenerate case., The additional restriction



i

18 (1)

is introduced in order to ensure compactues of Y -

otherwise some edges touching ¥ might be unbounded and would

not allow for neighbouring vertices.

However, we want to stress that the matrix A may be obtained

from A

and ¢ by standard procedures of L.P.-theory.

Remark 1.4, Clearly b (@] = ¢ > 0. Therefore, if ¥ is

the unigue optimal solution for the dual go-
program for some A , ¢ (cf. (3)), it follows
from Remark 1.1. that A e > 0. (note that A
has now row vector which is zero).

Definition 1.5. Let Ol= (A, b, c) and let ¥ be an optimal

solution of the dual q-program  (3). Let

_ wAsC S
QU = Qﬁ? . Define
0 = o= (sep 1 b(s)en,. BSOS, )
V ] Bl
Theorem 1.6. The following are properties of {:

—
-

P

%

4,

Proof

If 5,

Q=1{S€P I'¥ is S dual optimal as well as S°
dual optimal}

Q is closed under the formation of complements.

b (S) = v (S) = v®(S) if and only if S .

|

is the system of "wzak additivity sets" of v = v

[Tas]

Q= {SEP 1 v (S) +v (5% = v (Q)

1. follows by inspection of QG,

. 15 trvial,

3. is an immediate consequence of 1.,
4. is easy:

then S°€Q and (v = v%)



v{S)=Fb(S),v (55 =7b (59 ;

hence

1]

L

vi{5)+v (S5 =¥ (b(S) +b(s%)) =¥ b (Q) =v(a) .

On the other hand, suppose that

¥ (8] + v (5%)

v ()

for some SeP. Then, as y is feasible for the dual S and S©
program

¥ b(S) > v(S) = v (a) - v (5%

I

yb(2) - v(s%) >¥ b (2) -¥b (55
yb(S) .

"

Obviously, "==" prevails and we have
Fb(S)=v(S).¥b (s =v (s,

indicating that S, S €Q, q.e.d.

Corollary 1.7, Given U and y as in Definition 1.5., we have
Q={5eP 1 0<ADb(S)<Ae}.

Recall that A (depending on A, ¢, ¥) is specified by Lemma 1.3., also
Ae >0 if ¥ s unigue. The Corollary Tollows from Lemma 1.3. and
Definition 1.5. as

{SEP 1 AB(S) >0, Ab (5°) > 0)

[ ]
1]

1}

{SER 1 Ab(S) 20, Ae>Ab(S)).

Let us now recall a definition of nondegeneracy that has beesn used
extensively in [ 41051 (61].



R (1)

Definition 1.8. An additive, normalized (m (Q) = 1), set
function m on P (i.e., an n-vector} is said
to be nondegenerate with respect to a subsystem

En cP if m= {ml,...,mn} is the unigue solution
of the linear system of eguations in variables

J’ls...,}'n g'lt‘u"en h}"

L ¥y = m iRy (5P
fes =8

E ll'r_[ = 1
ieQ

(we write "m n.d. B, in this case).

Corollary 1.9. Let OL and y be given as in Definition 1.5. and
let Q=0 . Define W =¥b.If @ nd. Q, then

e(v)=e(vV’) =@ = Fb}.
Proof Let u€ @ (v) . For 5 €0 we have
W (@) = 4 (5) + u (59

(S} +v (5%) =v (@) = & (9)

[w
-

hence

w(S) b (S) =W (S) (SD) .

0
=
1}

|

(s)

As m n.d. 0, it follows that . =m , gq.e.d.

The following observation is useful . Given Ol and ¥y, consider
Q:={ze Efr! 0 <Az < he}

such that



W G (1)

and the question is whether b throws sufficiently many sets S
into Q such that m=¥ b 1is uniguely defined by it's values on
these sets, i.e., whether the range of b is "sufficiently dense
in Q“.

Intuitively, it may suffice to have "many smail players®, i.e.,
many small values of b% (i3, § = 1. am). It 15 (MEN's | 3 ]
result that replication of b 1is a procedure which ensures "small
players". On the other hand, BILLERA-RAANAN [ 1] show that a non-
atomic b is a possible version. Of course in these cases it seems
reasonable to assume that the range of b 1is "sufficiently dense
in Q".

