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Abstract

& finite homogenecus n-person cooperative game allows for classifying
the players (as well as fellowships and types}'according to characters,
called "dummy", "sum", and "step”. Homogeneous representations of the
game are (uniquely) defined by assigning arbitrary rates to the dummies
and arbitrary surplus rates to the steps by which to exceed the total
weight of their satellites. This way in particular the unique (minimal)
representation of a finite homogeneous game can be defined (see [5],
(91).

This paper shows: for games with countably many players, there are five
characters, as sums and steps split into improper and proper representa-
tives respectively. However, games with dummies or improper steps are
essentially finite. It is then verified that homogeneous representations
are obtained as in the finite case, essentially by specifying the
surplus weights of the (proper) steps.

Thus, the finite theory of homogeneous games has a countable counterpart.



0 Introduction. Notations

Let Kk = (kps...skpyq) € NO*1 be such that
(1) bl e ot

a vector s ¢ Ng+1 is a profile feasible for k if s < k.

A characteristic function (cf. ) (for k) is a mapping on the feasible
profiles of k:

vadts s e W, 0 o 1 2y

The extension of k 1is the vector
% =1
1

1
a profile s feasible for k which is defined by

[2} 5 - = E

it —— E {i=l,...,1"‘+1]

r+
of length ¢

ki. To any profile T feasible for k there corresponds
1

(where k. := 0) and the extension ¥V of v is the cf. (for k) defined by

e
Y

(3) (3) = v(s) (3 < k).

Whenever ¥ is a cf. for some vector e = (1,...,1) € N", then (V,e) 1is
called a game and any (v,k) such that (V,K) =(¥,e) extends to (¥,e) or has
the extension (V,e).

Next, suppose that g = {gl,.,. 1} € Hg+1 satisfies

2Oy

(4) 91 # 0; I 0; e Sl B



Then, if k satisfies (1), we consider a function also denoted by g ,
defined on the profiles feasible for k by

r+l

(5) gls) =
1

e

n e+

(s = k)

g is "additive", i.e. g(s) + g(t) = g(s+t) whenever s,t and s+t
are feasible,and thus sometimes called a measure. However, the term

measure will also be used (somewhat sloppily) for the pair M = (g,k).

Clearly, the extension of g 1is given by

{ﬁ} _ﬁ= l:gl?'l'!gll gzs---sgzs---,gr;---ggrgﬂ,...,u]
e . St )
k} kE kr kr+1

A function corresponds to § via a procedure indicated by (5); it is
defined on the feasible profiles of % and clearly can as well be
obtained by

(7) §(%) = g(s) 3<% .
cf. (2) and (3). Accordingly, we call W= {ﬁ:i} the extension of M = (g,k).

Let k satisfy (1) and let g satisfy (4) and suppose that 1 ¢ N is
such that 12 < g(k).

Then (g;k;») = (M;a) generates a cf. v = vT for k by

{ 1 g(s) > »
vis) = {5 = k)
0 g(s) < a

and a cf. generated in this way by some (M,2) is a "weighted majority" cf.
Various pairs (M,2) may generate the same cf., but it is easy to see that
for the extensions we have

(8) v =



Thus, there is the eguivalence class of all (M,2) such that (v?,k} extends
to the same game, say (V,e); any element of this equivalence class is
said to be a representation of the game (V,e).

The term "weighted majority" may be attached to games having a representation
(My»), however, we shall drop this term alltogether as we are only
concerned with weighted majority games.

Thus, any two representations of a game have the properties that the
extensions of the generated cf.'s equal the game and that their extensions
generate the game (cf. (9)).

There is a natural partial order defined on all representations of a game
as follows:
Write

(9) (g-k,2) =2 (g',k'50")

if r<r' and §<§' (coordinate-wise).

A minimal representation is then a representation such that no smaller one
(in the sense of =) exists.

The familiar framework of n-person cooperative game theory is obtained by
identifying the feasible profiles for some e = (1,...,1) with subsets

of {l,...,n}. Then {1,...,n} vrepresents the "players" and S c {1,...,n}
denotes a coalition while ¥V yields the usual characteristic function W
defined on the coalitions by

w(s) = (1)

where 1S is the indicator profile of 5; lsii} =1 {(1€5), lsfi} = 0 [1€5).



r+l
If k is arbitrary but satisfies (1), then we may take n = I ki
and put e
r+l
{l:rrvl!n:' = U K.E
i=1
3=l J
with K. := {p L k] <p=< L k,i] = SRR {ku := 0). Then
i=0 i=0

w(s) = v(|SnK;ls..., j5r1Kr+l:}

provides a c¢f. in the usual sense and this function depends essentially
on the game only.

Refering to this framework, given k ¢ H;+l such that (1) is satisfied, we
call the indices i = 1,...,r+l "fellowships" (and k 1is interpreted as
a distribution of players over the fellowships : there are ki players of

H
fellowship i). k has length n= ¢ kﬁ and ¢ = 1,...,n are the
i=1
. . i r+l
p1ager%, thus, for k players and fellowships cuch1de. If ge HD
satisfies (4), then 9; s the weight of fellowship i. We also say that
J-1 j
players w, I ks <wz T ki "belong" to fellowship 1. Of course,
i=1 < =]
given various representations of a game a player may belong to different
fellowships.

