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Limited Rationality and Structural Uncertainty

by
Reinhard Selten, Bielefeld

The description of human decision behavior requires theories
of limited rationality (Simon 1959, Sauermann-Selten 1962,
Selten 1978). An important aspect of limited rationality is
the lack of complete overview over all possible states of
nature. The term structural uncertainty will be used for this

incompleteness of the decision maker's knowledge.

It is the aim of this paper to develop a theory of decision

. making under structural uncertainty which differs as little
as possible from Bayesianism, The principle of expected
subjective utility maximization is accepted as a satisfactory
description of complete rationality. This view is based on
the convincing result of simultaneous axiomization of utility
and subjective probability (Savage 1954).

Structural uncertainty is the only aspect of limited rationali-
ty which will be considered. This is a rather small step
towards a realistic description of practical decision situations
but, nevertheless, an important one. Even under the most fa-
vorable conditions for the application of Bayesian reasoning,
calculations will be based on models whose adequacy cannot

be presumed with absolute certainty.

In view of this fact,it seems to be of interest that a small
set of plausible axioms is sufficient to characterize the
extension of the principle of expected subjective utility
maximization to decision situations with structural uncer-
tainty. Moreover, it turns out that the axioms force us to
use a very simple rule of dealing with structural uncertain-
ty: The unknown states of nature must be treated as if a
constant utility level h were attached to every one of them.
h may be interpreted as a parameter expressing the degree

of optimism with respect to unknown states of nature.



Prospects: The theory is based on the following conceptuali-
zation of a decision situation under structural uncertainty:
The decision maker assigns subjective probabilities Pqree-rPy
to n mutually exclusive known states of nature S1""'Sn’ re-
spectively; the sum p = p1+ RN +pn may be smaller than 1,
since unknown states of nature are expected with probability
1-p. For any possible decision alternative the decision
maker knows the utility levels Uyreeerly attached to each

of the known states of nature 51,...,Sn, but nothing is

known on the utilities of unknown states of nature. Thus

every possible choice leads to a "prospect"”

(1) P = (p.l,...:pni u1,...,un)

with O < py 2 1 and p = py+ ...+p, < 1. The probability 1-p
of the unknown states of nature may be thought of as the
structural uncertainty of the prospect.

The decision maker must be able to make preference comparisons
between any two prospects P and Q which may differ with respect
+o structural uncertainty and the number of known states of
nature. The need for such comparisons can easily arise in con-
nection with multilevel decision problems where earlier choices
influence later states of the world.

The decision maker's utility function may be bounded from be-
low or above. Therefore, it is assumed that the values of the
utility levels u, are restricted to an open, closed or half
open interval I which contains more than one point; borders
at -« or +» are not excluded.

The set of all prospects P of the form (1) where n is an arbi-
trary positive integer and uieI holds for i = 1,...,n is de-
noted by X. The axioms to be introduced concern the decision
maker's weak preference relation =~ over X. The corresponding
strong preference and equivalence relations are expressed by &
and ~. ,respectively.



Prospects of the form (p;u) corresponding to situations with
just one state of nature will play a special role in the theory.
Such prospects are called binary. The set of all binary pro-
spects (p;u) with 0<p<1 and uel is denoted by Y.

Axiom I (reduction to binary prospects): Let

P = (p1,...,pn;u1,...,un) be a prospect in X with

P = Pyt ...+pn>0; define

Then we have P~ {(p;u)

Interpretation: u is the conditional expected utility for the

known states of nature in P. It is reasonable to require that
the decision maker's preferences should not depend on anything
else but this conditional utility u and the structural uncer-

tainty 1-p.

axiom II (utility monotonicity): Let P = (p;u) and Q = {p:v)

be two prospects in Y with p>0 and u>v. Then we have P -Q.

Notation: Let P = (p;u) and Q = (q;v) be two binary prospects.
Imagine a lottery which yields P with probability r and ¢ with
probability 1-r. The probability that a known state of nature

. is reached by this lottery is

(3) 5 =rp + {1-r)q
assume ﬁ > 0. Then
(4) 5 = IPu + {1-r)qgv

P

is the conditional expected utility of the lottery for the
case that a known state of nature is reached. With this inter-
pretation in mind we use the notational convention

(5) P + (1-r)Q = (p,u)



The expression on the left side of (5) will be referred to
as well defined for p»>0, For § = 0 a conditional expected uti-~
lity cannot be formed.

