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assumptions of “planner's rationality" it is shown that
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1. INTRODUCTION

Let U be the set of social afternatives and V a subset of
2V which is the power-set of U. A sccdial chodice corhespon-
dance (SCC) v : V - U 1is a set-valued choice function?)
that selects some non-empty chodice-set ¥(V) ¢V c U from

any (geasdible; environment V €V

The axiomatic framework we shall adopt suggests to restrict
the interpretation of ¢y : V - U to social choices. Thus

y is meant to describe the choice behaviour of some ficti-

tious planner. In a different context, such as consumption

theory, ¥ might describe the market behaviour of some

private consumer.

As a matter of fact the basic question of this paper was

first raised and answered by revealed preference theory:

When does there exist some ordering R = RY on U ration-
alizing ¥ in the following sense:
u € ¥(Vv) iff uRv for all v € V, V € V. {1}

Ari ordering is a complete, refliexive, and transitive rela-

tion.

It was K.J. ARROW who observed that the existence question



of rationalizing orderings "would be greatly simplified if
the range over which the choice functions are considered
to be determined is broadened to include all finite sets."
([2]1, p.122) This statement has found strong support by a
subsequent paper of A.K. SEN [22]. A1l what we actually
need is a straight-forward generalization of SAMUELSON's
Weak Axjom of Revealed Preference [19] such that the case
of {(demand) correspondences ¥ is subsumed. Then a rationa-
1izing ordering R is easily shown to exist for ¥ if we
only allow V to comprise all subsets V of U with IVl < 3.
(Cf. [2], [22] or theorem 1 below.)

This paper's object is to give more information about the
structure of ¥ and its rationalizing social ordering. Sur-
prisingly enough and in contrast with expectations that
might be raised by ARROW's remark the strongest results

only obtain if finite environments are infeasible.

To get a rough idea of the kind of results we are aiming
at let U be R", the EUCLIDean space of dimension n. n
refers to the number of individuals § = {1,..,n} the wel-
fare of whom the planner has to consider. u € U stands

for a vector (ul,..,u of personal welfare (= utility)

n
levels us. The planner is thus conceived to make social



choices among utility payoffs rather than welfare affec-

ting physical states.

The more conventional analysis would focus on the latter.
Let accordingly X denote a set of alternative physical
states. Individual i's weifare at x € X is measured by
some utility function di:X -~ R . Let D be the set of all
feasible d : X -~ R" . Physical environments that are
feasible with respect to X are denoted by Y €Y ¢ ZX.

P. FISHBURN would call ¥:V¥V - U a "choice function" ([5],
p.190). A "social choice function" in his terminology is

a set-valued mapping
T:Y¥YxD > X, B #¥Y,d)cVY (cX). (I5), p.4)

Note that the above definition of ¥:V - U 1is the more
general concept if V can be chosen sufficientiy large in
ZU. This follows as any conflict of the "real world® can

naturally be embedded into the utility space:
Us=R", (Y,d) = d(Y) =: Ve U, ¥(Y,d)} := d L(¥(d(Y)))n¥Y.

Hence any results which we derive for V¥ :V = R" and a

sufficient]y large V ¢ éﬁn immediately carry over to a
whole class of conflicts of the "real world". On the con-
trary characterizationtheorems for ¢:¥xD ~+ X only ob-

tain for the single set X of social alternatives under

consideration.



There is one distinguished utility payoff associated with

d: X +-Rn, namely
u = u{x,d) , Di = sup d.(X) ,

where we tacitely - and in contrast with subsequent prac-
tice - assumed that agent i€ weakly prefers x to y if
di(x) > ds(y). u is called bliss-point [payoff), a term
which is borrowed from {28]. Bliss-points naturally pre-
sent themselves as refernce payoffs for interpersonal
comparisons of welfare gains., If we assume that the
function d is bounded in the direction of increasing

utility then

Furthermore by definition

[and |

;2. for all i €eq, ved(Y¥), YcX; (3)

u{X,td+v) = tu(X,d) + v for all 0 < t €R (4)
and v ¢ R".
Once we have derived these crucial properties (2-4) of
bliss-points we can safely forget the real-world conflict
(X,Y,d) fictitiously underlying some YV EV. We assume in-

stead that there exists some mapping u:V - R" such that

us (V) > v, forall i€q, veVEV and (3")
U(tv+v) = tu(v) + v for all O<teR, veR". (4')



Theorem 2 below states that under appropriate assumptions
every ¥ :V - U 1is necessarily induced by norm-minimization.
This means that we can always find some norm |i-]] = II-II‘P

in R" such that
u e y(Vv) iff  pu-u(V)yl < Jlv-u(V)]l for all (5)

vel and Vev.

This result is noteworthy in several respects. In its

full extent ("iff") it is only valid if finite environments
are excfuded from V. Thus in order to prove (5) we are
really back to the classic problem of "path-independent
choices" that makes the mathematical core of revealed
preference theory. It is this integration problem that
ARROW meant to circumvent by including finite environments.
On the other hand SEN [22] convincingly argues that in the
framework of social choice we can hardly dispense with
finite environments by mere reasons of interpretation. If
the planner is conceived to make choices from infinite sets
than he should all the more be able to decide on finitely
many alternatives. However, if we accept this point of view
we have to be content with weaker results without being
ablte to simplify the mathematics involved. The norm || .|
which as a corollary to theorem 2 we stil] prove to exist

for ¥ then only holds

Nu-u(VYN < ltv-2{V)Il  if u € ¥(V) and VvEVEY



Theorem 2 can be looked upon as the non-trivial part of a
theorem characterizing aggregation procedures. There do
exist characterization theorems for SCCs which should
however be kept apart. MAY [12], FISHBURN [5], and YOUNG
[27] deserve to be mentioned. Their results share as common
feature that they oﬁ1y apply to a s4ingfe set of social
alternatives X. X is fixed and its cardinality finite.