A type is a subset of fellowships, consistently defined for all (v,k)
extending to the same game. More precisely, i and j belong to the
same type w.r.t. v if, for any profile s such that 5; > 0;8: <« k.

J J

(or fg = ki’ B> 0) we have

v(s) = v(s - & + &)

(and wv(s) = v(s - ed 4 eT} respectively).



It is not hard to see that this is an equivalence releation (we consider
only weighted majority games!). In particular, players with the same
weight belong to the same type w.r.t. ¥V and moreover, two players belong
to the same type (w.r.t. V) if and only if their fellowships belong to
the same type (w.r.t. v); i.e. the decomposition into types depends

only on the game.

It is well known that the representations induce an ordering of the types,
that is, if two players belong to a different type and, for some re-
presentation (M,2) one player has a smaller weight than the other one,
then this will be the case for all representations. This is the reason
for restricting our attention to representations (M,») satisfying (1)

and (3). Let us, therefore, introduce the notation

e r - {{g.,k) € ]\Ig{H” g satisfies (3),
k satisfies (1)} (r € N)
10
(10) e .- ((0.k,) € N?)
o LT
r=0

(the measure corresponding to (0,0) ¢ WL° s interpreted as the trivial
measure on the empty set).

Certain projections will be denoted as follows.
If M= (g.k) ¢ " | then for 1 edonw dnd 1ecoky et

0
r=i_+1
(11) e R o e 9
) 15 ¥ r+l 1 r+l
while for ¢ = ki
0
ki r-i
1 = B . 0
(14 h1ﬂ+1 3 Miﬂ 3 IIig‘|ﬂ|+l’‘“’gr+1" kio+1""‘kr+1} € 7



The corresponding "additive functions" will be denoted accordingly, thus
c
e.g. g;

corresponds to Egi ,...,gr+1} and is always understood to
0 1]

live on Eki -C""’kr+1}’ i.e., to be defined for the feasible profiles
0

of this vector.

Finally, as a matter of convenience, we shall use the letter m to
indicate "total mass", i.e., if M = (g,k) then m = g(k)

r+l

= I kigi' Indices are carried accordingly, thus, e.q.,
j=1

e r+l
ms = {k_.I -c) g, + I kig'
0 0 o i=i#1 :
(13)
kiu r+l
e 0 Bl R K;9;



1 Homogeneous Games

A pair M = (g,k) is said to be homogeneous w.r.t. ) ¢ N if

(1) R

(2) For any s <k, g(s) > » there is t < s such that g(t) =

We write M hom » 1in this case; also M I"lr:n‘n,:!I » means that either M hom 2
ar: m = i,

A game is homogeneous if there exists a homogeneous representation, i.e.,
a representation (M,2) = (g,k,2) s.t. M hom i. This term (in the frame-
work of Game Theory) has been introducted by von NEUMANN-MORGENSTERN.

We are now going to shortly review the main results of [8] for our present
purpose in order to use the structure of homogeneous games exhibited there.

The following characterization of homogeneity we shall refer to as the
“BASIC LEMMA".

BASIC LEMMA 1.1. Let M = (g,k) ¢  and N3 <m. Then M hom »
if and only if there is iDE {1....57F and

ce€N,1<c=<k;, such that the following holds true:

> 0
13-1
(3) ¥w P koA 40y
i P a
(4) Min thﬂ gj (L § i 10-]}

(5) M. hom_ g.
10+1 0 10



s (1)

A characteristic function is essentially determined by the minimal-winning
profiles. In particular, if (M,») = (g,k,%) is a homogeneous representation,
then the min-win profiles have exactly weight 3 and are minimal with this
property. The BASIC LEMMA may be interpreted as follows: if we start
collecting players according to weight (i.e., members of large fellowships
first), then the weight of the resulting profile must exactly hit the
majority level . Moreover, the remaining followships, having total mass

m? available, are engaged in a series of homogeneous "replacement” or

o
"satellite" games, represented by (M? : gj) (3=1s...,1,-1) and (M; _;. g, }
0 0 0

By this procedure, smaller players will "substitute" larger ones thus entering
successively min-win coalitions.

In particular, the profile of the lexicographically first min win profile
(the lex-max-profile) is uniquely determined by M = (g,k) € W and 2,
this profile is

1

(6) S e e D ol
M 1 10-1 .

The BASIC LEMMA, among other properties, enables us to define the characters

of fellowships and the satellite measures (and satellite games) for certain

fellowships with appropriate character. This is performed as follows by an
induction procedure.

We proceed by inductively defining two mappings « and M
on the domain

(7) {(Ms2) € TEx N [ MecWL", r>1, Mhom 2}
The range of « 1is N while the range of M is \J v AT |

more precisely, we shall reguire «(M,2) € {fl*“"ir+1} if



-3- (1)

(8) M(M,2) = “1(‘13 14 % (RN ,-,{"'fM:?«] (My3))

i
with M ' (M,2) ¢ T .

{Nate that M ¢ e’ may have coordinates that are not necessarily
p=1 +1
indexed by 1,...,r; e.g., M ¢ @ %  carries indices 1'0,..,,r+1.)

To

1st STEP: For r=1 put «(M,2) =1 and
HMa) = Dm0 = (g,0ky) ¢ WE(0)

o M = {91’92; klskz:]- {Ana]ugous]y, if M = Eg.llsg.lz; k.il,k.lz}}.