Axiom IXI (lottery neutrality): Let P,Q,T,R be four binary lot-

teries in Y with

(6) P T
and
(7) O~ R

Then for O<r<1

(8) rP + (1-r)Q ~xrT + (1-r)R

holds, wherever both sides of (8) are well defined.

Interpretation: Axiom III combines two requirements which are re-

miniscent of similar postulates in axiomizations of the von Neumann-
Morgenstern utility (Luce-Raiffa 1957). One reguirement concerns
the reduction of a lottery between two binary prospects P and Q

to a binary prospect rP + (1-r)Q. The second requirement says
that in any such lottery between P and Q both P and Q can be sub-
stituted by eqguivalent prospects T~P and R~Q, without changing
the preference evaluation. Since for the sake of simplicity we
avoid the introduction of lotteries between prospects as formal
ocbjects of the axiomatic theory, the two requirements are not
formalized directly. Instead of this, an immediate consequence of
both of them together is expressed by axiom III. Since both re-
quirements are very natural and near to the Bayesian spirit, an
extension of Bayesianism to decision situations under structural

uncertainty should have the property of axiom III.

Axiom IV (continuity}: The restriction of the preference rela-

tion > to Y can be represented numerically by a continuous
function £({p,u) in the sense that (p;u)E:(q:v) holds if and only
if we have f(p,u) > £(gq,v).



Interpretation: The conditions for continuous numerical re-

presentability are well known {(Debreu 1954). The continuity re-
quirement excludes the possibility that >~ is a lexicographic
ordering over the (p,u)-space, a case of only marginal theore-
tical interest.

The class H: In order to prepare the statement of a theorem we

introduce a one parameter family H of preference relations E;h
on X which will turn out to be exactly those satisfying axioms
I to IV. For every real number h a preference relation &;h

is defined as follows: For any two prospects

(q1,...,qm; v1,...,vm)

P = (p1,...,pn; u1,...,un) and Q
in X define

n
] =
B 111 pyuy for p = Pyt .- tp, > o
(9) u =
L? for p = Pyt .. tp, = 0
and analogously
"y om i
q 121 q;Vy for q = q1+ PR +qm > 0
{10) v =
0 for g = qt .- tq = 0
Then
S
{(11) P thQ
holds if and only if we have
(12) pu+ (1-p}h > gv + (1-q)h

The parameter h can be interpreted as the utility evaluation
of the unknown states of nature. All preference relations

in H extend the principle of subjective expected utility maxi-
mization to situations under structural uncertainty in essen-
tially the same way. The unknown states of nature are treat-
ed as if they were known states of nature with utility h.

With this interpretation in mind we shall call

(13) U, (B) = pu + (1-p)h



the expected utility of P with respect to

‘L_
Nh'
>

U, (@) .

Obviously
P =3, Q holds if and only if we have U, (P)
h h

L E:‘,'l

Theorem: A preference relation on X satisfies axioms I

to IV, if and only if it is in class H.

In order to prove the theorem we shall first prove lemma 1

which covers the if-part of the theorem.

Lemma 1: The preference relations in H satisfy axioms I to IV.
Procf: Obviously axiom I holds by definition. II is an imme-
diate consequence of (12). The continuocus numerical represen-
tation required by IV is given by (13). It remains to show 1III.

We observe that (3) and (4) have the following consequence

up + (1-p)H

n

{14) Uh(rP+(1-r)Q)
= rpu +(1-r)qv +(1-p)h
= r(pu+(1-pth) + (1-r) (gqv+(1-gq)h}

This yields

(15) Uh(rP+(1-r)Q) rUh(P)+(1—r)Uh(Q)

in view of (6) and (7) we have Uh(P) = Uh(T) and Uh(Q) = Uh(R).
This together with (15) and (16) yields (8).

Regular binary prospects: Let Io be the interor of interval I

to which the utility levels are restricted. According to our as-
sumptions Is is non-empty. A binary prospect P = (p;m) is called
regular, if we have p>0 and uel . Let Y, be the set of all regular
binary prospects in Y. In order to prove the only-if part of the
theorem it will be useful to investigate preference relations on
Yo' If in axioms II, III, and IV the symbol Y is replaced by Yo
we receive axioms IIO, IIIO, IV0 which can be applied to such pre-
ference relations. Once it will have been established that a
preference relation on Yo satiéfying IIo' III0 , and IVO coin-
cides with the restriction of a preference relation in H to Yo

it will be possible to extend the result first to Y and then to

X in order to prove the only-if part of the theorem,
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The (p,pu)-representation: For the investigation of preference

relations over YO it will be convenient to represent binary pro-
spects P = (p;u) as points {p,pu) in a rectangular coordinate
system with p on the horizontal and pu on the vertical axis.

