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Abstract:

Value and optimal strategies for infinitely repeated zero-sum-
games with incidental sequence of moves and general informa-

tion matrices fulfilling a condition of consistence are de-

termined in this paper.

As special cases one gets a) a generalization of the results
of PONSSARD & ZAMIR [1973] about games in which the informed
player always moves first, b) the case of simultaneous moves
discussed in KOHLBERG's [1975] paper on which several notes are

made and c¢) the case in which the informed player always is

the second to move.

Each variety of sequence of moves brings up a different value
and different constructions of optimal strategies for the un-

informed player.
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1. Introduction

Sequential games with incomplete information have been dis-
cussed by several authors. Due to HARSANYI [1967, 1968], who
showed the generality of models for which incomplete informa-
tion has to be stated only to the payoff functions, a mathema-
tical analysis of games with incomplete information became pos-
sible. AUMANN & MASCHLER [1968] determined the value of infini-
tely two-person-zero-sum-games with incomplete information for
one player and simultaneous moves. PONSSARD & ZAMIR [1973] dis-
cussed the case where the uninformed player is always the first
to move. It was noticed that both varieties of sequence of
moves lead to different values and especially the uninformed
player's constructions of optimal strategy are different. Among
others, KOHLBERG [1976] generalized the special case, where both
players are told the pure strategies of the other one after
every repetition by general information matrices. So it is pos-
sible to model that an uninformed player is able to distinguish
differently well between two different strategies at various

'types'.

To analyse games with infinite repetitions and order of sequence
determined by chance, to find the value and optimal strategies
for both players is the central theme of this paper. The dis-
cussion will be restricted to finite strategy sets and it will

be assumed that (only) one player has incomplete information




.about the payoff matrices; this means, one player (Player II)
knows only a probability distribution p by which one type
(matrix) will be selected out of a finite set of types
respectively. In the class of games considered here it is
Supposed that Player II receives an information about the
choice of strategies by Player I by a fairly arbitrary
information pattern (information matrix) during each
repetition. At first we analyse the special cases in which
Player I moves first cr second or both players move
simultaneously with probability 1, and then we analyse

the more general model with incidental sequence of moves
which is closer to real life situations. Also from a
methodological point of view it is interesting whether--even
for the considered general case--the mathematical principle
of concavication becomes applicable as it is for the special
case of simultaneous moves and the case where the informed

player is always the first to move.

In section 3 the results of PONSSARD & ZAMIR about games in
which Player II always is the second te move can be generalized
by general information matrices.In section 4 we give a corrected
Proof for the eptimality of certain strategies for the class of
games discussed in KOHLBERG's paper [1975]. In section 5

the relatively worse situation for Player II, where he has

to draw first and being uninformed, will be discussed. We

shall see that also in this case the idea used in KOHLBERG's

[1975]1 paper leads to success. The uninformed player has to apply




stationary strategies for blocks and derive the stationary stra-
tegy in the next block from the observed frequence of information

he had received before.

Furthermore, a sufficient condition will be given under which
the veiling of information of the informed player in the three
cases of sequence of move will not handicap each other. The
author prefers to give mathematical strength to proof and
definitions which will not be found and are not present in

most manuscripts in game-theory. This mathematical strength will
hopefully help us to avoid mistakes which creep-in easily other-
wise. A price paid for this formalization is that there is more
work in definitions, this being especially the case due to the

model's generality.

2. Description of Sequential Games with Incidental Sequence of

Moves; Definitions :and Preliminaries

Description of the games T' (p,q) and ', (p,q):

1.) By a random mechanism a matrix ¢% is selected out of a
finite set of known r x s payoff-matrices Gl, cees ¢™ with pro=
bability pi,.=;, pmj Player I will be informed of the choice of
o € {1,... , m}, Player II knows but the probébilities pl, . 5o iy
pm, which are also known to Player I. - Each matrix % is allied

. . . . o
with an information matrix H .




2.) By chance it is determined and told both players which sequence-
modality of moves will happen in the following k=th repetition of
the game, whereas O < k < n in the game Pn(p,q) and O £ k € = in

r_(p,q).

2a) With probability q1 Player I moves first; this means, Player I
chooses a row i; Player II is informed about the i-th row of Ha,

thereafter Player II chooses a column j. The choice j is told to

Player T.

2b) With probability q2 Player II is the first to move; this means,
Player II chooses a column j, Player I - knowing j - chooses a

row i. Player II is told the information'hg

S

2c) With probability q3 both players draw simultaneously; this

means Player I chooses a row i, (afterwards) Player II a column J.

Player I is informed of the choice j, Player II by hg .

5

3.) After each repetition Player II ‘'pays' gg g
S

the value which is to be payed is only told to Player I.

Player I, whereas

4.) If k < n-1, steps 2.) and 3.) are repeated. If k = n-1, the

game Pn(p,q) is finished. In the game I'y (p,q) steps 2.) and 3.) are
repeated in any case. The payoff-function in the game Fn(p,q) is

the arithmetical mean of the payoffs of the repetitions. The defi-
nitions of the value and the payoff-function of the game r_ (p,q)

is given in Definition 2.

Games which fit into this description may be mathematically defined

as follows:
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Definition 2.1: & two-person-zero-sum-game Pn(p,q) (resp. Iy (p,q))
with information pattern for repetitions and sequence of moves
dependent on chance is given by the ordered set {R,S, {Gl,...,Gm},

{Hl,...,Hm}, P,q} and a number n-1, n € N (resp. =) of repetitions,

whereas are
(1) R:= {1,...,r} the set of pure strategies of Player I,

S:= {1,...,8} the set of pure strategies of Player II in each

repetition.

(ii) Gl,...,Gm r x S8 payoff-matrices,

N SRR &
o= < < PR
@ : (gi,j)i€R, jes o 1 <a<m, gl,J € R.
(iii) Hi,...,Hm r x s information-matrices, the information pattern
for Player I; g% = (h¢

i,j) i€R, j€S with 1 < a < m,
whereby is presupposed, that:

fam = @ s g omq s 0 o
with j, j'€S, jJ £ j' implies hi,j F4 hi,j"

L a - L L JIHI :
H:= L {hi,j} = {uk/uk.- (Uy0505F505.,0YER"™, 0Lk 2 {H]}
i€R,jE€s

o€ {1,..,m}

,f
k-th position

(iv) p probability distribution on M:= {1,..,m}

2

(v) q:= (qi,q ,qB) probability distribution on Z:= {1,2,3},

the set of possible sequence of moves.

As the condition in Definition 1, (iii) implies, that r. (p,q) and
r (p,q) are games with perfect recall, we do not define mixed stra-

tegies but without loss of generality behaviour strategies

o = (Ok)kEEJ and gis (Tk)keml’ whereby o) (resp. rk) 1s the beha-
viour of Player I (resp. II) in the k-1-th repetition.
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Ir Fo:= ((¢1,...,6%) /et 20vien, £t o= 1y,
i=1
o, ¢ Mx ({1,330 {2} x8) - F
k=1 :
S M x TMT ({1,3} x RxS o {2} x SxR) x ({1,3} u {2} x3) »F for k=2
i=]
Y := {o = (Ok)kEIJ} assigns the set of all strategies of
Player I in the game I _(p,q).
S
Thus Y= {(yl,.. . ,y%) 9 2 0v e B, EZ: yJ = 1}
. j:j_ :

and -hence riz(({l} « U {ha(i)})‘J{2,3} ) > Y whereby here

i€R
a€EM
BEEAY e T L geessBE )z 5% (19 Genotes $hs Ge=bh ol of Ehe
1,1 1,8
information matrix H® and T := {t =(Tk)k€ﬂﬂ} the set of strategies

of Player II in the game TIw(p,q).
Let Q be defined as the set of all infinite games:
Q := Mx || (1,3} x R x Su {2} x S xR)
n=1 '
so by a fixed pair of strategies o,Tt each given finite game se-

quence (a,a bi,clg...; an’bn’cn) is assigned to a "natural rea-

1)
lisation probability".
= o
. A_n i
prob ((a;al,bi,ci;..;an,bn,cn)x ki [1 ({1,3}xRxS u {2}xSxR))
=n+

n
& B B/
.. O x k N
1E P TnT q Gk<a’Ak) rk(A k> for n € N
k=1




The definitions of ays by, c s A ete. éppear clearly from
the definition of Q@ , Definition 1 and the'definition of the
strategies, so i.e. bk € R resp. bk € S according to ay € {1,3}

or a, € {2}, that means which sequence of moves will occur on

the k-=th run.

It is easy to show [compare SCHOLZ., 1976] that there exists an

; Ty B. .
unique probability-measure prp,q,o,r on f:= {Sh / Sn':=
(o]
(05 agsbgseqsanne ) « TT 0 (11,3} « RxSu {2} xSxR),
k=n+1 :
n€ W (0} } in Q with: prp’q,c,r(sn) = prob (Sp) for Sp

arbitrary, n € N .

This is proved by applying the Consistence Theorem of KOLMOGOROFF
[see TAYLOR, 1966, p.153], whereby it is best to do to apply a
generalization of it, where the Spaces can be Polish (that means

separate and complete) [S8ee MAMMITZSCH, 1975, p.9].

On the probability spate k we define the random variables

~ o~

a5 8, Tk’ Ek by o (0) = a, YoER, analogous for a.

k
o~ bk 3E 2, € {1,33 o
Ty (w) == ¢\ if a, = 2 Voeaq, analogous for Jyee
- k
- A N 2 .. 2 s
and furthermore: g = gT . and B = ¢ = g;-

x2>JK




Remark: Without intending to identify function and function-

value, sometimes when obvious 1is abbreviately written:

a = a ().

Definition 2.2: v(p) is the value of r (p,q) if for all €>0

there are o_ € T, Te € T, N(e) €N, so that for all n > N (g)

€
E g := E (g )2v-e VT ET
£,d,0,,T °n PT 4,07 n |
E g :=E__ (B )<vte V 0 € %
P,q,0,T_ °n PTh 001, O

Cc (resp. TE) is called an e€-good strategie; a strategie 9

(resp. ro) is called an optimal strategie, if it is e-good for

all € > 0.

The fundamental theorem which will be applicated is a Minimax=-

Theorem [comp. VOGEL 1970, p.124].