However, we feel that the study of nondegeneracy yields more precise
insight into the meaning of "many smali players". £.g., the reacer
may want to turn to a result represented by Theorem 3.5. of [ 5



Y e 1)

see also page 38 in [ 4 1. In the context of that paper, non-
degeneracy of an additive set function m is eguivalent to non-
degeneracy of an integer valued M. The set Q =Q s a “contour
line" or “constancy set": Ql = {S | M{S) = A} (X natural).

According to the different weights M is capable of attaining as
values, M s split via

r
M(s)= = g |SnK |

where o0 < 9y <...< g, are integers and Q = Kyte - -*K, is a
decomposition. Roughly, Thecrem 3.5. of [ | states the following:
There are precise bounds Lp {p= 1 ... r} such that given some number

theoretical properties of A (A £ ideal spanned hy gl,...,grj
b L g T aas ¥

is a sufficient condition for non degeneracy of M with respect to

Q . The bounds depend on 9qse0sdy and close inspection shows

(see e.g. formula (26) (27) of [ 5 ] that bounds are large for small
g 5 in other words we must have many small players in order to ensure
nondegeneracy.

This is the main goal of our presentation: To show that aithough

the nondegeneracy system gh, as used in [ 5§ },is not the same

a5 the one we use in our present context (see Corollary 1.9.), the
results are roughly comparable: It is in principle possible to

define lower bounds for the players such that if there are sufficiently
many players (and in particular sufficiently many small players)

then m is nondegenerate with respect to Q and hence, by

Corollary 1.9. the core and the 'competitive equilibrium" coincide.
Tnis will be explained in Section 3. Section 2 is dealing with two

examples,



§ 2 Examples

Example 2.1. Let 1 =1 such that x ranges in R1,
£ E R}_ and

v (S) = max {cx 1 x € R}, ajxib‘j (S) {3=1,....m))
(1) .
= ¢ min b 5]
Je{lsenm}  a; .
a. >0 J

assuming of course that a # 0. The S-dual problem is given by

(2) v (S)

m i
i J m '
min {J_EI y; b (S)1 ¥y € R, yja;+...+ya, > c}

Consider this for s =g . Then

m
e m
(3) v (R) = min {jfl ¥; 1Y € R, yapt..ya > c} .
EEmat _
Let J:={it £ =v(Q) ={jla;=mxay,} ,
3 J jr J

then, clearly the extreme solutions of {3) are given by

£ 3 (i €3).
4

Therefore we pick j, € J dnd let ¥ =5 @

The neighbouring extremes of Y (given A sufficiently large) are

53

- el (J £j,) and e
J

(=1

such that
qﬂ = {z € R'E ! {FP-Q] 2> 0 {p=1,....m}}



- 16 - (2)

J 1y "0 SR
] =] Eiﬂ
e = ey {4 L] -_r
“"z\‘m.l_ia; i a. 'nd-#w]ﬂ:l.
J JD

Next, given b , we find

' i J
\] 3 IJG -‘J 7 GrT I
g=(sep DSl b (S) 1b(S) ,1b (S] 455y,
Y T s e d s a_ e a_ 0
J L e 8
(4) =Ger peEB b 8) L .1 4555y
= il d.- — d. aj 0
J 1, 3 .
2 = an
Note that y b =m= =—
Q

E:g.: fOor m=2 ay > ap, jo = 1; we have the following sketch:

I
Q. ={zeR; | —>» =)
0 & 32 Ell
i - T S TR
={zeR, | —<—<—+= -2}
" 1 %Ay Rs 0y
e=b(q)
s

|

a1}
—




& ks (2)

£ _ iy g . : i } ==r '
If J=1{j,) and y is the unique solution then a; > a; (3 #3y)

and we have the trivial

| s

Lemma 2.2. In the situation of Exampie 2.1., let éj: = - é— >0

J
(3 #3,) and assume that b 0. 4s
orthogonal to b (3 £ joj. Then, if

(5) by < 385 (J £ Jg)
it follows that J
> b
e (v} = {m} = {Eﬁ**l
Ig
Proof Let me € {v).