Zod STER: Lt e it Kivveakio) & R, rs2
and » € N; suppose M hom ». Let i(:E{l,...,r}

and ¢ € N, 1 <c <k, bespecified by the BASIC LEMMA. Put
0

(9) Ml3) (M) = M 1<j<i
0

(10) M3) (M, =

|
=

3rd STEP:  Let us write M) i w0 (M) (5 < 1)), recall that n(9)
denotes "total mass" of M(J),



Now, if ;
ntd) < 9; (1=9.<1,)
then put
k(M2) = i,
W) = i) m,0,. .., Miﬂ[ﬁ,l}}
- {Mfl},...,miia}}

and our definition is complete. (If the coordinates of M are not
indexed by 1,...,r+l, the generalization is obvious)

dth STEP: Otherwise let

(1) J=aMa) = 5| 1egei,nt) s g pp

Now, by induction hypothesis, « and M are defined for {M(j}, gj} (jed)
(as M{jj hom gj by the BASIC LEMMA).

BS {for 3 23 cand ow ki)
o 10

L e L R e
T r+l Ta r+l

we may write
i3 (3)

(12) i) gy = O w30, T 0, g9)

: {MHD.J]"”* M("{j}’j}j

where K(j} = K{M(j},gj} € {io,...,r+l} s Ehat 15

(13) H{T’j] t= HH}{H”}.Qj} [z 50 10, ioi i< K{J}} .



e (1)

Similarly, for j = 10, we have

4 i +1,3 ot
1:14} HEMEJJEQJ} - [F‘f{-lﬂ JJ“”, M(K{J}’J]}
with
{15} j‘qﬁij} t= HH} [H{J},QJ} (‘j=-i:)’ i0+1 i i iKEJ}}

Now, define

(16) <(M,2) = max x3) | §€d M)}

and for iﬂ LB N
(17) 30 2 90 may = (5 ea ] 1 <«lily

(18) W) (m,a) c= max m03) | 5 ¢ o(i)y

where the last max is to be interpreted w.r.t. either the lexicographic
or the coordinatewise partial ordering. This completes the definition
of x and M.

5th STEP:  Again write M(1) := u(%) (M.2). If i >« (M,2) then the
chavacter of 1 1is dummy. If 1 < ¢ (Ms2), then 1 s

step whenever mi1] < g5 and a sum whenever m{1} > 95.

M(T} 1“3I (My2) is the satellite measure of i and in case that i

is a sum, the game represented by {M{TJ, 95 )} s the satellite game of 1.
By the BASIC LEMMA (and induction) it is seen that M[1} hom 95 (see [ 9 1),
thus, satellite games are homogeneous.
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(For the sake of completeness we have now to add that the generalization

of the procedure is obvious in case that M = (g +...s0;: 5 ki s...0ky )
r 1 eyl T+l

€ BIE ).

5

™

min-win coalition in {M{ij,gij fef d6)], s(1) denotes the substitutes of

If i s a sum, we denote by sti) .= the lexicographically first

i ad T s e @ atens Al H{ij = gff}, k{ij} then we put s{i} = k(i}.

Thus, 9[5{1}} = s if 1 dis a sum and g(s[ib-+ ] g Af 1 is @ step.

Remark 1.2, (see [9] for the details)

1. Given a homogeneous representation (M,2) of a game, fellowships
decompose into characters, say

{lacacartl} =2 + T+ D= g(M,a) + T(M,2) + D{M,2},
where ¢ denotes the set of sums, T steps, and D dummies. In particular,

B=0Mx)=1{i]| 12eMar)+1)

Hence, if ptd) denotes the dummies of {MEJJ, gj}, then e.q. (17) reads

Iy ea ik

and (16} is interpreted as

p = M pld),
jed

That is, a fellowship is a dummy if and only if it is a dummy w.r.t. every

M), g;) such that mtd) > 95



Similarly we note that i > io is a sum if and only if it is a sum
w.r. to some {H{J}, gj] with je€J. i is a step if and only if

it is a step w.r.t. any {M(J}, gj] (j € ) where it is no dummy,
and if there is at least some j with this property.

P c{My1)
2. It follows that «k(M,2) = igl ki -
a player is a dummy if and only if his fellowship is a dummy in any
(hom) representation. (Note that players are assigned to characters
as in {ﬁ,i} all fellowships and players coincide.) Dummy players are
exactly the dummy plavers in the ordinary sense. (i.e., those i for
which there is no min-win profile s with s. > 0).

3. A player is a step if and only if in any (hom) representation his
fel lowship is a step.

4., If the smallest player of a type is a sum, then so are all players
of this type.

5. The dummy fellowships in any (hom) representation form a type. This
type is suitably called a dummy as well.

6. A type is called a sum if all fellowships (w.r.t. any hom representation)
are sums. In particular, if different fellowships have different weights
("reduced representation") then a fellowship with character sum
constitutes a type and vice versa.

7. The remaining types are called steps. Thus, types can as well be
classified according to the characters dummy, step, and sum.

8. Suppose, (M,%) is a hom representation of some game. Suppose also, that
the following quantities are given: for i € D = D(M,%) an arbitrary



weight g% € “0 (1 €D) (decreasing in 1) and for i € T = T(M,2)

a natural number 4. € N (i € T) (decreasing in i). Then, we may

define (M',2') € T < N recursively by assigning weights g% to

the non-dummies wvia

(19) g := g(stT)) (i €1 = 1(M,))

(20) g; := g(s'")) + (i €T = T(M,2))

a
and by putting

(21) %

n

giteT)e, K ek
In this case, (M',»') is a homogeneous and monotone representation of

the same game, i.e.