MAY and FISHBURN even allow for only two alternatives and

a fixed number of individuals (voters). YOUNG's results
heavily reily on the assumption that every finite number of
voters 1is conceivable. His powerful "consistency assumption"
makes his theory applicable to committee decisions rather

than to genuine social choice.

By way of contrast this paper provides an axiomatic charac-
terization of SCCs for a setting where the number of indivi-
duals is fixed to any positive integer n but the set

of physical social alternatives X may vary. The more
restictive assumption that actually characterizes our frame-
work concerns the informational basis: In SEN's terminology

[24] we let personal welfares be cardinal unit comparable.

There is another strand of social choice theory which is
related to our topic. It is the work of d'ASPREMONT and

GEVERS [3], ROBERTS {18] and others who derive axiomatications
of social welfare 4functionals (SWFI). As an SWF1 is a more

structured mapping by assumption this approach can be regarded

to be less basic.



ROBERT's theorem 8 comes nearest to our results. On one side

his theorem is “stronger" as he is able to restrict the set

of eligib1e social norms 11+ 11 to the class of p-norms

|1-||p (p < w}l). As a matter of fact his results are "a bit

too strong" as just the excluded social ordering induced by
f1-11_ plays an important rdle in application. (The notion

of the equaf absolute sacnifice known from public finance
corresponds to some Il- 1) _-minimization. See [17].) On the
other hand ROBERTS' results are "weaker" than ours. The strength
of his theorem 8 amounts to that of our corollary to theorem 2

and not to theorem 2 itself.

Actually, the respective sets of assumptions rule ocut any
comparison of results. E.g. ROBERTS relies on a weakened version
of ARROW's indepencence axdiom o4 irnrelevant alteanatives [ 1 ].

There is no such axiom in our set-up.

In [17] theorem 2 is applied to the sacrifice theoretic
approach to taxation. It is shown that our axiomatication
allows a nice and convincing interpretation in the spirit of
the ability-to-pay principle. On the contrary ROBERTS axiomati-

cation is not too convincing in this important application.

This paper is organized as follows: In section 2 the most
relevant axioms of rational choice are reproduced. Section 3
presents the main theorem 2 together with a discussion of
the axioms that are met in its context. Section 4 collects
proofs. Section 5 is devoted to illustations. The proof of
theorem 2 involves a problem of integration whiéh has 1its
well-known counterpart in the theory of revealed preference.
In section 6 we therefore relate our results to the revealed

preference literature.



2. RATIONAL CHOICE BEHAVIOUR

In this section there will be no restriction put on U. Let
y:¥ - U be a SCC. We shall have to consider various
relations on U. These are all depending on ¥ and the class
of feasible environments V although the employed notation
will not make it explicite. v, u, u” o will always be elements

of U.

Definition:

a) v e*xu iff vEu and ve UV
VeV :
UEY (V)

by v os*u iff ve \J v\¥(V) ;
uev{Vv)

c) Let 5/5% denote the transitive hull of Sx/5%%
fe. veu ff v oe®ulsx .. sxu Sx y for some

r € Nu{0}

The relations $/5" coincide with 55/55™ whenever ¥ is a

funcion, i.e. single-valued. Note that the standard inter-
pretation of relations has to be reversed. The planner is

supposed to "prefer" u to v if u < v, u 43 v, etc.

Two relations are of further interest and justify a symbol

of their own:
Vs ou if not u pp v and

Y u if v S u or v = u.

e

In case that ¥ defines a function SAMUELSON's Weak Axiom
of Revealed Preference (WARP) might be stated as asymmetry
of Hb* = 5%, j.e. v 55% u implying u % v. Allowing ¥
to be set-valued ARROW [2] defined I

WARP) v 55* u  dimplies u #* v.



v 5% y says that there is a conflict V €V for which u
is considered to be a fair solution contrary to v which is
feasible though not accepted as fair payoff. If, then, for a
different conflict V' €V v is chosen as fair solution u

should not have been feasible. The weak axiom thus is a re-

quirement of rationality. This notion of rationality is
stronger than the one which was defined by M.K.RICHTER [15].

According to him ¥ is a "rational choice"iff ¥ meets his

V-axiom: ¥(V) = {ue€eV | vevVv implies u = v or v »* u}

for all V €Y

This axiom requires that ¥(V) always consists of the >*-
minimal elements of V. One easily shows that for corres-
pondences the V-axiom is implied by our weak one. The |

following example is to demonstrate that the reversal is
not true: V = {V,V'}, V = {u,v,w}, V' ={u,v}, ¥(V) ={u},

g(V') = {u,v}.

There exist other equivalent formulations of WARP such as
SEN's "Weak Congruence Axiom" [22]. One version seems to
me of special interest since it can be stated without
resorting to relations and since it was originally defined
in a completely different context. The following axiom

generalizes NASH's (later so-called) axiom o4 Lindependence



of Lrhrnelevant alteanatives [13) such that the case of

correspondences is covered.

NASH' independence of Lrrnelevant aliernatives:

VeV, v(V')nVv#p dimplies ¥(V')aV =vy¥(V) . (6)

Remark 1: Let ¥ :¥ > U be a SCC. WARP_then implies (6).
Vice versa (6) implies WARP if V¥nV' €V
for all V,V' €V

Proof: Let u® p6% u! >* y® and V' €V  (i=0,1) such that

st e w(vl)y and u® € VI\w(V!) , u! € VO. Then u',ul € V :=
Vonv' €V . Hence ¥(vi)av £ 8, v vi. According to (¢)
¥(v1)nV = ¥(V) which implies u®,u' € ¥(V') which contra-
dicts u® pb* ul,
For the reversed statement assume

Vi e vy, wv%)y n vyl sy, (7)
Suppose u® £ ¥(V'). As ¥ is SCC we can find u' € ¥(V!) <
Vi = ¥°, Hence wu® 56* u' or ! y*'u° by the weak axiom.
Yet the latter contradicts u' € V®., We thus obtain

Y(Ve) n vl = w(vh).
For the reversed inclusion let u! € ¥(V!) ¢ V! c VO,

Suppose u' £ ¥(V®) then u' 55% u® or u® ¥* u! by the

- weak axiom. Hence u® ¢ V! which contradicts (7). q.e.d.