Llet i be an element of the carrier of bY (3 # jﬂ} . Then inspection
of (4) shows 1 €Q. From this it follows that m, = ﬁi = 0. On the
other hand, if i dis in the carrier of b ®  then

v () =m =m(Q) -m =m(Q1)

AT
_)_-_v{ﬂ-ijﬁ—t}-—é—_(ﬁ}-:v{ﬂ}ﬂﬁli :

o

i.e. m>m. As m, me@ (v) ,we have m=m .

Note that we did not show that m n.d. Q . As the next example shows,
this would similariy work with bounds {5) cut by approximately half
their size. However, as this procedure is too coarse anyway (as shall
be treeted in section 3) we do not elaborate con this topic.

In any case (5) tells us that players commanding resources J # J,
should be small (and as b9 {7x) = 1, this means that there should be
many of them).

example 2.3. {"replicated L.P.-games™).

Let S, ¢ = {i,i4n,...,  + (k=1)n}



- 18 - (2)
Ka ® F E& g
ien ;
I e [ : Vi coleee
and let "b € R be defined by “bl : = g by (1 E79) .
Then Xa: = {A, i‘:b, ¢) 1is the k-fold replication of o= (A,d,C)
and ku: =y ® js the k-fold replication of vO . We prefer to
consider this version (division of rescurces by %ﬁ since
Kiigy = o
b(R) = b (2) = e
kv[ﬁ} = v (Q)

follows at once.

This in turn implies that the dual problem is the same for o and
kﬁ since
ol el f m
min {yo{a)1L ¥y R, s ¥ A > ¢}
= min{yb(a)i yeR},yA>c}
Hence, y € Rff is an optimal solution for the dual kg - problem

if and only if it

Theorem 2.4.

then

is an optimal solution for the dual {-probiem.

Let &= (A,b,c) and

let y be an extreme solution of the dual &~
(and Xa -) problem. Also, Jet A be the

corresponding tableau of the simplex algorithm

as given by Lemma 1.3.. Assume fe > 0. If
K>1+ 2 max fy, by
g p=l...Q dp—t
1EQ i
g {kuj = {y kb}



et (2)

Ac

Proof Note that while Q = Q, 7

is the same for

o and kﬂb 3

Q=g (b) and g : =0 ()

are very well different. We are going to show that K%

n.d. kg if {6) is satisfied.

]
b
=
or

To this end, (6) is at once rewritten to imply

k=1 1
(7) T M, 7t Ay, by 20 (pl,...s0)
and
(8) Moo 1 A b. <a_e (p=1 )

i O T TR B T Gl

Now, according to whether k s even or odd, we may find a coalition

k K

S < "a , which has 7 or Eil players .1 of each type i. Clearly

() =% £b(a) =3
or
RLIORE R

respectively. Thus, S & kg . Pick 1€ 2 53 £'S. As kb{ =.é b
we find

k X k k
(9) My, "B (St1) = Ay fb () + Ay b,

k-1 g 1
ZET Rt 2t

(the inequality uses (7)). Also

-

V=) g UB ZAE TR i PR

A, Kb (S+1) <

(using (8)), (p=1,...,Q). MNow, (9) and {lﬂj show that S+

im
W=
#1]
L
=
11+



Y (2)

Now, in order to show nondegeneracy let p be a solution of
the "defining system" of equations as introduced by Definition 1.8,
As S and S+ € kg , We have

=
—
N
il
b=
(¥4
e

=i

I:S‘l"L} = u {S+1:] =

and hence, kﬁ = . As 1 may be chosen arbitrarily and 3
accordingly, we have u = "m , g.e.d.

Of course, the above theorem is a reformulation of OWEN's [ 3 ]
result about the finite convergence of core and competitive
equilibrium. However, we are somewhat more precise as bounds for
the coincidence of both concepts are specified. Nevertheless these
bounds are the first off hand numbers one can obtain by studying
nondegeneracy theory and as will turn out they are far too coarse.