Theorem 2.1: Let Ki’ K2 be convex sets in }glresp. HKK, n,k € IN.

Be f(x,y) concave on K1 for each fixed yOEK and convex on K

2 2

for each fixed XOEKi' Furthermore Kl compact and for each yOEK2

f(x,yo)semi—upper—continuous on K,, then follows sup inf f(x,y)
Ky~ B
inf max f(x,y).

Ky Xy
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be ¥

. JIf f: K- R, KC Rr" convex; then cav £ : K - R is defined

- by cav f(x) sup{n / (x,n)€,%i(x,n) / n < f(x)}} Vx€K cav f

is the smallest concave function which majors f (%3(x) denotes
_the convex hull of x).

A corollar from the Theorem of CARATHEODORY see [EGGLESTON, 1963,
p.BS]ibrings up an approximation of the concavication of a func-

tion f by convex—-combinations of values of f (ROCKAFELLA, Theorem

10.2. [19701).

Theorem 2.2: f : K= R, K C Eflconvex, then:

n+l n+1 n+1

cav f(x) = sup{ﬁE Alf(xl) 4 E klxl=x, xlelK, xlzo, EZ: Al = 1}.
1=1 * 1=1 1=1 -
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3. The Class of Games where the Informed Player Makes the

First Move

In this section the informed player moves first with prob-

ability 1, so we introduce some simplifications to clarify

the constructions.

A strategy O of Player I is here sufficiently defined by

=]

g, : M- F; o : Mx RxS =» F for k=22;
& k 121

a strategy of Player II by

0= U %1 » ¥ and for k22 by
i€R
oEM
k-1
o= (LT U a®aenU m*ay - v
n=1 1ie€R i€R
o EM ‘aEM

Furthermore the elements ha(i) themselves will be identified
with the unit vektors p, € RP, k=1,.i.,m:= | (U (n®(1)} |
i€R
a€EM
and for the probability distribution (1,0,0) in this section

we frequently write abbreviating a "1".

It is clear, that the value of Pl(p,l), the game without rep-

etitions, 1is only dependent on o4 and T1, so we define:

[ae]
I

L ¢ {01:=(x(1),...,x(m))/ X(a)EF,GEM}.

=
n

107 pEv@ug)seeylug) 700 y(w ey, k=1,...,0}.
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For the value vi(p) of the game Fl(p,l) we will show

Theorem 3.1: a) vi(p) exists for all p€P:={peR™/

m
jg: p* =1, p* 20V ace M
a=1

b) v P » 1R is concave.

JEENNIEN

U G (1]

g , Tss ~ )
Proof: a) 3, (R s T1C R are convex, Ep,i,c,r’gl linear

in a, resp. T,. Hence the preliminaries of Theorem 2.1. are

fulfilled; as 21,T1 compact even follows

1 o "~
v, (p) = min max E g
1 P5ls0,,T 1
TiETi 01621 3 1°71
= max min By 1,0, ,1 gl
3 b 5
01681 11€T1 gr =k
m r s
) vi(p) = min  max o D @) 2 g% .ydm®i))
1 T,€T, o,€X, a=1 i=1 j=1 T2 |
1771 17741
m r s
. i j 2 O
. & min E p®  (max E x (o) ;Z: gg j.yJﬂlh)))
T1€T1 a=1 x(a)EF i=1 Jur] ?
m S .
= min E p? -max (EE: gg Cyd (% (1)) )
T,€T, o=l i€R  j=1 >J ‘

1 . o . .
v, 1s the minimum of linear functions, hence concave.

Remarks: The always existing optimal strategies of Player II

in the game‘ri(p,l) are denoted by § :=(§(u1),...,§(up)).

An additional requiremeént to the information matrices in this
section is:
(+) there exists (x(1),...,x(m)) with x(a)€F for all a€EM, so

that for all o,BeM:  x(o)-(h%(1),...,h%(r)) ' =x(B)nP(1),...,nP(r))
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The class of information patterns from Definition 1 ful-

filling (+) is never empty. .

Example 3.1:
u1 o us k-th position

gl = vo. = HT = : : My = (o,...,o,;,o,...,o)ERS
By oeee Uy >

For this system of information matrices each x=(x(1),...,x(m))

with x(a)€EF for all a€M,fulfills (+). If we have this system,

Player II gets no essential information, so the choice of «

cannot be concluded.

Example 3.2: If {Hl,...,Hm} in such a manner, that for all a€M

. . a o _
there is an i(a)ER so that (hi(a),i""’hi(a),s) IR "R TH

J1 Js
{HI 5

L. ,...,uj unit vektors in IR and hi

arbitrary for i #* i(a)
iy < s

for all a€M,then x with x(a) = (0,...,1,...,0) fulfills (+)

i(a)-th position

and there is i.g. u® + HB for o« # B.

Remarks: The illustrative significance and interpretation of
strategies, which fulfill (+) will become clear and is given
in front of Theorem 3.2. Presently is only stated, that these

strategies are called "nonseperating strategies".

To determine the value of I,(p,1) the auxiliary game A (p,(1,0,0))
has to be discussed. For pEP, Hl,...,Hm as in Definition 1 Ni(p)

assigns the set of nonseperating strategies in Fi(p,l).
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Nsi(p) :

tH

((x(1), e, x(m))/x(a)  (h®(1),...,n%(r))" =

X(B)'(ha(i),..;,hs(r))' Va,B mit pa,pB>O,x(0), x(B)EF}

1]

1
For oiiNs(p) # @, 1:1€T1

m r s
1 i j . v
B (8, %) 4= E E E %% (o) g . yI (%)), the game
p i om1 i=1 j=1 1sd

A (p,(1,0,0)) := {Nsl(p),Tl,E;(cl,Tl)} is given in strategic

or normal form.

m m
Nsi(p) is compact as Nsi(p) C T_r r, T_rfrbounded and Nsl(p)
- o=1 o=1 '

closed. Furthermore Nsl(p) convex, T1 compact and convex and
E;(Oi’Tl) linear in oy and T,s SO the preliminaries of Theorem

3.1 are fulfilled and we get:
The value ui(p) of A(p,(1,0,0)) exists.

ul(p);= max 4 "min E;(cl,ri) = min max E;(ol’Ti)

1
01€Ns (p) 1:1€T1 %, €T 01€Ns (p)

1771

In the following derivation of optimal strategies of Player I
in Iw(p,1) we will use stationary strategies. The principle

is also available for the other varieties of sequence of moves.

We call a strategy STl(X)GZ of Player I stationary in the game
r (p,1), if the choice of i€R in each repetition depends
merely on o€M, more exact:

o := STi(x)EE with x := (x(1),...,x(m)),x(a)EF Va€EM

if ok(a;il,jl,...,ik,jk) = oi(a)€F vk=>2,

k
a € M, (il"jl""v’ik’jk) € —l——[ R x S.
1=1
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Ty k(-) shall stand for the jk—th component of tk(-) and define

a
k,.
h, := h (1k ),

K for all GKEM,lk €R

J j. €3, k €N
0 ko 0 S k b .

0

and analogously: ﬁk = ha(fk),gk-

For XENSl(p) we get of course for «,B with pa,pB>Q

iy o> x(a) = > x(8)

(0] [0
i:0%(i)=h C(ig) i:nP(i)=n 0(i,)

0

hence

Corollar: For strategies-STl(x) holds: x fulfills the condition (+°

if and only if o and ha(T ) are stochastic independent. As for

XENSl(p), TET with pB B! ->0 anad Sk defined according to page 6

~ [0
&, o - O . ~
prpsl;STl(X),T (h (11)_h (10) / a= B)

P (5=6,0%(T,)=h %(ig))
T OB PTp,1,8T (), a=B,h7(1y)=h {3y
=-£E . §T— a5 prob Sk

P* 5, :a=p,nP(i)=h (ig)

i

= ~1§ ) oy pP. x 1(B)

P i,:h (1 )=h (io)'
1) Lo
) jET ’ sr_ ) a pB xt(B")

P i:0P (1)=n 2(ig)

a

ag' - G/ N R
= prp,i,STl(x),r (h"(1)=h “(iy)/a= B")
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The above considerations show furthermore that the stochastic

independence implies i) and even XGNSl(p).

But even for stationary strategies STi(x) with X€N81(p) can
be verified_that the cholce of a cannot be concluded after

any repetitions, consequently

Theorem 3%.2: For STi(X),pEP,XENsl(p),TET with

~

prp,l,STl(X),T (hlzhl’.'.’hk:hk) > 0 we get :

N—N_ ~ —a
Pp,1,8T, (x),v (870/Byhyse o hyshy) = pT vaeM, k €W

Proof: Induction on k; the proof is conducted in order to dem-

onstrate the core of technique here but also a tribute of

mathematical exactness.

k = 1 foliows at once from Corollar, the theorem be proved

- : - . and
for k-1>1, 4if pr prp,l,STi(X),T
o o %n
Bk <= {(a’l’ii’ji""’1’ik"’]k)/h (11’1>:h (lno)sjn:jnoansk}VGEMske]N
one can conclude using the equation prob (Sk) = pr (Sk) and

applying the definition of prob (Sk) (compare p. 6)

i~

pr(a=a / h1=h1,...,hk=hk)

17055 7h)

géM pr(a=B,h1=h1,...,hk:hk)

pr(d=a, h
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j;g ' prob S,

L : ; o
Sk:(a’li’Jl""Jk)EBk

Er- ;T_ prdb.S

: ] ; B
BEM Sk.(B,ll,... YE Bk

k
23y

> S| xl“<a>-rn<hi,...,

5 . 3 (o]
(a31,50 500050, )EB,

k=1 1
R - T x (8)T_(h, ..

BEM  (B,i 545005, )68 .

