Universitét Bielefeld/IMW

Working Papers
Institute of Mathematical Economics

Arbeiten aus dem

Institut fiir Mathematische Wirtschaftsforschung

Nr. 68
Hans W. Gottinger

Markovian Decision Processes with Li-
mited State Observability and Unobser-
vable Costs

April 1978

e sgi
O safwusw.mf.mm@ i

Institut fur Mathematische Wirtschaftsforschung
an der
Universitit Bielefeld
Adresse/Address:
Universititsstrabe
4800 Bielefeld 1
Bundesrepublik Deutschland
Federal Republic of Germany

H. G. Bergenthal



Abstract

Markovian Decision Processes with Limited State
Observability and Unobservable Costs

Hans W. Gottinger

Consider a finite-state finite-action Markovian Decision
Process for which the state space has been partitioned into
subsets. The decisionmaker can only observe the subset to
which the states of the process belong, and not the actual
states of the process. In addition, the costs are unobservable
in the sense that the total discounted cost is to be assessed
at infinity. An approach to this problem, which makes use

of the probability distributions over the state space, is
developed.



Markovian Decision Processes with Limited State
Observability and Unobservable Costs

Hans W. Gottinger

Introduction

Consider the situation in which a decisionmaker periodically
observes a process, at times t = 0,1,2,.... and at each
observation classifies the process as being in one of a
possible number of states. In the first section of this
paper, we will require that the set of all possible states
of the process be a finite set. In the later sections,

we will consider situations in which the set of all pos-
sible states is uncountable. After each observation,

the decisionmaker chooses an action from a set of possible
actions. Throughout this paper, the set of all possible
actions will be assumed to be a finite set. At this point
a cost, which depends on the current state of the process
and on the particular action chosen, is incurred and the
next state of the process is chosen according to transi-
tion probabilities which depend on the current state and
the particular action chosen. The objective of the de-
cisionmaker is to choose actions in a manner such that
some particular cost criterion is minimized. Throughout
this paper, the cost criterion used will be the total
expected discounted cost of operating over the infinite
future. The above basically describes a Markovian Deci-
sion Process with the particular cost criterion as de-
fined.

In the first section of this paper, we review some of the
concepts and definitions associated with the finite-state
Markovian Decision Process, for general references see

C. Derman [1970] or D.P. Bertsekas [1976]). We define

the concept of a policy for taking actions for the de-
cisionmaker and we develop the expressions for the ex-
pected discounted costs associated with the use of certain

types of policies. In this section, we assume that the



decisionmaker knows the current value of the state of the
process at each observation point. Also in this section,
we assume that the decisionmaker knows, immediately after
observing the current state and taking an action, the value
of the cost incurred at that point.

In the remaining sections of this paper, we consider a
finite~state finite-action Markovian Decision Process in
which the decisionmaker is not told the exact state of

the process at the observation points. Rather the deci-
sionmaker is only told that the current state belongs to

a particular subset of possible states. We call this
"{imited state observability." The extreme case in which
the decisionmaker is given no information about the current
state {i.e. the subset to which the current state belongs
is simply taken to be the entire set of all possible states
of the process), is called "complete unobservability."”

In this case, we say the Markovian Decision Process has
unocbservable states. Also, in the remaining sections of
this paper, we assume that the decisionmaker is not told
the value of the costs incurred at any observation point.
Rather we assume that the decisionmaker will be told the
value of each current cost far enough into the future so
that we may assume that the total cost will be assessed

at infinity. 1In this case, we say that the Markovian

Decision Process has "unobservable costs.”
In this paper, we develop a methodology for analyzing this
type of a situation. We refer the reader to Gottinger [1277],

where some mathematical results are developed for this problem.

Finite-State Finite-Action Markovian Decision Processes

Consider the Markovian Decision Process (MDP) defined by the
following objects:

State space S = {(1,2,3,+..+..N}, for finite N,
Action space A = {a1,a2....aM},for finite M,
Cost set C = {C(i,aj) : 1ie8, ajeA}, where all

costs are taken to be finite,



Transition probabilities = {qij(aK) : 1,jeS, ageAl,

Discount factor a, such that O<a<l.