In fact, the result of the theorem does not depend on the particular
replicated form of the market. A1l we have used is the fact that

an element in the range of b may be constructed, which is close

to %-. Then, if players are sufficiently small we may add singletons

to the set which generates this element, thus generating sufficiently
many sets in Kg in order to ensure nondegeneracy of E Kh with
respect to this system.
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§ 3 Lower bounds for the number of types

As in previous appiications nondegeneracy leads to the reformulation
of our problem by means of sum combinatdrial or number theoretical
device. As it turns out the number of players sufficient in order to
ensure that the core and the competitive equilibrium coincide depends
on certain lattice constants. This is done by introducing different
types of players which are in our present context characterized
completely by their initial outfit. However, the number of players of
each type may vary arbitrarily above of certain bounds.

Suppose there are p = 1,...,r different types of players involved
T s p=1,...,r denote type p's
initial allocation. Thus, the gﬂ are an enumeration of the different

ones of the bi' Put

in an L.P.-game. Let gp € R

(1) Kp: ={i| by = gp} : kp S o
Then
r v
o) = L | " .
(2) Bl e ik
and accordingly
- - r‘-—
(3) m=yb(:)=2 §g [ K n-|
p=1 :
r".—.
= pfl o e A

("equal treatment” when m € @ (v) is generated by an optimal
dual solution ¥).

Let us fix Op and y for the moment.

Definition 3.1. g separates i, jEu  if there is 5€0Q such that

g e ort JeRsl £ 5



~ 22~ (3)

iLemma 3.2. If wet€(v) and § separates i,j, €K . then

r
pizl= B w1 R e

for appropriate ﬁp €ER, (p=1,....1)

Proof let {,]€ Kp for some ¢.

Pick S as given by Definmition 3.1. such that ie5, j£5. Note that
hi = bj =4, and hence b (S-i+j) = b (S). From this, it follows

that Ab (S-i+3j) = Ab {S) and hence
S-i+] € 0
Therefore, as p € @ (v), we have

p {S) =m (S)
u (S-i+j) = m (S-i+3),

which implies

Therefore, u, = uy ﬁh ti.d EKDJ s e
0f course, Lemma 3.2, is a trivial version of equal treatment *n
the core. The separation condition indicated by Definition 3.1.
is indeed not a very strong one: In most applications treated o
far it turned out that the separation condition is automatically
satisfied if the sufficient condition for "admissibility" (see
the following definition) is satisfied.

Definition 3.3. Let 6= (g;,...,9. ) € RTY and k = (kys...0k

"] + T':I

€ N". Then (G,k} is said to be admissible




= 23~ (3)

("for Q" or "for (a,y)") if there is a matrix

A= (a)

[ Y ) i (RN, o

with integer elements uE such that

1. o <k Fose=Lsceisl)a
0 e W R (o )
(4) 2. & 1is non singular
- o
3. B2k E a8 <)A8
= sl g Tp

We shall use the term strongly admissible if, in addition, for
every p there is o such that 0 < ug < kp is satisfied.

The reader is obliged to compare this definition of admissibility
with the one given in [ 5] [ 6 ] .

Theorem 3.4. Given o and ¥ , let m: =y b as usual
and suppose that G and k are specified by
(1} and (2). If (G,k) is strongly admissible,
then @ (v} = {m} , provided A e >0 .

= fuﬂ}

Proof: Suppose u € € (v) and let plasp=leeea ol

be defined by (3).