G i j
h_>h% () P (x M) et (g, 0% G

———

J 1 J
h_shPE ) (KB T (hy L.y E )T

Oy jko j;—
Tk(hi""’hk—i’h (:Lk )) : :

ey

K ()
0 . - O
i :h (1k)=h (1k0)
X, . Iy Ly
Tk(hl,...,hk_l,h (1k0)) 0 ST_ : (o)
i,:0%(i,)=n k(iko)
k-1 ;
a n . Aem
j;_' . . p -Y—T- x ()T ()
(a,li,...53k_1)€ Br_1 =1
k_1 i ,j
> > g [T «mmye
BEM ~ (Baiyssvendy g)€ By _4 -
pr(a=a / h,=h h =h

1 712" 2 k-1

o
b
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Theorem %.3: For o = STi(x); X 1= (x(1),...,x(m))E Nsi(p)

optimal in A(p,(1,0,0)), TET arbitrary follows:

~ 1
Ep,i,ST(x),r g, = U (p) ¥ n €N

Proof: If prp,l,STi(X),T 1=h1,... k ) > 0 one can conclude:

Ep,1,ST1(x),f (Byyq / By=hysee.shy=hy)

%7, %7_ s
= r . ?x':o(/'ﬂ =h . '1:1’ -h .
=1 d=1 J=1 : p,1,8T, (x),T ( 1" >y k)
’ J
X (0) g ,3° k+1(h1’ k’h (i))

(Theorem 3.2)

%3— f;_ §;~ p%x ) - g

: . (hy,...yh 0% (i)
el k+1 1 K
m r 5 |
> min > 2 2 p%xt(a)ed -yl (n%(9))
TET, o=1 1i=1 j=1 >J
= max min E (01,11) = u (p)
alNS (p) TleTl

and so Theorem 3.3 follows immediately.

Theorem 3%.4: For p€P there are pBEP XBZO ,B=1,...,m+1l so that:

m+1 m+1

j{: BpB p and 2{: A gl (pB) = cav ul(p)
B=1 B=1
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Proof: For p € P

m+1
P(p) = {(pl"'"pm+1sA'1,""A‘m+1) /pBEP’ 1:1 AB.pB:p,A’BZD,
m+1
Ay = 1)
B=1 P

is bounded and closed. If Mg P(p) » IR is defined by

- ol
nB(pl,...,pm+1,k1,...,Xm+1) 1= kB u (pB) vBe {1,...,m+1}
. n n n
then with P(p) 3 (pl(n),.--,p;+i,K1( ):---3Aé+;) ¥
- A A ) € P(p) and reasoned by p(n) - D
) pls"'spm+1s 12> *m+1 p B B

X

for big n implies Ns (pB(n)) CNsl(pB) follows that:

(1’1)) <

lim sup ui(pB < ul(pB), hence also

n - oo

lim sup A
n = o

B(n) ul(ps(n)) < AB'ul(pB), that means g is upper-

semi-continuous.

As sums of upper-semi-continuous functions are upper-semi-con-

+

E
[EEN

tinuous follows mn : P(p) - R, m := g is upper-semi-con-

™
1}
[N

tinuous. So the statement of Theorem 3.4 can be obtained from

Theorem 2.2 as real upper-semi-continuous functions do have a

real maximum on compact sets.

We will now assume, that Player I, when he determines his

strategies, uses a random mechanism;--more exact: by chance-
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after the choice of a, with certain probabilities--one
strategy is selected out of a finite set of strategies,

which is defined before the game starts.

Theorem 3.5: Thus in T'_(p,1) for pa>0 VaEM

3 pB’A‘B’

B=1,...,m+1 as determined in Theorem 3.4:

If Player I is consulting a random mechanism which chooses,

if €M is selected, the strategy STl(XB) with probability

LA O
Ag'Pg
o

p

5 whereby,xB is optimal in A(pB,(l,O,O)); that means

A -pa
p(0g=ST" (xg) / B=a) = 2B, p=1,. . m+1

o
b

then for a strategy 9, defined on that way even:

Ep31,0 5 T ék 2 cav ul(p) vVk €N, t€T.
0 .

Proof: Thus, for B=1,...,m+1l, a&M

1.) pr(oy=sT,(xg)) = 2;; pr(oO=ST1(XB), a=a)

Apa
> PP(GO:STl(XB) / Gza)epr(dza) = > BB g% oy

oEM oeMm  p° B
. - 4
2.)'pr(a-a / 00~ST (XB))
o
. . 88 . a
_ pr(00=ST1(xB) / a=t) pr(a=a) _ pa _ o
pr(oO=ST1(xB§) XB B

1.) and 2.) imply for k € N, T € T arbitrary
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) m+1 3
Ep’l’OO’T gk ) =1 pr(OO:STi(XB)).Epal,OosT (gk/OO:STi(XB))
% _ (g,3y0d . (3.4)
BT *B'Ep5,1,ST1(XB),T g 2 - Agru (pg) = cav u (p)

therefrom Theorem 3.5 follows immediately.

 Theorem 3.6:‘vi(p) = cav ui(p) Y p €P with pa>0 YaEM

Proof: Nsl(p)czl, therefore ul(p) < Vi(p), further since

Theorem 3.1b, vi concave even: cav ul(p) < vi(p).

To prove the inverse relation we define for p € P, o := o, =

a
=(x(1),...,x(m)), T := T,€T and u := h O(iO)E L){ha(i)}

1 aeM
1€R
p(n) := (pl(u),...,p™(w)) € P by
[0 . - ol '&' led _
p (u) := Pry 4 o, (a=a / h.(11) = u)
~ o,
_Pp,1,0,1 (a=a,h™(1,)=u)
A, o
prp,i,o’,‘f (h (11)"11)
p% - > x* (a)
i:h* @)= if denominator positive

> > p% xt ()

={ BEM,. i:hB(i)zu

a else
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and

x(w) := (xu(i),...,xu(m)) €15, by

i = e a‘ ~ _ ~
Xu(“) prp’i’o,r(l1 i/ n(3) = u a=a)
Xi(a) L a,.

. . ir we U m%@G1)y
5 x(a) i€R
i:n%(i)=u '

=
5.
L 1,i else
for -~ a €M, 1€R and if o; is the KRONECKER-symbol.
3

Thus for o := 01=(X(i),...,x(m))

~

~ [o P Rs d _ _ ~
£ (gl /. 1 (1’1) _' U-) B Ep(U)’lax(U)st gl

for x(u) € Nsl(p(u)) one can conclude for T*€ET arbitrary:

R L RR AR
1 1
o ~ ~

T Ges, Ger, = Pp,1,0,0(0 T2 By 4 o, B/ (D)

Ty )
- 22;1 <~ P'p,1,0,t* (ha(i1):“k)'$§¥1 B, 10,7(81/0° (T

=u, )

e "

Tomax 2o PP 40,0k (ha(T1>=“k)'fé$ B () 5 1,% (1) ¥ g,

1 1
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o)

max E pr
o€ k=1 P,1,0,T

IA

L(0M(T =)

~

« max min E g
X € Nsi(p(uk)) TET, p (uk),l,x(uk),r 1-

e

= max Ez: p

| '&' ~ 1
h = B
c€r k=1 rp,l,o,r* ( (11) uk) v (p(uk))

but even for all o € 21 follows

o]
;i; Pp,1,0,t* (ha(zi):uk)'p(uk)
&) ) : ‘
-> > 0Pt () (M), e ()
ket BEM,i:hB(i)zuk
o o D 5 °
= ( pl. E;— X (1) 5 ey E{: p" j;_ x*(m)) = p
k=1 amnl(i)en k=1 1:n™(1) =,

hence JENSENS inequation for concave functions implies

D ~
i) s max > pro oo 0FED=w)uleu))

cer k=1
e ~
o, . 1
< 2 PTy 1, 0%, v (h™(I;)=u, ) cav u (p(u,))

IA

o)
1 Ay _ 1
cav u (éil prp,l,o*,rz (h (1 )=u,)-p(u)) = cav u™(p).

Theorem 3.7: If § := (?(ui),...,§(us)) €T, optimal strategy
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in I,(p,1), then for the strategy =T, =: ST,(§) with =t (n%(i,),
1 0 1 Ok 1

° . o~ ° a - ° a °
31;...;ha(lk)) - y(h“(1k)> Yk €N and h’(iy),dqs---50" ()

arbitrary follows: E 2 < cav ul(p) Vo€ 3%, n €N,
‘ p,l,o,ro n

The proof is easily conducted showing, that for each sequence,

a,ha(il),jl,...,ha(ik) which for any fixed o,T = ST1(§) may
appear with positive probability the expectation of the payoff

is < vi(p) = cév ul(p).

Summarizing Theorem 3.2 - 3.7 we get

Theorem 3.8: The value vl(p) of Fw(p,i) exists and vl(p) =

cav ul(p). The strategy S, in Theorem 3.5 is an optimal stra-

tegy for Player I, the strategy 7, in Theorem 3.7 is an optimal

strategy for Player II.

Remarks: 1) Also for the value vi(p) of Pn(p,i) holds, as

can be taken from the proofs: vi(p) = Vl(p)

2) If the information matrices additionally (compare Example 3.2)

fulfill
i) H%1P v o, B em
ii) h*(i) + h%(i') for i,i'€R,isi’

then, as a special case we get the results of PONSSARD and
ZAMIR [1973].
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4. The Class of Games where the Uninformed Player is Always

the Second to Move

In the games considered in this section the uninformed
player moves first with probability 1, so we arrange

some abbreviations.
A strategy o of player I is sufficiently defined here by

01‘:1VIXS"F

k-1 '
O + M x (T—T SxR) x S » F for k.2 2
i=1 ' :

a strategy t of Player II by

T {2} » Y

1

. k-1
Tyt {2}J_T H=-Y for k 2 2.
i=1 .
T, simply allies an y to the sequence of moves "2".

The probability distribution (0,1,0) is abbreviated by
a g,

For games, in which the uninformed player is the secend
to move we will additionaly request, that

(*) there exists (x (1,1),...,x(0,3),...,x(m,s)) ,

x(a,j) €F for all a€M, j€ES so that:

x(a,j)«H%(j) = X(B,j)vHB<j) Va,BEM, JES
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whereby H®(j) : = (hg,j,...,hg,j)' Ya€M, jES.

Remarks:

1) The system of information matrices in example 3.1.
fulfrills (*).

2) Requirement (+) is stronger than (*).