We can now state the result which was mentioned before,



Theorem 1: ([2], [22]) Let ¥ :V - U be a SCC such that

a) VeV for all VeU with 1Vl <3,
b) WARP holds.

Then <" is transitive hence <* = J. d is an

ordering rationalizing ¥ in the sense of (1).

In case that assumption a) is or shall not be met WARP

has to be strengthened:

Al) (Strong Axiom 0§ Revealfed Preference: SARP)

v o> u implies u @ v (u,vel).

SARP clearly implies WARP. Hence the justification for the
lTatter can be extended to the former by repeating the
arguments involved. There exist non-strictly equivalent
versions of the strong axiom for the case where corres-
pondences ¥ are taken into regard. Thus Al) siightly
differs from the formulation found in [22]. Yet Al) is

strictly equivalent to M.K. RICHTER's [14]

Congruence Axiom: Whenever u > v and u € ¥(V), veV

for some VEV then v € ¥(V).

The Tatter is again equivalent to
v ¥ u dimplying u ¥ v (8)

By which Al) implies the Congruence Axiom. The reversal is



true as U S v S5 u is not compatible with (8):
U S v sS u dimplies u p v S5¥ L. Be* w 5* U thus
Uu s w ee* u,

5. ASSUMPTIONS AND RESULTS

In this section U will be & subset of RrR". 0= {1,..i..,n}
denotes the set of individuals. It will be convenient to
reverse the direction of increasing utility. Thus for the

rest of the paper i€ 1is assumed to prefer uj to v if

Uy < Vi We meet the following notational conventions.
n
lR+

{ueR" {u > 0} where u>v iff u, > v,

> C> vy (iEq).

We shall write u > v iff u>v and u # v; U >> Vv

iff u. > v, (i€a); u eRINO iff u > 0.
Let u:V ~R" be a bliss-point mapping, i.e. we assume
(3'") and (4') where the inequality in (3') is reversed to
accord our sign convention. Let Y¥:V¥ -~R" be a SCC.
Suppose that V¥ satisfies

Yu + V) = u+ ¥V) (ueR", veRr™). (9)
Then ¥ is uniqueély determined on

[ J— [any n -—
Vv, = v eR | uv) =0}



because of

¥(V)

YV -u(V)) + u(v) ,
V' := V-u(v) cR", u{v') = 0
flence from now on

¥:V>U:=R" , vev_.

Some u€e Py = Pg = {ueV | AveV: vRu}

is called weak/sZnong PARETO payod4 if R = <</< . Both
versions of PARETO efficiency are standard in the theory of

collective choice. We actually need some intermediate case:

-

AZ) (PARETO e4ficiencyg) ¥(V) <« Pz (V €V ) where vRu is

pra |

defined by v < u and Vi o< oug for all 1 € g s.t. U # 0.

Thus P_cPrc P and (1,0) R (1,1) but (1,0) R (2,0).
According to AZ) the weak PARETO principle is only applied
to those individuals that do not receive their bliss-point
payoff. A2) implies

¥(V) = {0} whenever 0 ¢ V . (10)

Hence the bliss-point is chosen whenever it is feasible,
Note that tV eV,  if VEVO, 0<teR.

A3} (invariance under dilatations)

ty(V) = v(tv) for all 0 <t €R, whenever V,tV € V.



Because of t'qu(tV) c ¥(V) A3) clearly implies t¥(V) =
¥{tV). A3) in connection with (9) implies that the infor-
mational basis we are working with corresponds to cardinal
unit comparabillity in SEN's terminology ([24], p.l1542).
There is no doubt that a less demanding informational set-
up would be desirable, i.e. some invariance of ¥ with
respect to a Targer class of transformations. Unfortunatelly

there are limitations on which we shall soon comment.

We next meet some "regularity conditions”. Denote by

V(ir,a) := {u ¢ RE | A=u > a} ,
W= {V(x,a) | » €R{NO, & €R,}
Ad) W < V.

A5) The correspondence  v-V(+,s) : (RE\O)xR+ - mﬂ is
a) surjective (i.e. "onto") and
b) closed-valued.

c) (zero-continuity) u’ € W(V(Ai,a1)), ul s u'y, A > A'A0

(i eN) and A'eu' =0 dimply u' = 0.

Note that by A2) A.u = 8 whenever uev(V(x,a)), (r,a)€ R2+l.
This follows for a=0 from (10). Suppose on the other hand
O<a<hi-u. Then tﬁlEV(A,a) for some te€({0,1). As tuRu

we obtain a contradiction to A2).



Condition A5c) can be given a normative justification. Con-
sider the following axiom a more demanding version of which

SEN meets for a different context. ([23], p.399).

Weighting equdity: Let u€v¥(V), aA-u = min x.V for some

v

A= x € mﬂ\o. Then X > whenever

j
uj > Uy J,keq.
dEﬁW(V) means that u is the planner's choice for the en-
vironment V. A-u=min X-VY means that the planner's choice
can be "rationalized" by minimizing some social wefare
function w({v) = XA-v with respect to V. A; reveals the
social weight that the planner attaches to the welfare of
individual i. The latter takes a primary interest in its
realized welfare level U and in Ajs itself, only so far
as the distribution of welfare levels is implied by the
distribution of weights. In comparative terms large welfare
weights Tead to small payoffs thus reflecting high consi-
deration by the planner. For assume

A% > A? . A% = A? (i=2,..,n) and Aj-uj = min Aj-v s

1 1

wev (j=1,2).