M M
W —
3 i

(M',»') is said to be compatible with (M,»).

9. In particular, by putting ﬁj =0 (i €D), 4; =1 (i €T) we obtain

the minimal (homogeneous) representation by grouping fellowships of

equal weight together. It is uniquely defined by either to be minimal
w.r.t. the partial order (cf. (9) in SEC.1) or w.r.t. total mass

m = g{k). Given the minimal representation, a type equals a fellow-
ship and the characters of a type and the corresponding fellowship

coincide. The unique minimal representation is also defined by the
requirement that

(22) «(M,3) = 7
(23) 3 = 331y (e ()
(24) 3; = 33y +1



wd (1)

(26) = §(sh

is referring to (M,%) etc.)

10. Finally, let us note that multiplication with a constant does
not change characters, satellite measures, substitutes, etc....



e (2)

2 The Projection Lemma

During this section we want to study the effect of adding a fellowship.

To this end, a few auxiliary statements are necessary which will we treated
in 2.1. - 2.4, Finally, Theorem 2.5 shows, that "cutting off the smallest
fellowship" does not affect certain characters given the appropriate
conditions. Of course, this means also, that adding a smallest fellowship
does not affect certain characters.

We shall write o' = min (2,0) for o € R.

As we want to deal with measures M {or g) and their projections e.g. M?

)
simul taneously a slight changement w.r.t. our conventions is necessary.
E.g.. 1

5 = (51""*5r+1}

is @ min-win profile of a representation (M,2) then

(1) rtsim-cn*, i s10++5ra1)

is a feasible profile for the k-coordinates of M? while
0

ucj+, .

(2) (s-sM)* = (0,...,0,(s; o1 eSp1)

o

formally is not. However, as we regard the measure g? to be a restriction
0

of g, we sometimes want it to be defined on the profile (2) as well. Thus,

we shall also consider (2) to be "feasible for H? " - a slight inconsistency
0
which saves some formalities.

As a further notational convenience we shall generally write M{i] =#1{13(M,1}
if the arqument (M,r) is fixed.

Having this in mind, we state
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Lemma 2.1. ("The canonical decomposition")

let Me JP€" and Mhomi. Let i, and c be specified by the
BASIC LEMMA, Also, let s be a min-win profile of (M,2) and put
8 := (s-s")" as in (2) such that

i-1 ;

i o
s B dlenn e s
il o]

(3) s =

nemo

where ei is the 1'th unit wvector. If s # Sl, then there is

di= {d d: € N, d# 0, and for every j € J with dj #0

Jieamay, 4
3 sef of prafilfes 0™ o= 1L od.. bieh HHat

J
d.
o A IV
[4} = i3 i ol
jed(Max) k=1
and
(5) sJ* is a min-win profile for {M(J): QJ}

1.8., n pariicylor g'::'] (s7%) = g -

Thus, if a min-win profile is not lex-max, then some members of the
larger fellowships are missing, but the mass of the smaller players must
appear in suitable multiples of the weights gj of the larger players.
That 1is, {5=51}+ = 2 is decomposed into min-win profiles of certain
satellites.

The proof is easy (see Remark 3.5 of [91).

Lemma 2.2.
Let C " 3 Mhomx € N, and Tet 1 & D(M,2) (i.e., i< «(M2)).

If, for every min-win profile s with s; > 0, we have necessarily
5. > 0 , then



e .
(6) i = (8709495 s Kre1)
with d < kr or

(7 mi1) - k
() = (py1 Kppp)-

That is, as r “cannot be separated from i", not all members of this
fellowship can participate in i's satellite measure.

The proof proceeds by induction; the lemma is trivial for r =1 or
for r>2 and J(M,x) = Pp. Assume r > 2 and J(M,») # P.

Given M and , et i and ¢ be as usual. First of all, consider the

0
case that i < iD. Then, in particular, the lex-max coalition s = sM

satisfies s. >0, thus s, > 0 and hence i = AR mii) . Wy g
0

mil o wE | (6) or (7) 15 obviously. true.

Kow, let 1 & io‘ By induction hypothesis, the statement is true for shorter
measures. As 1 is no dummy, there is j € J(i) such that is no dummy for
{MiJ}, gj} and {say, for j < iﬁ}

is well defined (cf. SEC. 1). Consider an arbitrary min-win profile s J

for [M{J}, gj} s 51.J > 0. As the profile
s" =gt -l 4 8 PSR j]

[Ej = j-th unit vector) is min-win for (M,2) and satisfies 5? >0, we
conclude that s;j > 0. By induction hypothesis, M(i’j} must, therefore
satisfy (6) or (7), suitably rewritten. As this is so for every j ¢ J(i),
M) as the max over a11 m(T+3) (5 ¢ 3(i)) (cf. (18) of SEC. 1) has to
satisfy (6) or (7) as well, g.e.d.



Lemma 2.3.