3) The interpretation of (*) is equivalent to

those of (+).
According to the case in which the informed player always
moves first we here consider an auxiliary game
A (p,(0,1,0)) : = {NS2(p), T,» Eg(oi,fl)}, whereby for pEP,
Ng(p) contends all tuples oy iF ((x(1,1),..,x(m,s)) which for
a,B €M ; pa,pg > 0 fulfill (*)and here also T, can be identi-

fied with Y (resp. T, with y€Y). By making use of the Minimax-

Theorem it can be demonstrated once more that the value uz(p)

of A (p,(0,1,0)) exists: uz(p) = Mmax min Eg (oj, ri) =
2
01€Ns(p3 T €T,
min max B2 (o,,T,)
2 'D 1, 1 o
T,€T, o ENS(D)

Although it can be shown, that with
T, = {o, :=(x(1,1),..,x(m,s)) / x(o,j) € F Va€EM, J € S }

the value V12 of Pn(p,2) exists:
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| m r s
v,°(p) = min_ max_ p* * x (0,308} ;¢ ¥
. T, €T, o€ ; . 153
1771 1771 a=1 r1=1 j=1
m
. [0
= min p-omax o g;
jes i€r 1o
a=1

2 . - . N '
v1 (p) is the minimum of linear functions and hence concave

on P, further you can infer as in section 3
ug(p) < v12(p) V p € P, so cav u2(p) £ Vlg(p).

As Example 4.1 demonstrates "<" can occur;

Example 4.1: R = S := {1,2}
2 1 0 1
G1 = s G2 =
1 O 1 2
P b B
B =l = By :=(éj’1;...; 5j,M) J2ds we s sl
B, By
Py ** (1/2, 1/2); q := (0,1,0) then for the thereby defined

game Fi(po,z) 2 a8, {Gi,GZ}, {Hl,Hg}, p,q} follows
2 - min (% ¢ el . oq. 2
vy (po) = min ( 2+2 1k 3

as the special information matrices imply here

2
u2(p) = min max E pa'gg .s therefore
_ i€s  i€R ;7 >

_— ) ' 5
1+5 +2) = 1.5; but cav u(p0)<v1 (py)
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min (1;(i-p1) « 2)=1 for p1€ [0,%]
u2(p‘) = )
min (2p~ ;1) = 1 for p1€ [% »1]

hence cav uz(po) = 1<1}5=V1(p0)

If we want to determine the value of the game T_(p,2) and to
construct optimal strategies, partially we have to conduct
alternative proofs as will be pointed out when discussing the

"behaviour" of Player II.

At first, we will define here too stationary strategies:
o =3 ST2(X) € © with x = (x (1,1),...,x(m,j)), x(a,j)) €EF

YVa€EM jES by (k2 2)

‘ ck(a"jl’ii"“’jk) < = 01<a:jk) = X(asjk)
' k-1
for all a € M; jk € S; (ji’il""’ik)E l» S x R.
i=1

For stationary strategies (ST2(X) with x€Ns2(p) follows:

i) e,y = xT(B,3)
i:h? cu i:h? T u
1,7 1sJ

|HI

for all o € M, j€S and all unit vectors u€ R , hence

similar to section U.A4:
ii) for strategies ST,(x) we obtain: x fulfills (*) if and only

if & and hi " are independent.
11299
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Completely analogous to section 3 we can show the existence of

2 2
A
pB € P, 8 > 0 thus

2

AB ug(pé) = cav u2(p), SQ:

M

+
: 2 w2 o
> AB pB = p and

w
1
[y
>
i
=3,

Theorem U.1: If pé, AE is determined as above, then for games
r_(p,2) with pa > 0 Va€EM state:

If Player I is consulting a random mechanism which chooses, -

if a€M is selected, - the strategy STz(xg) with probability

2 a,2
Ag ° Pg 2 . . 2 .
% , Whereby xg 1s optimal in A (pB,(O,l,O)),l.e.
p
2~p 0,2
P(0g=8T,(x,) /& = a)=—PB =1, .. me1,

then ror a strategy defined in this way:

o

Ep 2,047 g Z cav uz(p) VKE N, T € T:
3 3%

Remarks: To distinguish the A's and pB's abuve from those of

section 3 they are indicated with a "2".

Without loss of generality we will request now, that

[0
1sd

|g £1 YVa€EM, 1€ER, J € S. S8ince for Py E P,

pg >0V a € M, there exists ¢ € R™ with:
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2
©py = cav u” (py),
®p 2 u? (p) Vv pep

[compare BONNESEN & FENCHEL, 1971], so you get for a game rl (p0,2)

which originates from I'_ (p0,2) replacing cZ by
the payoff-matrices'G'a T = (g!a.) s = (gq ~py
1,J 1,J

a strategy of Player II, which secures €, secures

cav u2(p0) + € in the game Fé(po,Z)‘

Remarks: For a game A'(p,(0,1,0)) corresponding to

r! (p,2) follows:

cav u'g(po) 0 and

IA

cav u‘z(p) 0 V pe€eP.

In the following we need a corollar proved by KOHLBERG

[1976b, p.13]

~ m
Corollar: Let K be a closed set in R . For E€K , we denote

by c(gE) a closest point in S to E. Suppose (Eh) is a sequence

of points in R™ that satisfies:
n

i)y 4Af En L B % E §i€K, then the hyperplane through
i=1

'c(gn), perpendicular to the line segment

[En, C(Eﬁ)] seperates gn and §n+1

ii) - IE .l <1VnE€EN
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then: d < -£_. where d, := d(En,K) and ¢ := max (2,d1).
vV n

We now want to look for a strategy of Player I, which secures

&€ = cav u'2(p0)+a in T} (p0,2). As shown in g£xample 4.1, i.g.
11 12 : B .

Vs (po) > cav u (po); Player IT has to consider the informa-

tion he gets and therefrom he has to deduce the strategy which -

T
he will choose later on, if he wants to come down to cav u 2(po).

To realize and to formulate this idea, there is need of some

more definitions. Let

s [HI [HI
Q z= T_T ({0% ¢ {x/x= E Al 5" X 20.k=1 .00 q Bl E E A =1} ),
_ — gried i — "k
1=1 k=1 k=1
. AL ' o 5% |HI .
and with Q- := (qi,...,qs) €EQ CR for a« € M,j €3
.- A o,
F(a,j,q) := {f € Fu {6 /If+H (3)-qj; = 0}
max . £eg% o £ ir F(a,j,a)+ @
. fevr '
£%(8,3) :=-{ (a,,d)
—co else
ah- 1 e = ' '
whersaby jj 7 (61,5,...,68’j) and 5ij the KRONECKER symbol.
Remarks:

1.) Of course for F(a,j,a) + @ there exists fj & F thus:

S
[ ]
f. G-Ga~ f . = max g, T2 ¢% £! , as F(a,j,4) closed and
J> b reF(a,j,q) J
bounded and
t

© : F(a,j,8)> R defined by o(f) := f- Ga'fj is continuuus for

all « € M, j €8.
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2.) In the construction of optimal strategies in Fm(p,z) developed
in this paper Ea(a,y) play the role of (upper) estimations for
the payoffs if G is an observed frequence (vector of frequencies)
of informational elements if hypothetic, that 6% is the pay-
off matrix. If for a certain j F(a,j,a) = @, the observed fre-
quencies of information are inconsistent with Ha, SO one can
be sure, that a was not chosen; so the definition Ea(a,y) = -

in this case 1s rational.

Further, we will define the random variables %E (J), Ek,j;

j €S, k € N on the probability-field (Q, & ,pr ) by
. p32,o’r

- _ ! o j = gi if the denominator
ce : =Jj kil =] j .
&y (§) == b feied In~d 3 s In7d 1n2d positive
0 else.

~

Consequently E; (j)(w) assigns the median payoff for a sequence
w of those plays of the first k-1 repetitions in which Player II

chose column j.

H 1 L

If at least ak (Ek J.,...,qkl?l) for B, 15k < 1HI
b b

sJ
(see Definition 2.1) and

o
<k /T =3 i 1=
u, I {nsk/j =j,hT ] uk}l ,

Ne,g o | tisk 7§ =511

if denominator positive

0 else,
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dy ¢ = (qk,i""qk,s); then by thisdefined random variable

o~ r

o~ . (v ~ 22 ;oW - . -
3 (qk,j). E (qk,j) 2 gk(J) vke N, j € S.

This can be shown (neglecting pr nullsets) as follows;

p’2’09T
if for w := (aj 2,ji,i1;..;2,jk,ik,J arbitrary
i t{nsk / 1 _=1,F =31l
?11{'3. (@) := - L n - {€R, jES, KEN
? ‘ k .
r
= . _ E ~i R
i=1
- r
A (w o~ o ! i o~ .
g ¢ )(qk(w),J)= max . : fl-gz ;2 gi(g)(w).
f‘EF(a(m),J,qk J.(w)) =T . )
b

~1 ~T ~ . o~ .
As (fk,j(w),...,fk’j(w)) € F(a(m),J,qk’j(w)) vV j€ES

~1 ~ ~
(B, 5 (@)50 T 50 B (@) = G 5 ().

If further for a € M, a €Q, y€Y
S

(@,y) ’:Z e%(4,3) 'yj and £(q,y) := (€1 (a,5),..,E™(as¥))
Jj=1

'EG

we can prove the tfollowing corollar

Theorem 4.2: For every. € > 0,p €P there exists y€Y, so that

for the game F;(p,2):

p+E@,y)' <ev§eq
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Proof: i) Eg viewed as a function of (0,5 T4) is continuous on

8 .
ng(p) x Ti; for every € >0 there exists Ty R Y, yJ >0V j, so
*
that max E (01, Ti) < € (compare Remarks on p. 30)
o, € Ns? (p) P

ii) For € > 0, p€ P choose y so tnat yJ>(1and i) is fulfilled,

the definitions yield:

pe E (4,y)

z a ° j ’a A
i{: e y9 . max E f . 3 if Fla,j,q)+ 0
=1 571 f’€F(a,J,q)
R for all a € M with p~ > 0,j € S.
- else

as y3 >0VJj€Ee S.

£ then p » E(q,y)' % - choose

1 .
fj,a 1= (fj,a""’ J’ YEF j=1,.., s so that
s r . .
1 a J
2 2 fja Bty
j=1 i=1
S r
= 2{: max gk -gi?j -y for F(a,j,8) 0
321 £ eEF(a,j,q) ‘o1

and‘pa > 0

which is obviously possible.