J
Then 0 < Al-(uz-ul) + Az-(ul-uz) = (Al-Az)-(uz-ul) =
(A%- A?)(u?- u%) and hence u% > ui

Suppose now that the assumptions of the weighting equity



axiom are fulfilled. As uj> Uy implies Aj

j can raise no objections that his personal interests were

> Ak individual

not sufficienty safeguarded. Aj > Ay guarantees him an at

least equally high regard by the planner. Note that inter-
personal comparisons of this kind are compatible with our

informational setting.

Remark 2: PARETO efficiency (A2) and weighting equity imply
zero-continuity (AS5c).

Proof: Suppose (i €N) u' €W(V(A1,A1-u1)) TR TR

€ R:\O , A'su' = 0 and u' # 0. For some j€Q uj >0 and

ué= 0 for some k€q.
. - i i i
For all i>1, we obtain Aj <A o Yy

thus Aj =0. Vice versa A&>-0 and
>ul which contra-

dicts weighting equity.

v S]Rn is called convex 4rom befow if for all u,v € V

there is some w € V such that 2w < u+v.
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Theorem 2: Let ¥:¥V - U=R, , ¥ cV hold:

n
+ o °?
a) Al-5)

b) tV e¥ for all VeV, D0<teR,

c} V is convex from below for all VeV,

Then ¥ can be rationalized by some norm ||+ =
||4F, restricted to U:

evy = ey oo fuev | un = min v
veyY

for all VeV. ||} is uniquely determined up

to a positvie scalar multiple and satisfies

U < v iff  full < Hvii. (1)

Furthermore u < v implies fnull < 1ivil.

The core of theorem 2 is a problem of integration and thus
closely related to the work of SAMUELSON {20], HOUTHAKKER
{11, UZAWA [26]1, HURWICZ and/or M.K. RICHTER ([8], [ 91,
[14], [15]), MAS-COLELL [11], to name just a few. Al)
provides us with a "global integrability condition™. We
shall come back to a thorough discussion of the revealed
preference 1itérature in section 6, below. The analogy is
obvious if we interpret V € V as generalized "budget",
V(X,a) as budget defined_by "income"” a and "price vector" A.
¥ is the "demand correspondence“; $&* the “revea]ed“_and

&5 the "indirectly revealed preference".



Let us briefly comment on the assumptions of theorem 2
which are relevant from a social-choice-theoretic point of
view. It should first be clear that the invariance axiom

A3) cannot essentially be strengthened.

Remark 3: v i :V »-RE is not invariant with respect to

linear transformations of utilities if W c V.

Proof: Put
—_— 2 0
T := (O 1) s, TV = {T(v) | veV?:.
We shall lead Tt 1 1]
Ty (V) = v (TV) (VEW) (12)
to a contradiction. Fix some u = (O,uz) >0 and choose

v ERE such that - v1>-0 and [Iv]] < Ifull. Such a v exists

since otherwise we could construct a sequence v > 0, v1> 0

for which O <lull <liviil ~0. W.1.0.9. uy>v,. For A =

(u2-v2,v1) we obtain A-v = x.u > 0. Let V' := V(X,x-u)
and v' EW'IJHV'). Denote vi 1= Tiv' = (21vi,vé) (1 €N).
Because of (12) v o€ WllqkTivﬁ. As Tu = u, ueTV. Hence

HV1II5 flull (i €N) and a contradiction follows by considering

0 < w(vi,0)1 = 2t Tzt -2 T vy = 2t e Ty T < 27

which tends to zero for i + o, g.e.d.

In some vague sense there is a "dual" relationship between
NASH's bargaining problem [13] and the V€V that satisfy
convexity from below. Cf. figures 1 and 2 below. The direc-
tion of convexity 1is reversed and the role of the threat-

point is taken over by the bliss-point. Convexity from
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below clearly excludes all non-trivial finite environments
from V. As SEN [22] argues the social-choice-theoretic
interpretation hardly justifies to rule out finite environ-

ments,

Corollary: Let all assumptions of theorem 2 be met except

for ¢). Then some norm ||-|]] exists such that
vv) < v!loyy  for a11 vev, (13)

fl«ll  is unique up to a positve scalar multiple.

Proof: By A4) W is a subset of V. According to theorem 2
some norm || || exists such that |ull < lv| iff u < v
where << = <<(W) s defined with respect to W. Suppose,
now, that in contradiction to (13) some veVeV and
ueY¥(V) exist such that {lull > IvIl. Then u 5%(W)} v and
hence u 55(V) v. SARP requires that u (V) v 1is not true

which clearly contradicts veV, ugvw(V)

We can easily construct SCCs for which the inclusion (13) is

strict though all assumptions are fulfilled. Put

viin e ey, | vl <)
UANEEEE TR AL AL VA T
qu’n(V) { {u} if ueR_(0,..,0,1) ancij'f
‘PI-I(V) else, uey (v),

whereby |-/ denotes the EUCLIDean norm of R".
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The norm which according to the above corollary is associated
to ¥'1*" nust be a scalar multiple of I-/. Strict inclusion
in (13) is obtained for, say, V' := {(1,0,..,0}, (0,..,0,1)}.
The difference between theorem 2 and its corollary comes

from the fact that SCCs defined on W vain are not uniquely

determined on the restricted domaine W.