Let ¥C " 3 M hom a and Tet i £ D(M,2) (i.e., i< «(My2)). If there
is a min-win profile s with Sy > 0 and e 0, then

() o i
(8) L N T
WiER e e Tosp el i= ks

Proof: For r=1 or J=@ our claim is trivial. For r > 2 and

Jof Tk s dlga Brivial for g s Jy end for 1 = 1. weproceed

again by an inductive argument.

Let s be a min-win profile such that S; @ 0, B D.Bs T = TD, we have

5o 5% Decompose & = {s-sh}+ canonically according to Lemma 2.1., that

is, find d and (s7%)... such that
d.
. & s
Be om s gl
jed k=1

(assume s’ to be augmented by 0's so the length is r).

As o O, ng= 8 for-all d.c  and; as S5 > 0, there must be some

J e and Ey Lt g_dj such that ng > 0. As g{jj {siﬁ} e

and s9° s min-win for [H{j}, gj}, i is no dummy for {Mtj}, gj].

Therefore, we may apply the induction hypothesis for {M{J}, gj] and
H{1'J} satisfies the statement of the lemma. But then ME{} = max Mti’j}
Jed(i)

does so a fortiori, gq.e.d.

Definition 2.4. The projection P :3%¢" - "1 5 defined for

(9) P (91:---:9r503 klpo--skra kr+1j = {glvr--tgr_lsﬂi k1&+--!kr)



R (2)

Theorem 2.5. (The projection lemma)

For . r> 2 IgE Ne ?ﬁﬂ: " and » ¢ N be such that M hom »
and PM hom »., Asumme i € D(PM,»). Then i ¢ D(M,») and

(10) W) (em,n) = el (m0))

Proof:

1st STEP: For r = 2 the result is obvious. We may therefore assume
r > 0 and use an inductive argument at some stage of our
proof. Note also that i € D(M,2) is trivial in any case.

2nd STEP: Let iﬂ and ¢ be determined by the BASIC LEMMA w.r.t. (M,2).
We must necessarily have i < r-1. For, if i, = r the total
mass of PM would be

r-1 r=1
r kg5 T k. 9. Fcg. w3
SR e ‘o

i=1

as ¢ > 1, which contradicts PM hom ). It is then seen at once that i
and c, when determined by means of the BASIC LEMMA w.r.t. (PM,1) are
the same quantities.

4]

3rd STEP:  Now, pick j such that 1 < j < i . Then we have by definition
Ms
1{]

A

u3) (w1 =

But as i, and c are the same w.r.t. (M,3) and (PM,3) it is seen at

once that omitting the smallest fellowship r + 1 and replacing the weight
of fellowship r by 0 commutes with the formation of M% and Mi 1 1.6,
we have (for J < iDj D g



(11) F’."r{{j}{l'f'l,}‘:] & ng = H{J] (PM,3)
a]

and similarly for j = i[:I :
Now, in case that J(M,») = @, we are done with the proof. Assume
J # P for the remaining part.

Ath STEP:  Assume now 1 > i . As i § D(PM,») there is j with

i & o) (em,), 95) (1.e., § € 3(i))

Now we have the following Tine of equations:

d=lp
i € 03 (pm,3), g5)

uli) oom, s

o s
gt
Il

max o) (eul3) (00, g,
1 ;

i € oeu3 M, 9;)

in view of the 3rd STEP, see (11). Simplifying the notation yields

max 1)) pnld), g
=i,

]

i ¢ p(mid), g

Next, as each M{J} is shorter then M, we may use induction hypothesis,
which yields
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ma X pul1) {M(j), g.)
3<i, g

i¢D [PH{j}, gj}

(12) = max pul153) =pmax M1
=i J=h
i &p (puld), 95) - D{PM(jju g;)
< Pmax miis3)
=i,

igomd), g,

here we have written mii3) for M{T} (M{j}, gj} and for the last
inequality used the fact that a nondummy in (PM(J}, gj} is certainly

a nondummy in {M(j}. gj}.

For every Jj such that 3§ €D [PM(J}, gj] there is a min-win profile

W {PM{J}, gj} such that the i-coordinate is positive. Augmenting
J

this by a 0 we obtain a min-win profile w.r.t. (H{j], gj}, say s
B &
such that 51,:I >0 and er = 0 (coordinates being indexted in agreement

with the coordinates of M(j}J. Applying Lemma 2.3. (to {H{jj, gj) we observe
that

() o .
{131 M 2% {G]:---ggﬁls d"”’kr‘-l'l]

with Teze ap 1 =9 and «d= kr‘

On the other hand, let Jo € 9(1) be such that
(14) weik-onbiade) o miisd)
I

i ¢0 ), g,



{33
L 9, ) leads to a contradiction. For, in
0 :
(Jg)
this case every min-win profile s' w.r.t. (M f » 95 ) with s: >0
0

The assumption i &€ D (PM

has to satisfy s = 0, and by Lemma 2.2. this means

I
(1:3,)
with d < kr or
(16) M = I:gr‘ﬂ’ kr+1:|'

(1,3,)
But neither (15) nor (16) is compatible with (13), as M . ° s the

max over M{i’j}, j € J(i}). We conclude that i ¢ D (PM ¢ s 9 )
0
Hence, the last ineguality in (12) is in fact an equation, and we may

continue in (12) by

]

pmax Mi-3)
isiy

i g0 i), g

i) pm, )

= p ul1) (M)



3 Countably many fellowships:
the definition of characters

For games with countably many players and fellowships most of the
basic definitions as presented in SEC. 0 and SEC. 1 may be generalized

in a straight forward manner.