With %(a,j) := fj o if Flo,j.4) # 0 and.Pa> a,

S

Q(a,j) EF'arbitrary else, one gets:
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(Q(l,i),...,ﬁ(a,j),..,x(m,s))E st(p), hence also for this case

s r
p'E,(fi,y)'=> > > #a,5) + gt e yd - p°

/ L yed
0EM  j=1 i=1
m S r
' i, . j
< max > - x {l,g) e gi‘?j «y) e p®

XEst(p)' az=1 j=1 i=1

= max 9
01€N82<p) prit

In accordance to ideas of KOHLBERG's construction [1976 b] we can
prove the following Theorems L4.3 and 4.4 which are the core of

the construction.

Theorem 4.3: For all € >0 there exists N:= N{(€), so that for

any sequence (an), GHEZQ you may construct a sequence (yn),

. A A
y1€ Y arbitrary, ¥ y(qi,...,qn_l)E'Y for nz 2 -, so that

5

for all v.n=2 NN : Eg <e

n

T« S« P ) ga ,_ 1 o
whereby g, i E (qn,yn) and En P22 Eg% Ek
Proof: Let K := {(Xi,...,xm)E rR™ / xB <e VB € M}.

We will offer the following procedure:

if it is assumed that Eg is computed for k=1,..., n (for n=1
Ez: = Ea(al,yl), therefore computable), then take pn+1EZP so that

° 3 o . p ® = [ = '
i) if En § K: Ppyq € P parallel with En c(gn)
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whereby Eéc =

E else

and c(EA) defined as above.

NP T _ . b _a _ :
ii) if EnE K pn+1E.P arbitrary, only fulfilling Prsq = 0 irf

E” = = . (If Eg = - YaEM p € P can be chosen completely

n+1l

arbitrary.)

If then E €K and c(E) := c(E]), then
c(EY)= eva with p®,. > 0. Thus
n n+1 :
p_..cc(E) =e=<p . -E!
n+1 n T Fn+1 n °
. L A A . e e
Now choose Yneg *° yn+1(q1,...,qn) with positive components

g-good in A'(pn+1,(0,1,0))then with Theorem 4.2 for @n+1€<&

arbitrary.

° A 1
P E (qn+1,yn+1) < € therefore

. A v' . E )1 E 1 ther
pn+1 g (qn+1’yn+1) = pn+1 C(En) :gpn+1 gn . AS o

- ‘..— m A . _ »
c(En)€<3.- {x €eR " / pl_,1+1 ¥x= € } and Pryq

parallel to

En-c(én), the hyperplane C sticks perpendicular on [C(En)’ En]

(HESSE's Theorem).
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2. If gg >-o Va€EM, n €N then the preliminaries of the corollar

are fulfilled and we get the theoremn.

3. If Ea z-0 for some a€M, n € N we define:
n

M' iz {a€M / 3 § ,j €S with F(a,j,4 ) = @} cM

For a'€ M' there exists a minimal n_, for which F(a',j,én ) = @
. ol

If now

A
=

for n

o
(E%)

for a'e M!

v
-

0 for n

gg for a€EM-M' |,

(EX)

follows (g;f’> - for n>-ﬁ, f for example the maximum of the

na,'s.
The corollar is applicable if we consider (E;) and ii we
nzn+l
’ L A
choose YA, q -arbitrary, Tig = y(qa+1,...,qn_1) for n>n+1.

So for €>0 there exists N(€), so that for all n>N(e), aEM-M!'
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4. As lgg

| €1 Vo =1,...,ﬁ,... the statement is proved by 2.

and 3.

Remarks: In Theorem 4.2 and 4.3 y and y, are chosen with posi-
tive components.
Analogous to section 3 we define stationary strategies T=:ST2(y)

with y €Y for Player II by

o]
T(2h . ..,h. " )—T(2):y
1’:]1 lk_l,Jk__l 1
k=1
a a
h. i h. . € H
( 1gsdqo--es 1k_1,Jk_1) I_T
n=1
Theorem 4.4: For all n > 0 there exists K := K(n), so that for
k 2 K:
. > ’&JN .l 2 1 °
prp,2,O,ST2(y) (g, > E"(qu,y) + n)sn Vo€L,3T,(y) € T with y€ Y.

Proof: If prp,2 G ,ST.(y) 1s abbreviated by pr we get as

S

— | {nsk/3 =331 _ | ingk/7 =331 ~ _
B D — * g ) 2 — E%(q,,5)
j:j_ . ‘ j:j_
|{n<k/J L=iY .
pr<gk > E (qk,y) + n)<pr( EE; ‘ -y > n)
J
s s

, !{n<k/J g ald 1 ; AN
< :E: r(l - yJ ‘ >n) £ ) l,_il_%_l

j=1 j=1 K “n




A
L T

[
it
Y

for k big as inferred from the Theorem of BERNOULLI; further-
more as can be seen, k can be determined independently on o and

STg(y) resp. y.

Description of Principle of Construction

for e-Strategies of Player IT

~

. = o _y
T 1s called an €-strategy of Player II if Ep,2,o,re 8y < €

in T} (p0,2) for all c € ¥ ir k:>k0 and ko suitably determined.

To determine an e-strategy of Player II we will, incorporating
what follows and looking for transparence in the ideas of proofs -
subdivide the game in "sections", whereby each section itself

again is subdivided in N "blocks" of length K.

Hereby for € >0 N is determined to Theorem 4.3 and the length

of the blocks K:= K(e/N) according to Theorem U4.U4.

Player II has to use a stationary strategy STZ(yu,w> in the w-th
block of the u-th section, whereby here a strategy is called
stationary if in each repetition in the u-th section (independent
on the information inside the w-th block) with unchanged proba-

bilities it chooses the pure strategies j=1,...,s.
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Thereby yu,leY can be choosen arbitrarily but yﬂ,l > 0 for all

JES, ueEN. - for 2<wsN is constructed according to Theorem
5

.3 whereby:
v, o = y(Qu,1),...,QCu,w-1)) and thereby
u,w :
Qlu,w) := (ai(u,w),...,as(u,w))and ﬁj(u,w) denotes the relative

frequency of information in the w-th block of the u-th section

for repetitions in which column j is chosen by Player II.

Intefpretation: You can interpret the above described proceeding

of Player II as follows (compare proof of Theorem 4.3): Player II
has to derive from the observed frequencies of the first w-blocks

of a section an estimation p of the choice of a € M. Then he

n+1
has to take a Y41 €-800d in A‘(pn+1,(0,1,0)) and has to play

the stationary strategy ST2(y ) in the w+l-th block. At the

n+l
end of a block E*(Q (u,w+1),yn+1) (with probability near 1)

can be taken as an upper bound for the median payoff of the

w+l-th block. Length of blocks and number of sections can be
adjusted in such a manner, that at the end of a section the

expectance of the median payoff will become <‘e.

Execution of the Construction

Given € > 0 determine N := N(g) according to Theorem 4.3; K:= K(%)

according to Theorem 4.4,
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On the probability field (Q, & ,pr 1:) we define Q(u,w) for

p0’2’03
u€ N, 1<wsN, j €S and u€H

~o

I{n[(u—l)KN+(w-i)K<n$(u—1)KN+wK,h% x =u,3 =3} |
2 n

! >
-
K1 tn/ (u-1) KN+ (w-1)K<ns (u-1)KN+wK, T =i}
if denominator # O
™ (u,w) =
J
Lo _ else
Hencse
~ ~u‘1 ~u l H l i
Qj(u,W> = (Qj (u,W),---,Qj (u,w)) ~ for j €S
Qlu,w) = (@ (u,w),...,Q, (u,w));and
(u=-1)KN+wK
~S 1 ~s
Glu,w) =g ,:> By

1= (u=1) KN+ (w=1)K+1

Now an e-strategy T_ for w 3= (a52?ji’il""’2’jk’ik"")’

can be defined by: T (2,hq . ,...,hq x Yiz= § EY,yJ >0Vj
€k 11994 k-1 k-1 u,1 u,1
for. (u-1)KN<k s(u—l)KN+K,
Ty (BahE & saunshl oo g y(B(u,1),..,8u,w-1),
k 1294 k-12%k-1 >

y according to Theorem L.3 with positive components

u,w
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for (u-1)KN+(w-1)K<ks(u-1)KN+wK; u€N , 2swsN for all

k=1
(2,hg . ,...,h? . YE {2} x ’ H. Theorem 4.4 implies then
1291 "k-129%-1 )
n=1
~ ’&’ ~ e .
prp0;2,o,r€ (G(u,w)> E (Q(u,w),yu,w)+ €)< 5 Vo€ I and with
_ N
~e B 1 ~
G(u) - N ; G(u,W),
w=

1

N ~

g E*(T(u,w), vy ) then
:)

)
=1

"
N
.8
Qg
1]
TN

e

I

=

p (E(u) > Ea(u) + €) < € Vo€I.

r
,poszao,te

Since according to the construction for w€Q, u € N arbitrary,

(e (W) (w) <e for all a€EM we get

E G(u) < e+1+(1-€)* 2e< 3 VOE T
0g»2,0,7, GV (1-€) 3 ,

€
finally for k >k

0> k0:>u0 KN with ugy> é whereby for k there

exists the unique construction k = Uy KN+ka+rk,uk<O,
0 ka <N, OSrk< K:
- ol N K
- 1 - ~
E = E = g NK*G(u) + § y
p0,2,0,r€ gk p0,2,c,1:e k ( () gl)
“u=1 1=u, KN+1

k
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= . 1_ ;
S (uk NK3e + NK1) < THE: (ukNK 3e +NK) < 4e  Voezx ,

thus T is an e-strategy.

In conformity with remarks on p. 28, this strategy even secures
cav u(po) + € in r_ (po,2) for Player II. On the other hand

Theorem 4.1 gives a strategy which guarantees cav u(po) for

Player I, thus

Theorem M.S:.The value of V2(p) of the game Pm(p,E} exists:

v2(p> = cav u°(p) VpEP.
Further the strategy Te given above is an e-good strategy in

T _(Bs2).