‘=

1

Step 1: Let i,jeK for some p. Pick 3 such that

0 <ca%<k
B P

L= ]

Then, there is 5 € P such that |5 n b= Jbviously, 3
can be chosen such that i €S5S, €5 and hence g separates 1,3,
By Lemma 3.2., it follows that
r- -
(5} Tl s e Ny - Gee O
oA 1 4] B ;
p=l

with appropriate u_ {p=1,...,r). Next, this procedure may be
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repeated for any o, i.e., there is S% sucht that

| $°nkK | =al
p ! %

By condition 3, of (3) it follows that

r
0<ab (8T =az g | S"nK |
o AT &
4]
a o
=d I a g < Ae
p=1 P P
and hence s®e Q. Therefare
2 = (] ’ o o o
Edoa s B ] BORE Ay (57
i e BT o
= ol 5 = l g | b a
=TFI{S }= b g S nkK = I 9 o {p=l,...,¥'},
ﬂl’rl g P o=1 B

and, as A is non-singular, it follows that

{il""’ﬁr} = [al?""gr}'

TS, 1= s ...

We now have reformulated nondegensracy in terms of admissibility.

The guestion of finding bounds for the number of players of each

type may therefore be answered once it is possible to solve the

problems specified by (4). In other words, given the "weights”

G = {gl...,gr} and the "box size numbers" k = {kl""’kr}‘ urder

what condition is it possible to find the matrix & such that (4)

is satisfied?

Definition 3.5. Let k € N". for any vector d € R" , consider
the hyperplanes with normal d passing through 0
{say Hg] and passing through k (say HZ} and
let Ei be the intersection of the "stripe
bezwean“_ Hg and H; and the ractangle generated



hy “KCin W) 18

EE. {xeN' | 0 <dx < dk, o £ x < ki
K3
§ K
K d
o
j,.f--‘*'J“# H_____Hg
J'_.__,—""’-'r ...-‘!"-H‘ oy
o _
\\\\\ 1
Eg
d L
s ® Ky
We shall say that k 1is sufficiently large w.r.t. a matrix
peR 9" | if, taking the rows Dl ,.,.,ﬂqt of D, we find
r linearly independent N '-vectors in
K : -
23T B oo
pel R
non of which equals k. .
Theorem 3.6. Let AEF{TXI and ceR, . Suppose, FEFQT 5
an extreme solution of
min {y e | yE!RT v ¥ Az,
Let acR ™" pe specified by Lemma 1.3, assume A e > 0
r

.\ mXr P + 5 .
Given GER | and k€N’ such that I , kryﬂi

tand nence o is defiped on G={1,...,n} up to

]
-
o
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permutations of players of the same type by taking n =
e

{1 i e 1

If k is sufficiently large w.r.t. D: = A G , then

g (v*) = (b} = (@) .

Proof By definition,

i /ﬂ.\ k

i D
: p=1 p-
contains r linearly independent N vectors, say

ul,...,gr. That is, we have

p = =p
6" =k {o=1,...,r)
(p=1,....q),
or
0<Dg” <Dk
(6)
MLl ik (o=1,y...,1}
Observing " v
ke T 6. k=" % e
ool BB g D 9%
a 2 a y a
Boas® L Ron-® § o 0. {o=leust]
a=1 e p o=1 p o

and AG= D , we conclude that (6) is rewritten as

Hence, (G .k} is admissible for ({(ov, y).
In fact, as none of the vectors o° equals k it is seen at once
that (G ,k) is strongly admissible, thus we may apply Theorem 3.4.,

g.e.d.
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Theorem 3.6. may be seen as an exact formulation of the reguirement
that "sufficiently many" players must be available in order to have
the core and the c.e. coincide: k has to be sufficiently large

in the sense of Definition 3.5.. The test for this property amounts
to checking wether a certain convex compact polyhedron in R’
allows for r linearly independent N '-vectors. The determination
of the "lattice constants" invoived in this test is a problem in
the Geometry of Numbers:; indeed., MINKOWSKI was already concerned
with this guestion.

We shall give one application, assuming for the sake of symmetry
that k 1is even.