Thus, we consider profiles s = (51,52,...} £ Ngﬂ to be feasible for

k= (kpokpso) € MV if s < k. Acf. v for k is defined on the
feasible profiles of k taking values 0 and 1. The sequence k = (1,1,...)
=: e extends k and formula (2) of SEC. 0 (for i =1,2,...) serves in
order to define s if 5 is specified; this also explains the extension

¥V of v by means of formula (3) of SEC. 0. Accordingly, a pair (V,e)

is called a game.

In order to define (homogeneous) representations of (weighted majority)
games, we shall restrict ourselves to rational sequences of weights.

Let y = ETl:TZil*'] € q” EB;t'iEf_‘p’

(1) By 2> 2 05

and

(2) St R
1=

Then the corresponding set function v on the feasible profiles of

k (v(s) =
i=1

[ [ B

S ¥ﬁ} is called a measure (and so is the pair u = (v,k)).

Introduce

I

(3) WIE™ := {u = (v.k) € €N x WV |y satisfies (1) and (2)}
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If o« €0, « >0 then "u hom «" is defined as in the integer territory.

A pair (u,a) € WL” « @ generates a cf. v = V: thus representing a

—_—
game {v;, k) as previously.

The BASIC LEMMA also holds true mutatis mutandis for (u,c) if u hom o
in particular the Texicographically first min-win profile

s; = {kl’kZ""’ kio-l’ ¢, 0,0,...) is well defined (and equals k if

and only if (k) = a).

Examples 3.1. The following are straight forward examples for homogeneous
representations of a game.

i e s s s s L e

|2

£ H =|:3:" g TE!"';371:1="':| poa= Lfe
3. pieies e BEE. Y 8 e W2

4. Hi o |:3,1, g'v 'ﬁ'? '1‘35'1 '11'5':---; 111111111:}-:---} 3 a =4

5. An obvious method to provide examples is described as follows: replace
some small fellowships in a finite representation by a finite measure
having the same total weight and being hom w.r.t. every replaced fellow-
ship. Repeat this procedure ad infinitum.

E.g. M= (50,21,8,5,2,1,0; 1,2,2,1,2,3,0) hom A = 71 holds true (cf.
[ 91, Example 3.17.). Add players of the smallest non-dummy fellowship
(96 = 1) such that the total weignt is 2 - 71, i.e., consider

M' = (50,21,8,5,2,1,05 1,2,2,1,2,25,0) 5 a =71

142 = 2» .

where m'
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Now, replace two players of fellowship 6 (with total weight 2 - 96 = 2)

by 77 M' which has total weight T =2 and satisfies ox M' hom 1. Then
R s e B LR B 05 D)
satisfies ' hom 71. Proceeding this way we obtain the example

1 5 21 E oD 21 1 50

TR [59521:---! 3 s TEEr § T m T i — ey nia iy alh
7 a2 an? U m)y’

| PSR e R O LA e SR s

Remark 3.2.

1. Finite games may of course be treated within the countable framework,
e.9., but putting weights T 0 for i exceeding some large number
N (or admitting k; =0 for i >N or both). Profiles will be called
"finite" if s, =0 for i>N for some N holds true.

2. Let y hom o. Whenever +v(s) > o, then there is a finite profile
g = 8 2.k, y{gj = g3 this follows from the BASIC LEMMA.
3. If s is a maximal losing profile, then there is N such that

5 = [51,...,5N, Kna1s Kpaoo-ee)
The proof is obvious.

By these remarks it is suggested that the structure of the finite subgames
obtained by cutting off tails of a measure y plays an important role in
the infinite game.

We shall therefore attempt to define characters by way of a limiting procedure
and it is not surprising that the projection lemma of SEC. 2 provides the clue
for the success of this approach.



For uec Q™ the notation
r ¥
{4} p = Pu = {Tl:**-r‘."r:ﬂ; k].,-”’k'l"-i-l:l

defines a projection "P and for large suitable integers t clearly

‘!‘.rpE Mr.

In order to define characters for (u,a) € 00C © x @, fix an integer
ft for r=1,2,... such that

(5 Tate T BT (e, T e N

6y Saesfa e W
(7) ry ! r‘+1t

Assume +(k) » o. For sufficiently large r the total mass "m satisfies
"m>"x and "™ hom "a; thus characters w.r.t. ("M, ") may be defined
according to the finite theory. This means that {1,...,r+l} is

decomposed, say

{1, .. ¥l} = ¥e atualp

This decomposition is independent of the choice of the £ , as multipli-
cation with a constant does not affect the characters (see Remark 1.2.9.).

Also, whenever 1 ¢ rD, then we may define a satellite measure for i,
this is

uli) ("M, Th) = yli) L ry(i)

Again, T"m'“:’ is the total mass of rH{i) and rs{i) denotes the
substitutes of i (cf. the 5th STEP in 3EC. 1).
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Lemma 3.3. Let (u,a) € e . @ and let (4), (5), (6), (7) describe
the situation as explained above.

Let "q:= "1t/ "t (r=1,2,...). Now, if i & "D, then i ¢ 5D for

all s>r and
(8) rq M[1} {PM, ra} & M[]} {rq er rq rh]

P(M[i} {r+1M, Hrl:.l}:|I

or, for short
(9) rq rMEi} =P r+1M(i)
(where P is given by Definition 2.4.).