When proving the corollary we cannot dispense with Aba)
(surjectivity). This is best seen by the following example;
Let n=2 and Rmin denote the ordering which is induced
by the "dictatorship of the most favoured non- indifferent

rank" ([3], p.204). In the special case of n=2 we obtain:

u Ry iFfF {min(ul,uz) < min(vl,vz) and in case of
equality max(ul,uz) < max(ul,uz)}.
. min .
Let ™M .o WR be the S5CC engendered by RN yia (1)

and |l-1l any norm in R%. Choose O<t€R such that
t U(1,0)0 > (1,1) 10 Put V' := {(t,0),(1,1)}. Then
{((t,0)3 = ¥"My'y  whereas {(1,1)} = ¥y



4. PROOF OF THEOREM 2

The proof of theorem 2 is built up by a series of remarks
and a central lemma. Throughout fthis section Lhe assumplions

'05 theornem 2 are assumed 2o hofd without further mentioning.

Remark 4: % holds:
a) homogeneity: v % u implies tv 22 tu (t > 0);
b) continuity from below: {v € RE | v > ul s

open in Ri for all wu.

a) follows from invariance under dilatations (A2). For b)
UZAWA's cooresponding "proof of P.V" ([261, p}17) can be
adapted. There is only one major change due to the fact that
our V € ¥V are convex from below and not necessarily convex

as UZAWA may assume.

Remember the notation ié for 5 .

Transitivity of »% yields

Remark 5: wu EE VvV S5 w or u v v i? w imply u %S¢ w

Remark 6: u° RS u1 , t € [0,11 1implies ub o= tu1 + (1-t)u

22 ul,

Pt

o

“



- 24 -

Proof:let u' ¢ ?(Vt), v

then ut=u1 or u1 S*k oy

t t .\t

s A -ut). If XA7eu™ > X7ou
ul

= V(2

t s ut follows

L '

by Al). If, on the other hand, ateul < atuut then

At-uo > At-ut and u° So* ut. By assumption u® <4< ul. Hence

In both cases

ut ﬁﬁ u1 by the above remark 5,

Suppose, now, uo,u1 22 v. Then either u° 34 u1 or u° ot U

'

In both cases we obtain ut <$ v by the foregoing two

remarks. Continuity from below then implies

Remark 7: Let uo,u1 € ¢cl1{u | v 2> u} where cl denotes the

closure. Then wu® := tu1 + (1-t)u0 <& V.

Consider the set-valued mapping
Ur Au) = {XeR" | IAl =1, u€ ¥(V(r,r-u))}

Because of AS5a) A(+) has non-empty images and thus defines

a "vector~field"-correspondence. The core of theorem 2 1is

that A : Rz > s = e r” | 1At = 1} can be "integrated".

Remark 8: A(«) 1is a closed correspondence.

Proof: Let u' € v(V(A',a'eu')), u' = u', A" = A' (ieN). If

u'=0 then u' € ¥(V(A',x'-u'}) according to (10). Hence we

assume u'#£0. Qy ASc) A'eu' #£ 0. Clearly, A'-u' > 0.

Suppose u' ¢ ¥(V(x',A'-u')) and v € ¥(V{(A',A'-u'}). Then

u' >5* v and u' o> tv for some t > 1 (remark 4). We show

ty >> u' which is contradictory. As ti'sv > A'sy = 3'.u'
Ai-(tv) > xi-ui for large i€ WN.

Hence tv »p* u' or  tv J u' by SARP. Continuity
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Denote (u,v # 0)

jog
——
[ ot
-
<
L
L]

sup {P€R_ | bu <9< v}

o
—
=
w
<l
—
It

inf {b€R, | bu &% v},
As 0 << v the supremum is taken over a non-void set. Put

inf P := 4+, Qur aim is to prove first

-

b{u,v) = b(u,v) =: b(u,v) € R

and then that for fixed u#0 b(u,+) - extended to zero by

b{u,0) := 0 - satisfies all norm properties on RZ

Let bu 4% v and suppose b > b(u,v) (b € R). Then
bu 2 v % bu which contradicts Al). Hence

Remark 9: b(u,v) < b{u,v)

Lemma: Let u,v € RZ\O; Then
0 < b{u,v) = b(u,v) =: blu,v) € R.
Proof: Let v© := tv + (l-t)u for t € [0,17.
Y s 10,11 - 8" L te a(vh

defines a closed correspondence. Hence AV(-) is upper-hemi-
continuous which means that for all closed sets A c s"

{t € [0,11 | AY(t) n A # 0} s closed in [0,11. (Cf. [61, p.
22) Thus AV(-) admits a BOREL-measurable everywhere selection.
(Cf. [6], Lemma 1, p. 55.) This means that we can fix a

measurable mapping

ptor 00,11 + 8", te pt e A(vY)
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Fix & > 0. According to LUSIN's Theorem we find €% < (0,1}

such that

[0,1] \C6 is of LEBESQUE measure < §,

} (1)

C6 compact and p  restricted to ¢S continuous.

As 0 # vt , ut-vt >0 for all t e [0,1]. Suppose for alil

ielN we could find t1,11 s.t.

t T 0 and [t'-t'| < % .

pooevs <

Then for appropriate mo c N -
j

th > th € 10,11, v »t' L ut st e s (deN)
i i | : . .
Thus ut > u', Vt > Vt s u'-vt = 0 and Vt € W(V(u',u'-vt
]
By Abc) vt = 0 which is contradictory.