Let ? be the set of all points (p,pu) representing prospects

P = {p;u) in YO and let ¢ be the mapping from Yo onto Z de-
fined by ‘

(16) p{(p;u)) = (p,pu)

Obviously ¢ is a one-to-one mapping from Y0 onto Z. Moreover,

both ¢ and its inverse are continuous.

In the following we shall first look at some properties of g
and 2. One of the advantages of working with YO rather than Y
is the fact that for P,QeYo the expression rP+(1-r)}Q is always
well defined for Ozrsi.

Lemma 2: The mapping g has the following property

(17) o (rP+(1-r)Q) = ro(P)+(1-r)e(Q)

for Ozrz1 and P,Qe¥

Proof: Equation (4) yields

(18) pu = rpu+(i-rigv

This together with (3) leads to (18).

Lemma 3: The set 2 is convex.

Proof: Obviously for P,QEYO also rP+(1-r)Q is in YO. Therefore

lemma 3 is an immediate consequence of lemma 2,

Indifference curves: Consider the eguivalence classes gene-

rated by a preference relation over Y- The image of an equi-

valence class under the mapping ¢ will be called an indiffe-



rence curve. It will be important to look at the shape of in-

difference curves.

Lemma 4: Let C be an indifference curve generated by a prefe-
rence relation on YO which satisfies 11, IIIo and v,. Then
C is convex subset of a straight line L in the (p,pu)-plane.

Moreover ¢ is relatively closed in Z,

Proof: Let P and Q be two prospects in the eguivalence class
corresponding to C. The application of axiom IIIO to special
case P = T = R together with lemma 2 and lemma 3 shows that

the straight line segment connecting ¢(P) and 9{(Q) belongs to C.

Therefore C is convex.

It follows by axiom IIO that for every p there can be at most
one point {(p,pu) in C, since one of two different regular binary
prospects with the same p must be preferred to the other. There-

fore C must be a convex subset of a straight line L,

In view of axiom IVO the eguivalence class corresponding to C
can be described as the set of all prospects (p;u}eYo for which
a continuous function f(p,u) is equal to a certain constant.
Therefore this equivalence class is relatively closed in Yoo

Since ¢ is continuous C is relatively closed in Z.

Lemma 5: Under the assumptions of lemma 4, the indifference

curve C contains at least two pecints.

Proof: Let (p,pu) be a point in C. Since u is in the interior
I° of I we can find to numbers v,w'e,ID with v<u<w. Obviously the
set Z is large enough to permit the construction of a continuous
curve D in Z which connects (p,pv) with (p,pw} without touching
(p,pu). Let f be a continuous numerical representation as
described in IV0 and consider the value which this function

assigns to the inverse g¢-image of points in the (p,pu)-plane.
In view of IIO,IVO this value is lower for (p,pv} than for

(p,pu} and lower for (p,pu) than for (p,pw). It follows by
the continuity of f and the inverse of ¢ that somewhere on D
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there must be a point (g,qt} for which this value is the same

as for (p,pu). With (q,qt) we have found a second point in C.

Lemma 6: Under the assumptions of lemma 4 the indifference

curve C is the intersection of Z with a straight line in the
(p,pu) -plane.

Proof: In view of lemma 5 the straight line L in lemma 4 1is
uniquely determined. Suppose that L contains a point b which
does not belong to C. Since Z is convex and.C is relative closed
in %, there must be a point in C, say e, which is nearer to b
than all other points in C. Let @ be a point in C which is
different from ¢. In view of lemma 5 such a point can be found.
Obviously b,c and 4 are arranged on L in this order in the

sense that c is between b and d. Therefore c is a convex linear

combination of b and d. For some r with O<r<i1 we have
{(19) c=1xb + (1-r)d

Let P,R,Q be the inverse ¢-images of b,c,d,respectively. In view

of lemma 2 we have
(20) R=1rP + (1-r)Q

Since ¢ and 4 are in C we have R~Q. It follows by axiom IIIO
that T~R holds for

(21) T rP + (1-)R

pefine e p(T). In view of lemma 2 equation (21) yields

(22) e rb + (1-r)c

consequently e is a point on L which lies between b and c¢. On

the other hand, it follows by T ~R that e belongs to C. Therefore
C contains a point which is nearer to b than ¢. This is a contra-

diction. Consequently we have C = Z n L.
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Lemma 7: Under the assumptions of lemma 4 let C and D be two

different indifference curves. Then C and D are parallel.