In particular, if i € Pz then € St for s > r and 55{1] = (TS(W},D,...,D}.

Proof: Consider the case that, for some fixed r, we have Ft = i,
thus

(10) e pTiy ™hHoT
where P is defined in 2.4.

Now, i is no dummy w.r.t. ("M, "2) and by the Projection Lemma (Theorem 2.5.),

i is no dummy w.r.t. {r+1H, r+11} such that

(11) yli) (P r+1M, r+ll} 5-g {M{i} |:r*+1M’ r+1l}}

is true. Obviously, (8) follows from (10) and (11).

If 4t then i ¢ r+1E in view of

gy = Mg, < M1 < Mlg(d)

and the statement concerning the substitutes is obvious. Finally, if
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"t # "1t | note that operations like (1), p, Tz ,... behave nicely

under multiplication with constants, thus (8) is obtained by a suitable
multiplication of both sides with "1t and "t respectively. g.e.d.

Remark 3.4. Suppose, for some i, re¢ N, i <r, we have 1 ¢ i

Consider the finite vector or measure ru(1) 5

g

i

quantity that does not depend on the choice of "t at all. Because of
(9) we have

(12) r (1) | p el ()

Therefore, the sequence ro(3), r+L () defines a measure (1) ¢ TIL™,
which is a certain "tail of " (one might alse think of convergence of
re(1) towards (1) taking place in the sense of 11). We write

(13) W) ez i 7,0)

Definition 3.5, T -9 £ "D for some r, then uEi] is the satellite

measure of i (w.r.t. (u,a)). If the total mass of

uij}. say m{q}, is at least Yy then {u{1}, Yi} represents the satellite

game of i (Note that in this case u{1] hom Yis this follows from Lemma 3.3.,
Remark 3.4., Remark 3:2.2. and the BASIC LEMMA). In particular, the
substitutes of 1, 5(1}, are defined to be either the lTex-max min-win

~[ . *

profile 5$E ) if m(1} > y; orto be equal to ktj) , i.e., the projection
; =

(3] & (\r,{"}; k[1]}.

u

Definition 3.6. The characters w.r.t. (u,az) are defined as follows:

1. i 1is a dummy if there is no min-win profile s such that By > 0.
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2. i is an improper step, if i is a nondummy but a dummy for

every (™M, "2) (r =1, i+l,...).

For the remaining cases we may assume that 1 1is a nondummy for
some {PM, Pl} (and hence for all {]M, ]1}, 1>r) and for {u,a);
thus u[1] is well defined. Again, m{l} denotes the total mass

of w1,

3. 1 i5'= proper step, if u':ﬂ| i

4. 1 1is an improper sum, if Mj}=vi and ﬁﬂi}<yi for all r

such that rufij is defined. (Thus, i is a step for all (rH, r;}

such that "™M(1) is defined.)

5. i 1is a proper sum, if m(1) > y; and Fpi) > y; for some r

(and thus 'm(1) >y; forall 1:r).

Thus, in any countable representation (y,a), we find 5 characters; hence
N 1is decomposed

N=PssgisrPacisp

(p is used for "proper" etc.). The first three characters, i.e. sums and
proper steps, have satellite measures defined.

Having thus defined characters it is our aim to within the last section
establish the analogue to the finite representation theorem.



4  Representations of games with countably many fellowships

As a prelude let us show that games with dummies or improper sums may be
neglected: as they are "essentially finite", they are delt with by the
methods of the finite theory.

To this end let us first of all rule out the case that (k) = «

(the unanimous game of the grand coalition). For, in this case, all
fellowships with T = 0 are steps; improper, if y > 0 and proper

if y; =0 forall 1 exceeding some L € N. In the first case, every
(usz) with y = 0 and y(k) = a is a representation and in the second
the game is also represented by

|| ot e o

| I e i

(vs kix) = (1,0,0,...5

e e LS R
1 1

ki)

1 1=1

if L 1is choosen smallest within the above property.
Thus, let us from now on always assume that +(k) < a.

Definition 4.1. (u,a) 1is called essentially finite if there is 1 € N

such that every min-win profile s satisfying 51 * 0
has the shape

(1) S = (S1sSps-0vs Sy_1aKpakypgeees)

Note: if a game has an essentially finite representation, then all
representations are essentially finite and the term might also be applied
to the game as well. Note also that the existence of dummies renders a
game to be essentially finite: in this case the first dummy (and all
following fellowships) satisfy the definition given above as there is

no min-win profile s with positive coordinate for dummy fellowships.
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More precisely, the following theorem describes the situation.

Theorem 4.2.

1. If i is a dummy for (p,a) then so is j > i.
2. If i is an improper step for (u,z), then so is j > i.

3. (u,a) s essentially finite if and only if there are either
dummies or improper steps.

4, If [u,a) 1is essentially finite and 1 is the first fellowship
without satellite measure (i.e., either dummy or improper step),
then

(2) i 2

Il =1 8
-
-

-l

Proof:

Ie is trivial.

2. If i is an improper step, then it is a dummy in any ("M, "2) with
r>i. Thus, j > i is a dummy in any ("M, "2) with r o0, On
the other hand, as i is not a dummy, there is a (necessarily not
finite) min-win profile s such that S5 > 0. s has countably many non-
dummies following i. In view of 1., any Jj > i has to be a nondummy -
and hence is an improper step.