Remarks: As can be seen now, for the value vi of the game
2 2 _ 2
Fe(Ps2): v (p) 2 v_(p) = cav u“(p) Vp€P .

As following example shows # can occur.

Example 4.2: 1If Pg ='(% s %) then for the game defined in

Examp1e H.1: cav u2(p0) = 1'u2(p0), hence:

: : = 2 i}
for x optimal in A(p(0,1,0)) EpO;Z,ST(X),T g, 2 u (py) =1
and pr % =a/he =n% . .,hd =h. . )=p%

PTpg»2,57 (0,1 ¢ L0y e dy TR T iy
a o
Va€M, keEN, T € Tand h: . ,...,h: . X
? 11,31’ ? 1psdy with
(h3 o ..,hd ~ =% . ) > 0.

P =h. . .
P p0,2,ST<X)',T 11,3‘1 ll’Jl, lk"]k lksJk




Hence for a strategy o* defined by cﬁ(')=ST(x)('),k:Sn
cﬁ(a’jl’ii""’in—l’j) = x(a,j) with x=(x(1,1),..,x(m,s)) optimal

n-1 1

= 2
E &, 25~ *uw (pgl+ 7

2, _ .5. 2
Vl(pO) = —= 4+ —=2>1 =cav u (po)

Pgs2s OFsT

Description of the Principle of Construction

of Optimal Strategies for Player II

To construct an optimal strategy for Player IT in Fw(p,2) we
choose a monotonously decreasing nullsequence.

Player II has to use for a certain.number of sequences respec-
tively an €.-good strategy, determined in a construction as above.
Thereby each number of sequences playing with Et—good strategies
correspondsto a) the total number of sequences in these sections
must be larger than the number of repetitions played before, and
on b) the number has to be "very much 1argér" than Nt+1 'Kt+1
Hereby Nt+1'Kt+1 assigns the number of games you need‘to bring
the expectance-value down to < €t+1 in a construction for an

et+1—good strategy.

Construction of an Optimal Strategy
To determine an optimal strategy exactly, we have to do some

epsilontic, which will be conducted here for completeness.
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(e.) V0. Choose & seguence of integers (m,) fulfilling
t £
t € N teN

following conditions

. t-1
(1) m, KtNt > Z my KqNp
1=1
K N
o _t t+1 Tt+1
(1) my 2 ¢ K, - N
t t €

whereby Kt’Nt are determined in the construction for an et—good

strategy.
As for k€ N there exists a unique tk with
tk-l tk

1=1 1=1

the divisionalgorithm twice applied implies the unique equation

for kE]Nt -1
k i
S

(+) k = fgi m1K1N1+(uk 1)Ntthk +(wk—1)Ktk+ o

. <u. < <
for ’\;]KEJN,i_uk_mt s 1"wk"Nk’ 1Srk_Kt

k k

If now TbiS defined for (w.l.o0.g.) = (2,j1,i1,2,...,jn,in,...)E Q

o o
by: T (205" 2 awwa gl . Y = ¥

Oy Ligsd o Tr-1"9%-1 Uy oWy

yuk’wk:= y(Q(u,,1),...,Q(u,,w -1)) for 2 <w, <N, according to

the construction of an €, -good strategy, ¥y

with positive
Cy Upe s Wy
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components, whereby ﬁ(ut,wt)(m) assigns the relative frequency

of information in the w, ~th block (of length N ) of the
k

B

(E mt+ut)—th section.

t=1

Then we get with

?gf le1N1+(u(t)-l)KtNt+w(t)Kt

1
"~ 1 -
Glu(t),w(t)) := :> z 8
t"l t

k= 2. m K No+ (u(t)=1)K N+ (w(t)-1)K, +1

for t € I, 1Su(t)$mt; '1SW(t)SNt by construction Vo€Z, t € N
Nt
1
E G(u(t)) := E S ¥ £Y) <
p,2,0rTO ( ( )) p)Z,O,TO Nt ( ) - (U(t),W( )) Et
' - wit)=

thus if k according to (+):

1S "
? P~
B5,2, o, 8k *Bp,2, 0, t. & ¢ Glu(e)) N K, +

0 0 15t<t) -1
15u(t)<mt
b Ny Koo Glult)) + N o« K+ 1)
k “k K Kk
1Su(tk)5uk_1 e
by =1L
1
< = ) -
<5 ( E ntNth e+ (uk 1) etNtthk + Nt Kt )
o] A k “k

For every €>0 there exists ki(e) so that for all k>-k1(€)

5y -



, ke
G > (m N K, €,
- mN, K e, £ ¢t=1 £
k Ett Tt T £ 3
t=1 k—
m, N, K
=1 £ttt

As for et‘\ 0, ng := m N.K ? « (which is implied by 1))

ng oc e,
even t=1 pV

——— 0

and as far k -e also tk -0, there
k

- n
t=1 K

is an‘kz(e), so that for all k=>k2(€)

1 .
Yk B¢, Ny K =8 <E 5 there also is k,(e), so that for all
k k k k 3 2 :

> €
k k3( )
L. . Ntk- Ktk 1i1) ) g
kKt t, T m. . N, . K, . - G -1°3

k k tk 1 tk 1‘ tk 1 k
So for €>0 there exists k(e) := max(ki(e), kg(e), kB(E)),so that
for all k>k(e):
>t

Ep,2,c,to 8 < € VoeZ. Thus also
E ék < V2(p)+ € hence T, optimal inT _(p,2).

p:?:csro
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5. Notes on XKOHLBERG's Paper, the Case of Simultaneous Moves

The class of games now éonsidered in which both players move
simultaneously was discussed by KOHLBERG [1976 bl. Here we will
straight away assume that Player I after each repetition gets

as infbrmation the number of the column Playér II‘has chosen,
because [comp. KOHLBERG 1976 b, p.23] the value of the infinitely
repeated'gamé is independent of the (kind of) information

Player I gets and main object of this paper is the analysis

of infinite games.

Similar as above we introduce the following simplifications here.

A strategy of Player II here merely is defined by

lg=1

B

1:1:{3}—»Y,rk:{3}x H}fork22

n=1
T, allies the sequence of move "3" to an y €Y; for (0,0,1) we

write abbreviated "1,
For the information matrices we will request in this section

(x) that there exists (x(1),...,x(m)) with x(a)€ F for all a«€M,

so that for all o,p € M: x(a) *H* = x (B) » uP

Remmarks: 1) Requirement (x) is stronger than (*) in section U
and weaker than (+) in section 3.

2) For interpretation compare remarks on (+) in section 3.

If for p€P Ns(p) denotes the set of tuples Olz(x(l),...,x(m))
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which fulfill (x) for all a,B € M with p®,p? > 0, then with

T, E‘Ti:z {1:1/1:1:{3} -~ Y}:= Y and

m r S

3 . i SR S BN - SR g o

Ep (ci,rl).- :) j) 12 x (o) gi,j v p the auxiliary
' a=1 i=1 j=1

game A (p,(0,0,1) is. given in normal form again. For the value

uB(p) of this game states

u’(p) = max min  E2(c,,T,)
3 , P
qIENs (p) T, €Y
= mif max E3 o T
P 127447

3
rle Y o4 €Ns” (p)

We can show analogously as above for p € P the existence of

m+1
3 3 . 13 % -t - 3
pl,-o"pm+1 EP, Al’...,km""l E ]R Wlth % A. B - 13
m+1 . m+1 =
?» .3 3 3,3 _ 3
zi: Ag Pz = p and Ay u’(pg) = cav u’(p)
B=1 B=1

As we define stationary strategies o:= STB(X)EZ of Player I by
ok(a’il’ji""’ik’jk) = cl(a) := x(a) EF k22 for

i1 €R, jl €S, a€EM, 0<1<k we get

- Theorem 5.1: For games r_(p,3) with pa > 0 Va€eEM; pg, Ag

B= 1,...,m+1 defined as above, follows, if Player I defines

his strategy % by a random mechanism with
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30,3
A3 Pg

pr(co = STB(xg)/d=3) = = B=1,...,m+1 whereby X2 eNg (pg)

D B
optimal in A(pB,(O,O,l)) then for a strategy defined in this
way :

o

: 3,
=cav VTET.
Ep,B,oo,r g, 2cav u”(pg)

For the rest of this section we (analogously to section 4)

w.l.0.g. request that 'gg jl <1 Va€M, i €R, j €S
S

and cav uB(p)S 0 YVp€E P, cav uB(pO) = 0,

We define

F(a,§,6) := {f€F / Ir-u® -§1l < &8} for §€Q, y€Y, 650

max £.¢% oy if F(a,§,8) # ¢

oo f €F(a,8,6)

E"(q,y,8) :=
- 5 ‘ else.

Further let Ek be defined on (@, & ,pr ) like on page 31,

p’3305T~

then also Ea(ak,y,é) is defined.

Before quoting two theorems proved by KOHLBERG[1976 p 19 ff.]

we will still define stationary strategies of Player II here,

rk(B,hg ; ,..;,hg ;) =) = y €Y Vk € N whereby
1291 k?“ k=1
k=1
(hg ; ..,h° )E H arbitrary, that means a stationary

103477 e d g

strategy of Player II is a probability distribution for the choice
of a column at each repetition, which does not depend on the

information of the repetitions but only on the sequence of move "3’
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Theorem 5.2: If T:= ST(y) with y9>0 for all j €S, then for all
n20, 620 there exists K:=K(n,5 ) such that for all o€X,a€M

-00 >
PTh 3 0,1 8 > B (qsy,8)+ n, E7(q,y,68) > -=) < n for k2K

Remarks: The requirement yJ>0 is necessary as can be taken from

the proof.