At times, t = 0,1,2,..., a decisionmaker (DM) observes the
current state xtss, of the process. After observing the
current state, the decisionmaker then chocses an action ateA
and incurs a cost C(Xt,at)sc. The next state ¢f the process

is then chosen according to the transition probabilities

q, s{a.).
X3t

A policy for the DM will be defined as any rule for taking
actions at each observation point t = 0,1,2,... . A parti-
cular policy may be such that at each observation point, t,
the action taken, a, , may depend on the entire observed se-
guence of states and actions from time t = O up to and in-
cluding the current observation Xt. A policy will be called
Markovian if at each point t = 0,1,2,..., the action taken,
ay s depends on the current state, X,. of the process but
does not depend on the observed sequence of state and actions
from time t = O up to and including time t - 1. A particu-
lar policy may be randomized in the sense that at each ob-
servation time t = 0,1,2,..., the action a, is chosen ac-
cording to some random procedure. A particular policy, W,
will be called deterministic if at each observation point

+t =0,1,2,..., there exists a map ft : 5+A such that the po-
licy W chooses the current action ag according to the rule
a, = ft(xt). In other words, a deterministic policy may be
defined in terms of a sequence of maps from S into A by

W= (fo, f1, fz,.... ft,...).

A particular policy, W, will be called stationary if there
exists a single map £ : S-A such that at each observation
point t = 0,1,2,..., the policy W chooses the current

action a, according to the rule a, = f(xt). 4 stationary
policy W therefore may be defined as W = (£, £, £, £,...).
In this paper, we will simply consider a stationary policy W
and its associated map £ as being the same. Therefore, we
say that a stationary policy for MDP is a map f : S-A.



For any policy W, we define the total expected discounted
cost of starting in state i at t = O, and using the policy W
over the infinite future, i.,e.

T atC(X

t=0

Vw(i) = E ra )IXO = 1| ,

W t't

where EW is used to indicate the dependence of the conditional
expectation on the policy W. If W is the stationary policy

defined in terms of the map f, then we note that

Vel(i) = C(1,£(i])+ a

{4

q,.(£i11)v_(3)
1 ij f

J
Other criteria for minimization may be defined for the MDP.
However, in this paper we will only consider the case where
the decisionmaker attempts to minimize the total expected
discounted cost. Howard [1960] analyzed MDP's having finite-
state and finite-action spaces and proved that an optimal
stationary policy (i.e. a stationary policy which minimizes
the total expected discounted cost) always exists. The Howard
Policy Improvement Routine is a method by which an optimal
stationary policy for MDP may be found.

Limited State Observability and Unobservable Costs

Consider the Markovian Decision Process (MDP) as previously
defined, having state space § = {1,2,...,N} for finite N.
Let h be any map defined on S and having image in the set
of positive integers {1,2,...,N}. That is to say, that

h : S+ h{(S) = {l1.A2,...lu} where

u < N and AjCS for j = 1,2,...44.

In other words, each element of the set h(S) is a subset of
S, or h partitions S into subsets.

We now consider the situation where the DM cannot observe

the current state, XtaS, at each observation point t=0,1,2,...;
rather the decisionmaker can only observe the subset, Ytsh(S),
to which the current state X belongs. We say that the Marko-

vian Decision Process, and hence the DM, has limited state



observability. The extreme case where u=1, 1i.e.

h(s) = {2y} = {S}, represents the case of unobservable states.
The extreme case where u=N, i.e. h{(S) = {A1,A2,....AN}, re-
presents the case of complete state observability which of
course is simply the case summarized earlier. )

Let S be the set of all probability distributions over S,

i.e.

s ={P = (P,,Py,...Py) eEg & O<Pi<T,

i i

[ I R~

1

i
where EN is N~-dimensional Euclidean space, and we let Pi be
the probability of being in state i. For each j such that

1 <3 <N, we let éj = (0,0,...,1,0,0,...0) eEy be the pro-
bability vector

having O's in every place except the jth place. Next, we let
H(j1,j2,...jr) for 1 < r < N, and 1 < j, £ N, be the convex
hull of the set

B, ; . yeeesBu , We note that
R,
B(3qrdgr---3) = 8

H(j1rj2,...jr) = {all probability vector's in Eg having
0's in every place except the j.lth place,

th

the j2th place,..., the J. place}

les, for
}, which for
convenience we will write as H(AK), may be consEdered as being

If AKeh(S) is defined by i, = {AK1'XK2""'AK2K
15 2, 8 N, then we note that H(AK1'AK2""'AK2

the set of all probability distributions over Ai,. We may now
prove the fellowing theorem.