Proof: Let ¢ be a point in € and let d be a point in D.
Define

1

(23) b = 5 C + d

1
2

Let B1 be the set of all points ecZ of the form

(24) e = —;-c+%gwith geD

and let B2 be the set of all points ecZ of the form

(25) e = % g + % d with geC
Obviously B, and B, are intersections of Z with straight

lines L1 and L2 intersecting in b, such that B, is parallel

1
to D and B, is parallel to C.

2
Since in view of lemma 5 both C and D contain at least two
points, we can conclude that both B1 and B2 contain at least
two points. Therefore one of both sets B1 and B2 cannot be
contained in the other unless C and D are parallel. Let B
be the indifference curve with beB. We shall argue that

both B, and B, are subsets of B. In view of lemma 6 this can-

1 2
not be true unless C and D are parallel.

Let P bhe the inverse ¢-image of c. The inverse g¢-images of
points in B1 have the form

1
P+-2-Q

N —

(26) T

where Q is an inverse p-~image of a point in D. It follows
by axiom III0 that all prospects of the form (26) are equi-
valent. Therefore B.l is a subset of B. The proof for B2 < B

is analogous.
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Lemma 8: A preference relation on Yo satisfies axioms 1.,
IIIO, and IVO if and only if it is the restriction of a pre-

ference relation in H to YO.

Proof: The if-part is an immediate consequence of lemma 1.
Consider a preference relation & on Y, which satisfies 11,0

IIIO, and IV, In view of lemmata 4,5,6 and 7 it is clear

that the indifference curves are straight line segments with

a common slope. It follows by IT, that indifference curves cannot
be vertical. Let h be the common slope. Then an indifference
curve can be described the set of all points (p,pu)eZ with

(27} pu = hp + B8

where 8 is a parameter characterizing the indifference curve.
Cbviously the indifference curves (27) are exactly those gene-
rated by the restriction of h’h to Y _.

It remains to be shown that the order of preference between
indifference curves is the same as that generated by %;h. Let
f be a continuous numerical representation as described by Iv,.
Let g(8) be the value of f attached to the inverse g-images of
the points on the indifference curves characterized by B. Let
J be the set of all B8 which belong to indifference curves. It
follows by the definition of YO that J is an open intervall
(this does not exclude -= or +=» as borders). We have to show

that g(B) is strictly increasing in J.

Let P = (p;u) be a prospect in Y, with f(p,u) = g(B). For suf-
ficiently small & the prospect Q = (p,u+s) will be in Yo’ too.
p{Q) is in the indifference curve characterized by B' = B+ps.

Moreover we have P ~Q and therfore g(8') > g(8). Therefore for
sufficiently small ¢ we always have g(B+e)>g(B)}. This shows
that g is strictly increasing everywhere in J.

The (p,u)-representation: It is natural to think of binary pro-

spects (p;u) as points in a rectanqular coordiate system with p
on the horizontal and u on the vertical axis. This way of repre-

senting binary prospects or sets of such prospects is called (p,u)-
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representation. It is convenient to identify the prospects
{p;u) with the corresponding points in the (p,u)-plane. Thus
an equivalence set generated by a preference relation may be
thought of as a point set which is alsc called a (p,u)-indif-

ference curve.

It is our intention to extend the result of lemma 8 to prefe-
rence relations over Y., For this purpose we look at the (p,u)-
indifference curves of the restriction of %’h to Y. For the
sake of notational simplicity we drop the index h of Uh in (13).

The (p,u}—-indifference curves have the following shape

h+9—§l for U # h

]

(28) u

(29) u h or p=20 for U = h

The curves (28) are rectangular hyperbolic with the lines

p =0 and u = h as asymptotes which are convex for U>h and con-
cave for y<h. The (p,u)~indifference curves are the non-

empty intersections of Y with curves of the form (28) and (29}.

Lemma 9: A preference relation on Y satisfies axioms II, III,
and IV if and only if it is the restriction of a preference
relation in H to Y.

Proof: As in lemma 8 it is sufficient to prove the only-if part.
Let = be a preference relation on Y satisfying II, III, and

IV and let ﬁLh be the preference relation whose restriction

to YO agrees with the restriction of = to YO according toblem—
ma 8. Let f be a continuous numerical representation of ~ ac-
cording to IV.

Consider the (p;u)-indifference curves for the restriction

of & to Yo' Each of these curves is characterized by a value
of U and a value of f£f. Obviously the value of £ is a strict-
ly increasing function ¢(U) of the value U. Moreover ¢ must be
continuous since otherwise f would have to be discontinuous,
too. Within YO the utility index U varies over an open inter-

vall K which is the region for which ¢ has been defined. With-
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in Y the utility index U varies over an intervall K which is
contained in the closure of K since Y is contained in the closure
of YO. We shall show that we can continuously extend the defi-

nition of ¢ to K.