Theorem 5.3: For every €>0 there exists &:= &6(eg) >0 and a

N:= N(e), so that for every sequence (an) with an>€Q for all

n one can construct a sequence (yn) = y1‘€Y 3yn

‘= y(qi”"’qn—1> for n 22 - with:

n n
a ._ 1 N S X, A o
€, °° =) Ek = = E (qk,yk,é) <e for all a €M, n =N,

=
t
=t
~
it
s

Remarks: 1) KOHLBERG wrote "y, iE y(al,...,an)" instead of

"yhzy(a15°"’@n—1)"’ But as can be seen from the proof (first

A A
you construct SUPRE pn+1(q1,...,qn,yl,...,yn) and then Fraq

optimal A (pn+1,(0,0,1»Lyn depends merely on al""’an—l'

2). In Theorem 5.3 vy, can be chosen in such‘a manner that
y% >0 for all j €S, n€ N, as for the only nontrivial case
F(d,qn,é) #0 qHEZQ, the continuwity of Ea(qn,é): Y-R,
o, A o, A .
E (qn,é)(y):= E (qn,y,6) - where y=y(q1,...,qn_1) is constructed

according to the principle given by KOHLBERG withly'-ynl
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sufficiently small - implies, as F(a,an,ﬁ) compact:

1E%(@),v,,,8) - E%4 Ly} .8)I< ¢,

P Eﬁ: a A b oA .
hence & = E (qk,y&,é)s = gg; E (qk’yk’6)+ €< 2¢€

Applying Theorem 5.2 and 5.3 we get an €-good strategy. The
principle of construction can be described as in section 4,
but only the role of Theo;em 4.4 plays Theorem 5.2, those
of Theorem 4.3 Theorem 5.3. Further attention must be payed
that for €>0 also &(e) must be determined; the length of a

block depends on 8.

As in the proof given by KOHLBERG there is a fundamental

mistake we will execute:

The Constructicn of an e-good Strategy

Let €>0, &6 :=58(e) and N := N{(e) determined according to
Theorem 5.2; K := K(n,8) according to Theorem 5«3 gnd

(R, Q; prp,},o,r)’ Q(u,w) as defined on page 40 and finglly
Te by

a a . j
= u’leY, N >0

T_ (3,h 1

€k 112347777
for all j €83 and (u-1) KN<k<(u-1)KN+K

T h: . s % w glle s = S u,1),..Q(u,w=-1
ek(B, 1,940 "lk—l’Jk-i) Ya,w *= ¥(Qu,1),..Q(u,w-1))
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according to the construction of Theorem 5.3 with yﬂ W0
S

for all j € S and (u-1)KN+(w-1)K<k<(u-1)KN+wK;

: k-1
o &

u € N, 2swsN, and (h: . ,...,h: 5 ) € ‘ l H.
Lqsd9 Tr-12dK-1 =

Then with G{u,w) as on page 40 whereby only "Ei" instead of §1

1 o e
prp,S,G,TE (G(u,w) > E°(Q (u,w),yu,w,é) + e,
. N
.'&JN -C0 E 1 ~ . = ;L. v
£ (Qu,w),y, 56> ) <5 and with G(u) = 5 > G(u,w)..
' w=1
N
B (u) := % zg: Ea(ﬁ(u,w),yu’w,ﬁ) then
w=1
(+)pr'p,3,o’T (Gu) > B (u)+e, E*(u)>-w) <& for all o € =..

€

But according to the construction for w€Q, u € N arbitrary

{(w.l.0.g2. here w:= (B,ii,jl,...,B,in,jn,...))

~

T () () < eV (=a(w)) € M, therefore

G(u)s € *1+(1-e)2e<3€ V o € T
Ep,B,o,Te () (1-2) 3

[OR T

Hence again with k>kg>uy * KN, uy > whereby
k =u, * KN +w K+ r. (comp. page U41)

o~

EP,B,O,T g, <4 € for all o € I, therefore t_ is an e-strategy.
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Theorem 5.4: The value vi(p) of T_(p,3) exists:

v3(p) = cév uB(p) Vp € P.

Remarks: In KOHLBERG's paper [1975, p.22] one concludes as follows
(if we take into consideration what is remarked above on

Theorem 5.3.): Let‘ré be defined by

.
o (3,0% ...
€ 1159

for k = (n-1)*K+r , n € N, O0<r<K and

¥y &5 y(§1""’§n—1) constructed according to Theorem 5.3
with 2<n S(un-l)N+wn, 0< w_ <N and Qn o= Q(un,wn)
then pr (@ SE3 B,y ,6)+e,E5 (4 Ly ,6)> ) < &
p,B,G,Té n n’Jn’ ! i s N

‘ nk

for all a« €M, whereby 5n = % E gk which should
“k=(n-1)K+1

n n
N 1N g, ISTES \ :
PLYE PPy 3 . 71 b0 G> 5 0> E(Q.Ly,,8)e )<k

€

~
i
(A

k=1
for all o € Mand n > N.

This conclusion i.g. is not allowed, as following simple example

demonstrates
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Example 5.1: If Q

(0,1), R: ﬁko 1) arid p the rectang .ular
s ;

¥

it

distribution En: Q R, En(w) 0,VoEQ and e < % fixed,

1 for w E(O,g)
G (w):= , for n=3k~-3 k € W
i 0 else
1 for we (%,%+e)
Gn(w):z for n=3k-2 Lk € W
0 else
9=
1 for w € (1- §,1)
& (w):={ } for n = 3k-1 kK€ N
n 0 else

then

(i)  ve>0 3IN(e)V n=N En <e, choose N (g) = i and

(ii) p(Gn>-§n+ €E) < €

- &
then also p(G_n >§n+e) = 3

but not Vvn>N(g) p((_}n > En+e)< € as for n > 3 follows

p(G >E + )= =& & ¢.

To avoid the conclusion above which i.g. is wrong, as the Example
5.1 demonstrates and because the loocking for specifications for
which the conclusions made by KOHLBERG remains valid is too com-
plicated caused by Theorem 5.3 and 5.4 (and probably hardly fea-
sable) is given here a modificated proof.

Finally one can get optimal strategies now completely analogous

to section U.
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6. Value and Optimal Strategies of Games with Incidental

Sequence of Moves

First again is given a strategy of Player I which guarantees him

5
however under certain conditions, § q1 cav ul(p).

To do this we define again stationary strategies o =:ST(X(1),X(2)

(30,

5

wnere x‘17:= (X(l)(i),...,xﬂlkm)) for 1 = 1,3; x(2) ;-
(X(2>(1,1),---,x(z)(m,s)),xz(a,j), kl(a) €F for all a €M, j € ¢

1
by: O'k(cx,ai,bl,cl,...,ck 1,l) =0, (a,1): ( )(a) for 1=1,3, k 2 2

(2)(5,5) for all 5 € S, k €N,

Ok(a,al,bi,ci,..;,z,j) E ¥
for a;ai,bi,ci,...,ck_1 arbitrary.

Let further h, denote both:

k
o o(0
h, := hy . and hy := h (i );j, if a =1 for k €N,
kyUk, 0 0
1k0 € R Jy € S, Oy € M, similar to Hk, then we get the
Theorem 6.1: Let o := ST(x(1),x(2) x3)y with x* e nsl(p) v 1 e
{1,2,3} for ql>0 and al’hi""’ak’hk arbitrary with

p,q,0,7 (8178150470500 58 28 B =h ) > 0 for T €T then:

~ ~ R A 2 o
Pry 4,0,t (0F®/agFagshishy,.lapzay L s ) = p0 Ve € M, k €N,



Proof: The proof may be again conducted with induction on k
essentially analogous to the proof of Theorem 3.2 and will be
submitted. Here it will be only noted, that treating step k

to k+1 it is most practicable to seperate the cases, then to’

: a
- factorize out corresponding variables--especially q k—-and to

divide in order to reduce the term for k, so that it is possible

to apply the induction.

Theorem 6.2: If o:= ST(x(i),xcz),x(B)), x(l) € NSl(p) + 0,

x% optimal in A(p,1) for all 1 € {1,2,3} with q'>0, then

for the game Fm(p,q):

5 v
i = 1 1
E 2 -u vVTeT, n €N
p,q,0,T En ;i; ¢ uilp) ’

Proof: Theorem 6.1 implies for a, € Z, i, € R, j, €8, k€N

ko 0

~

with Pry q,0,T (a1=a1,h1=h1,...,an_1=an_1,hn_1=hn_1) > 0 and

TET arbitrary:

(8,/8 7a -0 =y, .8 _4=h )

Ep,q,o,T 171

QH
aMP
N
\V/W

a_i,(1) o s G,
pox 2 (a) gi,jr(al,hl,...,i,h (1))

m S r
. (2 ' .
+ q2 j> :> ;> paxl’( )(a,J) gg 3 T(al,hl,...,hn_1,2)J
a=1 J=1 9 =9 s

p(xxls(s)(cx) gg .
T 3=1 I=1 >d

PQ\N
il

\v/m

ZE

T (ai,hl,...,an_i,hn_l,B)J

%
W

Q .

B

,.._J

~~
o

~—r

by Theorem 3.3%,4.1,5.1.

1]
[N
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Theorem 6.3: If there exist for the game T (p,q) Pg € P, AB >

m+1

0,

m+1
B=1,...,m+1 with :E: kazl EE: Ay ul(pB);= cav ul(pB) and
B=1 g=1 .

Nsl(pB) £+ 0 for all 1 with g > O then:

if Player I uses a random mechanism which chooses, if a« € M is

selected, the strategy Og = ST(XB(l),xB(2),xB(3)) with

xé € Nsl(pB)' optimal in A(pB,l) for 1 with ql > 0 with

~ A

, o} o
probability AB'pB, that means pr(oo=GB / a=a) = B'pB,le,

o o
b b

then for a strategy defined on this way:
” 5
e E % i
E = -cav
p,q,0,,%T Bk = £ ¢ e
Proof: Analogously to the proof of Theorem 3.5 one can show
for B=1,...,m+1, « € M

1. %) pr(cozoB) 2 AB

2.) pr(d=a / 00:08) = pg hence again
m+1
LR B - '%i; pr(OO:OB)'Ep,q,oo,r (8,/0,=9)
m+l m+1 g%__ .
-r XB.EDB,Q,OB,r g 2 =T Ay f%T q - ul(pB)

=
e
N

al cav ul(p)

l\”/l“
¥
M

1
XB.u (pB)

-t
1
[N
™
it
[NEN
i...l
i
s

R 1
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For the above given construction of a strategy, which guar-

3
antees Player 1 E q1 cav ul(p) in T _(p,q) 1s decisive
l=1

that:

(-) the Xé‘s and pé's needed to determine cav ul(p) with

: 1
ul(pé) for 1 with q >0 are equal, that means that they

can be chosen independent of 1.