Qhoose e < & sufficiently small, such that
[t-11 < ¢ 1implies ut-v > 0. (15)

Fix t' (0<i<N) € [0,11 such that

0 = t°2 < t1 < < tN = 1 }
- (16)
L e (i = 1,..,N)
i . i
and put u' oz vt , A= ut (1= 0,..,N)
i -1 }(17)
i AU i-1
a = Gy Sor—e—— a (i = 1,..,N)
N 3.7
o . N [N-1
where a =1 and qy = - -
As Ai-ui > 0 and A1-u1-1 > 0 by (B) we obtain recursively

a' > 0. The definition of a’ implies

Veal Tty - qﬁl al ateut s ategal Uy



hence a' 1 yi7l So* al ] (i=1,..,N) or

N N

[}
Y]
<
-3
-t
t
==
W
v
(]

u=u® s al u (18)

Up to now the choice of {t1 | i=0,..,N} has been free
under the restriction (16). Now we choose t "“preferably out

of C%". We proceed inductively: Let

be already fixed.

11 1= [t1 + %, ti + g) . |Ii| 1= % .
Choose
1 it se sl
g1+l :={ ecdnr it ¢dn1l 4o (19)
e 1’ if ¢S a1t -
Clearly, after finitely many steps tN =1 (N el

From now on let {ti | i=0,..,N} hold (19) and thus {15).
Denote by analogy to (17):
N

b = 1, —_—
i i .
B! .= ay %T%%T—— g1+l (i = N-1,..,0)
b} := B'/B° (i = 0,..,N)
Like above we obtain
u <$< bN v with bN > 0
from which we conclude 0 < b(u,v) . (20)

We shall prove the assertion b(u,v) = b(u,v) by showing

a' - b'+0 for g -+0, & ~>0. (21}
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MNLN NoLid-l
aN_=_qN__ - }\ aN 1 = . :E .]I A U
ZN,N N =1 1 o
L RS 3 NETLAE G R LT
EO N 0,1 1 -14= . .
AVeut b N-114=0 A1-u1+1
N
a -
109(&“—) o7
H-1 iodel o4 1 4+
= f_ ([Togh *u'"" - logr'-u'1- {1ogk1+ 1T 1ogA1+1 u'1)

N-lp i i+1

A

=§_0[. T ] (- ) (v - )
=0 LT, A1+l-vc

where 11, 01-6 [t1, t1+1] are determined according to

TAYLOR. we split the summation to estimate the above term.

No i or t1+1 ¢ Cé}

{i ] O<i<N, t

Ny s {0,..,N-1} \No

We first note considering (19):

A A
: [\]
m
™ ‘
-+
+
™ rv]
m
1l

S i
44 L |1 + ¢
t1+1Ec6 t1+1Ec6
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]
i
—
-y
4
m

1
N -3
[y
—
+
m
A
(4]
(a2

170c8-p -
Hence
i i+l . .
) A i+1 i
) == - — 710 (t t) (v-u)i
i T i+l o
TFENg A -V A TV
i 1+1
< 58 |v-ul max | A T - A = |
2oy T A1+1-v°
Let i = i(e) be the maximizing index. If ¢ - 0,

) \ i(e)
N = N(e) + ». As PRGN R D v # 0 by
(15) we find a constant K, independent of &, such that for

all ¢ > 0

I ...l < 8K . (22)
ieN,

On the other hand

.i
P e e AL € th) (v - u)l
TENL 3T A1+1_vc
i i+1
iEN; 49, T i +1 :
i 17A1'VT Zi+l o JEN,
Ai Ai+1

1eN; ,i. 10 i+l 0
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Let i = i(e) € N, = Nl(e) be the maximizing index. As
ti(e) $1+1 s

i€ Ny t](s) 1= , (e) € C° which is compact. Let
t1(e) >t ec® for e 0.

As u" is continuous on c® and ' = "
i(e)+l

.i

Al(s) - A -~ 0. Equally
. 1(6) ' '
A1(€) T ut -vt

.y >

> 0.

Considering (22) we finally obtain

N
]1og(W¥T)2 Eﬂl +~ 0 for ¢ -0, & - 0.
b

Hence a'/bM + 1 for e,6 » 0. By (18) and (20)

0 < b(u,v) < B(u,v) < (a")7?

Hence a" # = and the assertion (21) follows. g.e.d.

On one side b(«,+) defines a relation on RE\O via
b(u,v) iff b(u,v) = b{u,v). |
On the other side b(.,.) can be seen as a real-valued

mapping. Keeping both aspects in mind we note

Remark 10: b{«,s) is
a) transitive with b(u,v) b(v,w) = b{u,w) and

b) symmetric with b{u,v) = (b(v,u))—l.

Proof:

1

a) Let bl < b(u,v), b°

2oty 5¢ b2y 42w,

blbz < b{u,w) and thus b(u,v) b(v,w) < b(u,w). We equally

< b(v,w). Then b

obtain b(u,v) b(v,w) > b{(u,w) and thus the assertion by
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referring to remark 9.

b)  b(u,v)

sup{b >0 | bu <$ v} = supfla

(inffa >0 | aves up) t = (B(v,u))

Remark 11: 9(u,v0+v1) < b(u,vo) + b(u,vl)

1

Proof: Denote b':= b(u,v') (i=0,1) and t' := b%/(b%+b'),

As vi/b' € ¢c1{v]|v 42 u} we may apply remark 7 according

to which 0 V1 o, vl
u 2? t Ea + (1-t ) —bT = ——0'——‘—b—I'
or (b°+b1)u oo vo+vl . The assumption

o .1

b¥+b> < sup{b |bu << vOryly

lTeads to a contradiction as »> is asymmetric. Hence

9(u,v°+v1) < bO+b 1.

As mentioned before we now fix u#0 , say u =e¢e" = (1,0,..,0),

and define

0 for v =0
HVII:= {

b(el,v) else.

The foregoing remarks imply that |l « 1] satisfies all norm

properties on the cone mﬂ.

Proof of theorem 2:

We first show  [vil > llull  iff v 55 u
Hvil > ull iff bel,v) > blet,u) iff
b(u,v) = b(u.el) blel,v) > b(u,e') b(el,u)
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= Db(u,u} = 1.
Yet b(u,v) > 1 means u <4< v. On the other hand wu 44 v
implies qu 4< v for some gq > 1 (remark 4). Hence

b(u,v) = b{u,v) > 1.