Theorem: Suppose that at any time t = 0,1,2,..., we observe

Yt = Ai' for some Aieh(S), and we are told that the current

distribution over the state space S is Et' Suppose then

that we take the action ateA, then both the new observation

Y ,; and the new distribution §t+1 depend onlv on the current

distribution ﬁt and the current action a..

Proof: We know that Yt+1ah(8), i.e. Yt+1 = AK for some K such
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that 1 < K < u. The conditional probability of A,s given

Ayr §t' and Ay is given by

Pri¥, , = dgl¥y = APy = P, 3, = a}=

z I q
ne?«K meAi mn

(a) Pm' where we have

written Pt =P = (P1,P2,...,PN).

This proves that Yt+1 depends only on Pt and a,.

Next, we note that since we must observe Yt+1 = AK for some
K =1,2,...,u, then it follows that we must have §t+1cH(AK)
for some K = 1,2,...,u., If we do observe Yt+1 = Agr for some
K, then we have
b - Dol ' ' )
Pt+1 = P' = (P1, P2' ...,PN), where the components
are given by
z
feiry qzj(a) Py
P = , for jelK
’ I mea, %3P
ne K € i m
and
P'_:] = 0, for jth-
We shall write
=, - - N £
q(P, AKip'Ai'a) ne i, mery 9mn (a) P and

note that

q(ﬁ.lkxiﬁllila) = Pr{?\Kl)\l;P,a}.
Also, we find that
lKEh(S) q(P':J\KH_’,li,a) = 1.

Therefore, we have that, for those Ayt such that
q(§',kKI§',Ai,a) # 0, the P' will be given, with probability



q(B' Ay 1B' 42  sa), bY

P' = (P',...,Pﬁ) where

1 =

|
leli £j

"
e =
]

q(P',xxlﬁ.Ai.a) (a)P,, for Jeiy

and

' »
Pj 0,for Jka-

This, together with the fact that

A eﬁ(s) a(®' g lPoag,a) =1,
X

shows that P depends only on ﬁt and a, . Q.E.D.

t+1 t

Next, we write Q(a) = [qij(a)] for the matrix of transition

probabilities associated with the action a. We let Q(a)A
K
represent the matrix derived from Q(a) by replacing the columns

of Q(a) that are not associated with elements of AK' with co-
lumns of zeros. We let 1 eE  represent the vector having all

N
components equal to one. We may now write

q(ﬁ',hklﬁ,xi,a) = <§Q(a)k ,1>, as an inner product in Ey-
K

We also have E'EH(AK) given by

-1

P' = <PQla), L1 PQ(a), , with
K K
probabilitiy <5Q(a)A ,7>, when this probability is not equal
K
to zero.

We now assume that the decisionmaker cannot observe the current
cost C(xt,at), at any observation peint t = 0,1,2,... . We

note that if the current distributiocn, Pt' is known, then we may
compute the current value of the expected cost <Pt' C(at)>,
where C(at) = (C(1,at), C(2,at),...,C(N,at)) is the vector of

costs associated with the action at.
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We may now define the new Markovian Decision Process (EMDP), as
in Gottinger ({1977), by the following objects.

State space S = {all probability distributions over S},
with supplementary information given by
observations in h({S).

Action space A = A = {a1,a2,...aM}

Transition probabilities {q(B' A I1B,x,,a) : P',P eS8

AK,Ai eh(S), ach}

Cost set {<§,E(a)> : §e§, achA}
Discount factor a, such that O < o < 1.

We note that EMDP has uncountable state-space and finite-
action space.

The class of Markovian Decision Processes to which EMDP be-
longs has been analyzed by Blackwell [1965]. His analysis

shows that an optimal stationary policy (i.e. amap f : S-+3,
which minimizes the total expected discounted cost) for this
class of problems always exists, and that the Howard Policy
Improvement Routine may be extended to this class of problems.
However, in the finite-state finite-action class of problems,
the set of stationary policies is finite, and therefore the HPIR
will produce an optimal policy in a finite number of steps. 1In
the uncountable-state finite~action class of problems, the set of
stationary policies is uncountable, and therefore, the HPIR will
‘not in general produce an optimal policy in a finite number of
steps.

A preliminary analysis of EMDP is presented in Gottinger {1977].
The analysis is developed for h(S) = {A1} = {8}, However, the
results apply to the cases in which h is arbitrary.
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