This 1s not always possible.

Example 6.1: If (R,S,{G,0°} , {H',H°} , p,q} is given by

Y 1 2 -1
R := S := {1,2}, G = , @° = ,
» -1 2 1 Yy
u1 u3
1 _ .2 _ . . ly
B~ & 5 = s U unit vectors in IR, 1 € k < 4.
Wy My k

1

then as here Nsl(p) = {((x(1),x(2)) / x(1) = x(2)} for 0 <K p~ < 1

Nsl(p) = F x F for p' =0 or pr=1
1 o . 1
u (p) = max 1 min E (01,11)
0,€Ns"(p) TET, b
2 2 ) 2
= max min E E x* yd(h(i)) E pagz -
XEF T,€T 1=1 j=1 a=1 >J
1541
, 2
= max min ( pagq )

i€R ;€S a=1 1sd



And further as p2=1-p1

) 2
min ( g pqgg ) & min (2p1+2; 2p=-1) = 2p1-1 vV p
j€S o=1 J
2
min ( 2 pagg ) = fhiinm (—2p1+1; —2p1+ﬁ) = —2p1+1 v
j€s o=1 >
Therefore (compare also Figure 1)
—2p1—2 for 0 < p1
ui(p) = max (2p1—2; —2p1+1) =
2p’-2  for 2 <p
Figure 1
- (p)
N
4.
3
ug(p)=cav ug(p)
D
1
3 P

IA
(NSTIEN

IN



= BO =
The special information matrices here imply

>
w2(p) = min max ( »_ p%% .) =

jES i€R o=1 1sd
2
max ( ) pagq Y = max (2p1+2; —2p1+1) = 2p1+2 Vpe€eP?P
. e i,1
1€R a=1
2
max ( pagg 2) = max (2p1-1; —2p1+U) = —2p1+u Vp€EP
1€ER a=1 ?
Thus
2p1+2 for 0 < p1 < %
u?(p) = min (2pr+2, 4-2p,) =
14—2p1 for % < p1 £ 4

; 3
If py = (V2,¥2) take pg € P» Ag > 0, § Ag = 1 with

How one can compute (or can take from the figure): .

5

i) gg; XB ul(pB) < cav ul(po) if not kB: 1, pB = Dy

for one B € {1,2,3}

3

i) % rg u(pg) < cav ui(pg)s py=(0,1), py=(1,0), A=A, =

if numbered suitably.

| =
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1) and ii) imply here, that for the game T_ (po,q) with

Z
q = (qi,qg,q)) with q1 > 0 and q2 >0 (+) can not be

fulfilled.

The constructions of section 3,4,5 for strategies of Player II

which guarantee cav ul(p)+e in the games r, (po,l) brings up
5

immediately a strategy which guarantees E q1 cav ul(p) + €
' 1=1

in 'Fw (p,Q)

Let T be defined in such a manner that for k €N, € > 0

(XO ao

i
[N

if a

where §:= (?(ul),...,y(uk)) optimal in F1 (p,1), if a, =2

k
resp. a, = 3
Tek(al’bi"'”ck—1’2) = y u,w = Y(d (u 31)’-'~36 (u ,w -1)) resp
Te (ai’bi"'”ck—l’s) s y&,w = y(Q'(u',1),...,Q"(u',w'=1))
k .

for a;,by,Cq,...5C, 4 arbitrary, whereby 0 < w < N [0 £ w' £ N']

N [resp. N'] is noting the number of blocks in the sections of
the construction of an e-good strategy in the games T _ (p,2)

[Fm(pa3)1~
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For k €EIN u and w [resp. u' and w'] are determined for

w € Q according to the number of indices with a| = 2, 1 £k

[resp. a; = 3, 1< kl; more exact: Qj@,w)(m) notes the rela-
tive frequency of the u-th block of the w-th section of the
first k-1 repetitions in which sequence of move "2" happens and
Player II has chosen colum J (analogously Qr(u',1),...,Q0ut,w'-1))).

Let .y(ﬁ(u,i),...,ﬁ(u,w—l)) be defined as in the construction
of an e-good strategy in T_ (p,2). Accordingly take y'(Q'(w,1),

.,Q'u,w-1)) for QW,w)(w) in the game r fps3) =
The weak law of great numbers implies:.

(+) Ve>0 3k (e) V1EZ

I{nsk/anzl}l

D ( T 2 qi > e)<eVk>k(e), o € T

o G, T
psQ:as

As now it is easy to show, that

E— 1
P,q,0,T, (gn / &, © 1) £ cavu (p) VYoE€EZ
follows
1 ~ 1 R
E = S E = cav u(p)
L) P5d,0,T ( k = gn) P,d,0,T (k 4;~——:——— B
n<k an = 3 n<k an—l
e (+)
I{n;k/an-i}l 4 1(
= ' : e < cav u + €
£,d,0,7, ( = av u- (p)) p)

YV o€3%, k>k (g) as lcav ui(p)i <1
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Further for ko,according to section M,ké to section 5

Ve >0 3 k¥(g) := k(max{ko,kb}, €) V1 with ql > 0 Vk2k*(g)
prp,q,c,re (i{nsk/an-l}l < max{ko,ko}) < e for o € 1,
hence of course for k > ﬁ(e) := max (k(e),k*(e))

| {nsk/a =1} | ) N
- - - 1]
(++) prp,q,o,rs ( % q >e,|{n£k/an-l}l<max{k0 ko})<25_

for all c € £, 1 € {2,3} with ql > 0.
Hence it follows from the definitions of T (above) and the proper

ty of T, that.if- l{nSKﬁiqz 131 > max {ky,k(} then

~ 1
{44t ) 'Ep gis st ( L g g ) <cavu(p) + €
S5 9 > <

€ I{nSk/anzl}l

for 1 = 2,3 with qf > 0 even for g~ > € > 0, k > k'(e):

> g,)

n<k:a = 1
n

H

ii) E (

C,T
Psd50; €

<1

l{nsk/an=l}l.

1 3 [
= ( . ° g )
Psd,0,T k R s n
IVt e ) g i | {nSk-an"l} ' n<k:a =1
0< <1 n
(+) (+4) . . .
£ 2e + 14+(1-2e) (g +e * sgn(cav u (p)+e)) (cav u (p)+e)

J

R

(+:+)
. > 0

< q1 « cav ul(p)+ﬁ . € Vo€ and 1 £ M < « suitable.
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Hence finally i) and ii) imply for € > 0 fixed, = for €

defined as above:

xll
M

1 o
E BE =
psq,osrs 1=1 P,d,0 T, ( k 2_—‘;"_’ gk)
n<k:a_=1
n
3
< S‘ q1 cav ul(p) + M e vV k > k(e)

-
1]
RN

So we get the summarizing

Theorem 6.4: If there exist pg € B, Ag e rRY, B=1,...,m+1 with
m+1 : m+1 ,
E Ao Psr = 1 and E A ul(p ) = cav ul(p) for all 1

= B "B - B B
B=1 B=1
with ql > 0 then the value of T_ (p,a) exists and

3
¥ = E ql cav ul(p).

1=1

Remarks: 1) The presuppositions of Theorem 6.4 especially imply

that Nsl(pB) # 0 for all 1 with ql >0 and PB=1,...,m+1l.
2) We get an optimal strategy of Player II if we define <t for

ak=2,3 according to the optimal strategies of the games I'_ (p,2)

and T (Bs3)s



- (IR s
L5

7.) Concluding Comments and Remarks for Interpretation

It could be verified in this paper that the principle of
concavication is important for the mathematical analysis of
all possible sequences of moves for zero-sum-games with
ihcomplete information. For games with sequences of moves
varying incidentally, we presented a sufficient mathematical
condition under which concealments of advantage in information
do not héndicap each other; in these cases the value is

the sum of the values of the games in which sequences

of moves de not vary, weighted by the probabilities ef

modality‘of sequences of moves.

Now there will be made some remarks which illustrate the

difference between these games as shown in Figure 7.1.:

1 n oo
1 ) 1 _
1 v;(p) = v (p) = v _(p)
IA IA IA
vy 2 ) 2 Ve
IA IN IA
2 2 2 2
vie) 2 wvi(p) 2 v (p)

Figure 7.1.: Relation of the values of the games I' (p,l),

1 =1,2,3 where the columns 1,n,» denote the number ef
uns and the rows 1,2,3 the kind of scquence

of moves.
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At first the comparison between the players: while the complete
informed player at least in the different games with no change in
the sequence of moves and infinite repetitions can use essentially
equivalent strategies, the only partially informed player -

when moving first or simultaneously - has to use essentially.
different strategies as in games where he is the second to

move., When Player II is not the second to move, then he has to
try to keep track on Player I's behavior. Then there exists a
strategy which is not vulneréble by any bluffs, - Player II
only‘has to deduce his behavior from the observed frequencies

of information in a certain manner. This study and observation

of the opponents informatioﬁ, the derivation of his own behavior
by what happened in advance can be interpreted as a model of a
process of optimal learning. If this process took place in this
way, a strategy of the informed player leads to success in which
he has to pretend with certain (mathematically determined)
probabilities to play other games by trying to conceal his
advantage of information completely and to do best under

these conditions.

Only for games in which the informed player does not have
to move first there is an opportunity for him to show up better
in games with finite numbers bf repetitions than in games
with infinite numbers. This demonstrates the relative dis-
advantage of a more informed player in case that he
has to move first; - for, if the informed one has to move
first he also has to reveal an optimal rate of information
with his first move, there is no.positive amount, which

can perhaps be received additionally in the beginning.
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Finally we come to the comparison between the differeht
sequences of moves: what can be stated intuitively for finite
games, is this: drawing first is worse than drawing simultaneously,
and this again is worse than being the second to move by knowing
what the other has done or at least having got some information
from the other. This could be proved in this paper also for
infinite games with incomplete information and incidental sequence
of moves (c.f. Examble Gal)s There are situations resp.
games in which real differences occur, which are being expressed

by the height of the value.

It is the author's hope that what could be demonstrated
partially in this paper - to counterplay the process of optimal
concealing and revealing of informatioﬁ mathematically by a
smoothing resp. concavication of functions - also can be

transfered even to more general situations and games, in particular

non zero-sum-games.
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