Next we fix V' €V, u' € V' and show

u' € y(v') iff u' = min I ullL
uev'

Let u' € ¥(V'). W.lo.g. u'#0. Any u € V'\{u'} implies
u S* u'. Suppose |julkliu'll then u' > u and by the strong

axiom Al) u # u'. Hence [lu'll < liull

For the reversed statement suppose u' € Y(V'), u € ¥{(V').

Hence wu' 5%* u or [1lu'll > llull which contradicts

Hu'll = min{liviljv € V'}.
The norm |BIf = JLJW given by theorem 2 is uniquely deter-
mined up to a positjve scalar multiple. For assume
that |i-1l' also holds {11). Then
v it > Hull 1ff  dlvil > il or
vl = jtullt iff Hvll = [l
Fix e s.t. ileli = 1. Then llv/liviill =llell = 1 dimplies
Hﬁl—ii' = lletl which yields ' =llell" -t .
Vi

Finally assume u < v . ASa) implies u € v (V(a,a)).
Hence v >* u. fHaldl > HvIl , i.e. u sy v, contradicts Al).

g.e.d.

Let us briefly illustrate how far the consideration of
finite environments would have taken us in the proofs of
this section. For Vf1n eV we could easily enforce re-
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mark 5:

Remark 5': Let V€EV whenever VclU, |V| = 3. Then 5ARP

implies transitivity of is.

Proof: Let u g4 v <gw, V' := {u,v,w} € V. Suppose wey(V)
thus w <* v. As w e> v v must be in y(V) if wew(Vv).

By repeating the arguement for the alternative assumption
that ve¥({V) holds we obtain u€eVy(V) for all cases. Note
that ¥{V") must be non-empty. We end up with u <* w or

U € w which amounts to u ﬁs w by SARP.

This proof has been adapted from [22], (T.1). The importance
of remark 5' comes from the fact that transitivity of {¢

b 4
would Tet the central lemma melt down to the following

lines:

2

If b(u,v) < b(u,v) for some wu,vel then bl,b could

b(u,v) < b < b% < B(u,v). By definition

be chosen holding
of b, b we obtain blu 22 v, b2y d< v and hence by the
above remark 5' blu oF b2u. On the other hand PARETO
optimality (A2) requires {blu} = W({blu,bzu}) and thus
blu <<* b2u which 1s a contradiction.

Assuming viin =V in this section we could still prove
equality of b(-,-) and B(-,-) on (U\N0)x{U\D) and thus define
b{:,+). But we could not derive the continuity (from below
and above) of 4¢<. A counter example is given by glhs?yast

section,
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5, ILLUSTRATIORS

According to theorem 2 the rational p1énner will make
social choices as if he is minimizing the vector of indi-
vidual payoffs with respect to a pre-given norm.

Special 1nfere§f naiura]]y.dééerve thdsé SCCs that are

inauced by p-norm minimization: )

=1l
yP o=y P, vV + R} (l<p<e),

Let us take a brief look at the cases p = 1,2,0,.

u € WI(V) iff Zou, o= min LoV
ien veV deQ

A planner applying wl thus reveals the classical utilitarian
position, attaching equal social weights to all individuals

concerned.

u e ¥(V) iff  max u, = min max v,
1€Q veV 1€

A planner deciding according to v” would seem to follow
the RAWLSian maximin principle of distributive justice:
make the worst-off best-off. Finally

u e wz(V) iff ful = min jv|

veV

the latter being equivalent to



-

usu = min usV whenever V is a subset of RE
that is convex from below. Applying Wz amounts to
minimizing the social welfare function Xe.v (veV) where
the weight vector X = AV is endogencusly determined to be
proportionate to the solution u:

A=u = min AV , X = const u.
The endogenous determination of social weights is typically
non-utilitarian. The last formula reminds of NASH' bargaining

solution for which weights are inversly related to payoffs:

Asus = const {1 € Q);
NASH's bargaining solution derives much appeal from the

fact that it uniquely satisfies some reasonable axioms.
Compared to that result our theorem 2 is rather poor. We
only know that - under the stated assumptions - a SCC V
should be induced by norm-minimization. The theorem does not

say much about specific properties of such -l = H-HW-

One could certainly add an anonymity (= symmetry) axiom.

However, we shall remain far from uniqueness results.
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The scCs yP {p = 1,2,0) allow nice geometric interpretations
if applied to EUCLIDean Tocation conflicts. A EUCLIDean
Location conflict ([16]) in X=R™ is given by (Y,d) where
Y is a non-empty and closed subset of R™ and

i

di(x) = |x - z | for all x Emm, i€eQR and

appropriate z' eR",

One might think of a planner whose task it is to determine
some fair location for a public project like a park or a
swimming-pool. The set of all social physical alternatives
is the plLanning space R™. Y €Y stands for some specific
planning area taking feasibility constraints into regard.
The public project has to be of the kind that everybody
values positively. Note that by our sign convention i€
is supposed to prefer the Tlocation x to y if di(x) < di(y).
Furthermore u. := inf d,(X) =0, i.e. 0eR" s bliss-
point. Hence d(Y) EVO. For convex Y c R" d(Y) is convex
from below. As Y is closed by assumption d{(Y) is also closed

and ¥P(d(Y)) # 9 for pell,=].