Let B be a border point of K which belongs to K. OCbviously b
must be the utility level U of at least one point PeY. Let M be
the set of all points P of this kind. Since Y is in the closure
of Yo' for every PeM a sequence P1,P2,... with PieYO can be
found which converges to P. Let U1,U2,... be the sequence of
utility levels corresponding to P1,P2,... according to (13).

Obviously U1,Uz,... converges to B. In view of the continuity

of £ the sequence f(P1), f(Pz),... converges to f(P). Moreover
we have f(Pi) = ¢(Ui). Since ¢ is continuous and strictly mo-
notonic in X any sequence & (U,),%(U,),... with U, » B for i » =

behaves in the same way with respect ot its limit , i.e. the
limit, if it is finite, is the same for all these sequences.
Therefore f£(P) assumes the same value for every PeM. The defi-
nition of ¢ is continuously extended by attaching this value

to B. Moreover, it is clear that the extended definition cor-
rectly describes the relationship of U-values and f-values for
points in Y whose U-levels are not in K. It is also clear that

¢ is strictly increasing in K.

In view 0of the strict monotonicity of ¢ it is sufficient to

show that ¢ correctly describes the relationship of U-values and
f-values for all points of Y. For any point PeY a sequence
P1,P2, ... 0Of points in Y0 converging to P can be found. The
limit of the corresponding utility levels U1,U2, ... is the uti-
lity level U of P and f(Pi) = Q(Ui) converges to f£(P) = ¢ (U)

for i » ». This completes the proof.

Proof of the theorem: It remains to show the only - if part.

Let = be a preference relation on Y satisfying axioms I, II, III,
and IV and let é;h be the preference relation in H whose restric-

tion to Y agrees with the restriction of = to Y according to

lemma 9. Every prospect PeX is equivalent to the corresponding
binary prospect (p;u)eY defined in axiom 1. This is true for
& as well as for %;h. Therefore = and §:h agree everywhere in

X.
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Remark on a further axiom: Axiom II asserts a monotonicity pro-

perty with respect to u in binary nrospects (p;u). At first glance
it may seem to be plausible to require a similar monotonicity
property with respect to p in order to express the intuitive idea

that it is desirable to reduce structural uncertainty:

Axiom V (probability monotonicity): Let P = (p;u) and Q = (qg;u)

be two prospects in Y with p>g. Then we have P& Q.

Interestingly this axiom is not compatible with the other axioms
unless I is bounded from below. It can be seen easily with the
help of (13) that we have

{30} (O; u) é-h (1;u) for u < h

Only if T is bounded from below h can be chosen in such a way

that u > h holds for every uel and (30) cannot occur.

Axjiom V involves an extreme pessimism with regard to unknown states
of natures. If u stands for the utility of being hanged today

it is by no means unreasonable to prefer the complete structural
uncertainty of (O;u) to the prospect (1;u} which corresponds

to a situation where the dreadful event will arrive with certainty.
Therefore, contrary to axiom V, it seems to be more plausible to

assume that h is in the interior of I.

Concluding remarks: The result that the decision maker must

treat the unknown states of nature as if they were known states
of nature with a constant utility level h, is by no means obvious.
There are many other rules for the evaluation of prospects under
structural uncertainty which may seem to be plausible at first
glance. Some possibilities which involve the minimum of the

uy in P = (p1,...,pn; u1,...,un) are already excluded by axiom I.
Other rules could involve different combinations of u and p in
the numerical representation f(p,u) of the preference relation.
Interestingly the simple possibility f(p,u) = u of ignoring
structural uncertainty is not compatible with the axioms even if

it does not involve any obvious violation of the Bayesian spirit.
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Generally, one thinks of utilities as the result of a mental
process where consequences of imagined events are carefully
compared with each other. The utility h which must be attached

to unknown states of nature cannot be obtained in this way because
these states are not within the reach of our imagination. Never-
theless, a decision maker who wants to obey axioms I to IV must
develop a definite attitude towards structural uncertainty.

This attitude finds its expression in the constant h.

Finally, it should be emphasized that it seems to be significant
that Bayesianism is capable of dealing with at least one aspect
of limited rationality. One may try to approach other aspects
of limited rationality in a similar fashion even if it is

doubtful whether this is the right approach to the problemn.
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