Theorem 3.7. Let AERTH 3 ceRl and suppose that y is an
extreme solution of

min {EAIyERT s yA>C} .

gxm

Let AeR be specified by Lemma 1.3. and assume Ae>0. Given

mxr

GeR ]

' r
and keN" sucht that u§1 kp gp = e, b (and hence m) is

defined on o up te permutations of players of the same type.
Assume w.1.0.9. ky<kp<...<k = and kp even (p=l,....r). Let

D=nC and let HE be the volume of the convex polyhedron

r

{x€R "|o<x<k, 0<Dx<Dk} . If

(7) g BB
D =~ ; iD ‘{Rj:‘i
min max g f 15p—
Re(l,...,F) peR R W
p=l,...,q
then
e (v*) = (Fb) = (W)
Proof Given a convex polyhedron B = R p , Cconsider the

"successive minima"
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et

(8) X orr PpaB): = min {1/ there are p independent

N r-vecters in AB})

These quantities are studied within the framework of the "Geometry
of Numbers" (see e.g. [2] ) (au is not to be mixed up with the
elements of &!).

According to MINKOWSKI's {second) theorem (Theorem V, CH. VIII.4.3.,
p. 218 of {2] ), we have

r
(9) Apeeesch. ¥(B) < 2

(V({B) dencting the volume of B), provided B is symmetric.

As k is assumed to be even, we may enforce symmetricity when
EE (e N "y is "replaced* by

k Dk

Bn:={xERP|-%Exig—,--z—inxi%-}

(c R") . We are going to show that under the conditions of our

Theorem, there are r independent Er—vecturs in BE and hence
k
EB -

in

To this end note that BB is given by means of the distance function

k . r
Fo= FD : R - R_P,

(10) F {x} = max
i wany Kk o

J=1;+
3 PR

(see Chapter IV of { 2 1) in a way that F 1is positively homogenecus,
superadditive, and

B = {xeR" 1 F (x) < 1) .

According to (4} . VIII. 1 of 2] ,
(11) _ Ay = min F (x}

s =l
x#0
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Since the lattice we are dealing with is Z" and F s monotone,

clearly
(12) A, = min F 1.3,
; i T
Writing Dp_ 1R = Dp_ (R) (ﬂﬁ_ regarded as an additive set function),
EH:I | 2
and observing that En—-; equals zero or T at x = IR’ we obtain
gt 0

by {12) and (10):

(13) Ay = min max 12, 12 B, (R),]
Ref{l,...,r} peR e o e |
p=ls..iian '

Next, for Agevensh,_1 » We shall take estimates from
the cube

S (xeR" | - % <X < g}
Clearly,
k Z
A, (B = (p=l,s....r)
as we have assumed k; < ... < k. . Thus
k Z :
(14) J'-p (B[}} i’fp fpetyinest) 5
k k 5 el = =
as Bp c'B Combining we find (again A=A {BE}}
o
-]l. < {b.u- .‘9&}
r - g k N o \ !
'n'll LBDJ P'.1+..._-'\r_._1
LER o
? 2 i |
s 7k : (by (14))
TR |
% i (by (13) and {7)



This implies that there are r independent Z' -vectors
in BE and hence the same is true for EE . O Thus, &
is sufficiently large w.r.t. D and, by Theorem 3.6..,

the proof is completed.

=ra

Remark 3.8: 1. Mote that the estimate hﬂi is &

o
rather coarse one. Improving this would

certainly improve the result of Theorem 3.7..
Indeed, the problem we have at hand is the
exact determination of A _ and hence the
Geometry of Numbers enteré the fiald of

Game Theory when it comes to give exact
estimates for k = {kl"“’kr] o Tulied

for numbers of players of each type.

2. Essentially, MINKOWSKI's theorem tells us
that the "volume" of EE in a sense deter-
mines wether k 1is large enough. This is

readily understood as follows: the "velume"

of EE will be small if keN" is "close”
to one of the hyperplanes HE (see
p-

Definition 3.5.). If k T™approaches" Hg .

n-
then, trating back Theorem 3.4. to Corpllary
1.9., it is seen that Ae>0 <can no more be
guaranteed. This essentially means that the
uniqueness of the dual sclution eventually
is lTacking and in this case the "ecuivalence
theorem" of core and c.e. may be wrong. Thus,

“close” to the hyperplanes Hg » k  becomes

. p
larger and larger in order to generate 3

sufficiently large volume and the area of k's



such that the distribution of types
indicated by k allows for an equivalence

theorem avoides these hyperplanes.
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