Let us have a closer Took at

x € P(v,d) = " HePra(My))nyY  for p=1,2,.
Such ’ xE:?p(Y,d) shall be called ¥P-Zocations.
" - locations obviously generalize the geometric concept

of the circumcentre. wl - locations are better known as

FERMAT or WEBERian points. (Cf., say, [1D].)
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Remark 12: Let (V,d), YCR" be EUCLIDean and g = + 1 z'
1EQ
the centre of gravity. Then
d(g) € Wz(d{Y)) whenever. geY,
Proof:
Let A <= @ be maximal such that g £ {z' |1{€A}
W.l.0.9. A # D.
. . i
0 = I (g-z') = 1 1g-z'| &5
i€A ieA lg-z |
= T ig-z'| grad(lx--z”)lx=
ich g
- 9rad(d(s) d(x)], g
d{(g)+d(+) being a convex function we obtain
d(g)ed(g) = min_ d{(g)-d(x) < minid(g)}lid{x)]

xeR™ T x€Y

from which the assertion follows. gq.e.d.

In case that Y is convex d{Y) is convex from below and
Wz(d(Y)) single-valued. A planner adopting ?2 would thus
select the centre of gravity g for EUCLIDean location con-
flicts whenever g is feasible (ge€Y) and the planning

area Y convex.



- 38 -

6. RELATED WORK IN THE THEORY OF REVEALED PREFERENCE

As noted before theorem 2 has its parallel in the theory
of revealed preference. There are two major points of
contact:

a) The technique of proof which follows the work of

SAMUELSON [20), HOUTHAKKER [7] and UZAWA [26];

b} The kind of assumptions, particularly the allowance
for social choice cornespondences which relates
theorem 2 to the joint work of L. HURWICZ and M.K.
RICHTER [ 91].

The latter show a slightly stronger version of the following

Theorem 3 ([ 91): Let ¥ be social choice correspondence for

W' := {V(x,a) | » >> 0, a > 0}. Assume A5b), Al)
and convexity of U := U ¥(V) . Then there exist
. le

a real-valued funct{on f on U such that

1) f is upper semicontinuous;

2) f(uly < £(u®) and ub = tul & (1-t)u®, te(0,1)
-imp1y f(ut) <.f(u°) or ui,ut € ¥{v) for
some V € W' and some 1i=0,1;

Moreover for all V € W'

3) there exists ueVn U s.t. f(u) = min F(VAU) :

4y f(u) = min f{(VnU) dmplies wu€V¥(V)
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Thus under assumptions that are significantly weaker then
ours HURWICZ and RICHTER derive weaker results. Note that
they fail tolprove full continuity of f and equivaience in
statement 4). Full continuity of the rationalizing function
f is a critical property even in the theory which excusively
deals with demand {unctions ¥, It makes it necessary to
introduce some axiom (LIPSCHffZ continuity with respect

to income or non-inferiority of v. Cf.[11].) which goes far
beyond those of theorem 3. Such an axiom enters theorem 2

by means of dilatation invariance (A3). The latter con-
siderably stregthens the mentioned non-inferiority property
which again implies income-LIPSCHITZ continuity. HURWICZ
and RICHTER demonstrate by means of a counter-example

that full continuity of f ﬁr equivalence in 4) cannot be

expected to hold under their assumptions.

Theorem 3 suggests that theorem 2 might be valid under still
weaker assumptions. It is an open question to me whether
theorem 2-could be proved more directly by making

use of theorem 3.

The technique of proof employed for theorem 2 and 3 com-
pletely differs from one another. The idea of our proof
is the one sketched by SAMUELSON in [20]1. The technique.
is adapted from the HOUTHAKkER-UZAWA approach ([7] and [261]).

A few additional comments are in order.
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UZAWA deals with demand functions that induce monotone re-
vealed preferences. Thus his demand pattern allows no
“point of satiation" or "bliss point" 1ike zero in our
context. The introduction of a bliss point is in turn

responsible for A5Sc) which has no parailel in [26]. UZAWA
shows that continuity of ¥(V{(Xx,a)) with respect to » and

a essenttially is a consequence of SARP (cf.
his theorem 2). This is also true in our case (remark 8)
except for situations where the bliss point comes in. For

continuity reasons we thus assume Ab5c).

A5b) is an immediate consequence of admitting correspon-

dences. It is trivially fulfilled for functions.

There is one point where UZAWA admits greater generality and
that is A3). We assume df]atation invariance for reasons
of inte}pretation whereas UZAWA regquires that his demand
function meets a LIPSCHITZ coninuity condition with respect

to positive income.

UZAWA is not able to prove full continuity of the

indirectly revealed preference >> except for cases where

the vector-field correspondence A(+) reduces to a mapping
(cf. his theorem 3). Our results obviously imply such
continuity. It is an open question whether this discrepance
is primarily due tb the strengthening of the LIPSCHITZ
condition to A3) or to the altered way of proving the central

lemma.



UZAWA "integrates" the vector-field induced by the "direct"
" or "demand-quantity" function ¥(A,a) to obtain some income’
compensation function from which all desired properties of
the revealed preference fo]]ow.4)0ur approach, on the
other hand, follows SAMUELSON's idea [20] toiﬁintegrate"
the vector- field correspondence A(°)iﬁﬁ}cﬁdéofresponds

to an "indirect" or "demand-price" function. Hence our
integration directly ends up with the wanted rationalizing
norm. The existence of these two alternative approaches

is better known from the "local" theory of recovering
utility functions from demand functions. (Cf. L. HURWICZ,
[8].)

This paper is parnt of the authorn's thesis submiited fon
the cerntificate of habilitation at Karnfshuhe Undvensity.
T wish to acknowledge numercus helpful discussions with
A. OSTMANN, J. ROSENMGLLER, and M. STRAUB.

NOTES

0. The term correspondence is used for set-valued mappings
the images of which are non-empty.

1/P

Lo lully = (zhu; IP) (1 <p<w), Hull_ =max lu,|

i

2. Strictly speaking an equivalent version of WARP.

4. This statement is valid up to some minor logic gaps. (f.
[25], p.411.
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