3. Let (u,a} be essentially finite and pick 1 according to 4.1. Suppose
1 is no dummy. Then any min-win profile s for some (™M, "3) with
$7 > 0 would also constitute a min-win profile for (u,a) with only
finitely many positive coordinates - contradicting (1). Thus 1 is
an improper step.
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On the other hand the existence of dummies implies trivially that (u.a)
is essentially finite. Consider the case that 1 1is an improper step.
Let s be a min-win profile such that 512 0. Suppose, B 2 ki for

some i > 1 and consider

which is winning {ei is the "i'th unit vector")

In view of 2., i cannot be a dummy, thus i 0 and
ke ) = 58 % yi > q

For sufficiently large p we have

¥(${s- 2285, 05...,0) > a

and by homogeneity of vy w.r.t. o, there is s" 5_{si,+..,sé, B . i)

such that y(s“) = a. Clearly, p>1>1 for otherwise s" <s (s was
minimal winning). But then, s" is a min-win profile "for 1", i.e., sﬁ = 0,
with at most finetely many positive coordinates. It follows then that |1
is a nondummy in some (PM, rlj, a contradiction to 1 being improper step.
Thus, 5 = ki (i >21) and (usa) is essentially finite.

4. If 1 is the first fellowship without satellite measure, then 1 > 2,
for otherwise there are no finite min-win profiles and +v(k) = o, which
we have excluded.

Now, 1 = 1 must provide a min-win profile s' of some {FM, rl] T o
5]__1 > ﬂ;

Thus, there is a min-win profile s, with S1-1 > 0 and only finitely many
positive coordinates. In view of 1., 2., and 3. as well as (1), s has the
shape

S = (S1sev2s89 75 i [ R,



If

[ I 1

ki 9; then

aly
n
L]¢]

S =54+ (ﬂ,...,ﬂ, k-lnl k‘l+1,...} orx E-l-l

is winning, in fact satisfies +y(s) » a. Proceeding as in the proof of
3., we cut off a sufficiently ar out "tail" of s thus finding (by

homogeneity) a min-win profile

E = {51,+..,51_2: 51_1 = 1, k-i,..-,kp, EI,G,....}

This shows that 1 is a nondummy in some {TM, rl}, a contradiction which
proves (2).

Remark 4.3. The structure of an essentially finite representation is
satisfyingly described by the finite theory.

For, let 1 be the first fellowship without a satellite measure. We may
assume 1 > 2, for otherwise y(k) = a. If 1 is a dummy, then so is
j > 1 and the finite representation

(3) 0y,
(cf. SEC. 3) serves to completely describe the game.

On the other hand, if 1 is an improper step, then so is j = 1 and, in
any min-win profile, fellowships Jj > 1 appear either én bloc or not at all.

oo
-

Define 7 ¢ e S R L R

-

¥y = vi» and ¥, =0 (i > 1+1). Then the min-win profiles of (u,a) and

He18

i=]
(1s2) correspond in an obvious way and, although ?1 is not necessarily
rational, the weights ?i are decreasing by (2). The finite homogeneous

game represented by {]P lsa) (homogeneously!) completely describes the
situation.



Thus, the structure of essentially finite games is revealed. For the
remaining part let us assume that (u,a) is not essentially finite and,
thus, for every i & N the satellite measure ;“J is well defined.

Remark 4.4. 1. By 3.2.1. we recall that,whenever +(s) > a , then there
is a finite profile § <s such that y(%) = «. That is,

y hom o if and only if "y hom « (or "M hom ") for all r exceeding

some sufficiently large o

2. Recall that every maximal loosing profile has the shape

5 = (51""=Sﬁ= kN+l’ kN+2,...j. In addition, we have a-y(s) < Yy -

Now, if o = ¥(s) = Ty then s + eN is minimal winning; thus s is
dominated by a min-win profile.

Ir on=isday < R then there exists N' > N such that
s : - DA ISR
sf = ESI""’SN’ kH+1“'*’kN'* 0) is maximal Tossing in (" M, " a).

In order to verify this, choose N' such that T{D,...,ﬂ,kﬂ.+1,km.+2,...]
< Y(S+EN} - a. Then for i < N we have

' i
w6l UDiendl b yure datet) = 40, B0 Kposkyinees.)

> v{s+e”} - v{s+e“} e =,
Lemma 4.5. Suppose, a min-win profile has the shape

5 = {sl,nn-,S_i-, ki‘i‘l, k_lt+2,,.-an}

such that S; < ki . Then 1 idis a sum.

Proof: By the BASIC LEMMA find 1 > i+l such that
gl = {31,...,sf+l, ki+1,...,k]_l,c,ﬂ,ﬂ,...}

is min-win. Then

o~

(4) vi = 1(0s.-.40, Ky=¢, kqq) = ¥(3)



Assume that i 1is a step. For every large L consider

P v il ks ety iy ' I
1 i+l i+12"1-1 Ll

which is min-win in ("M, “3). By Lemma 5.4. of [9 ], applied to this
profile, we find that the substitutes profile Lsij} of 1 Mt
&M, ij satisfies

].5{1} i Eﬂt...}ui k-l'cg k-|+1,.-.,k|_+1} -

once 1L s large enough s.t. 1 15 a step w.r.t. {LM, )

¥:
It follows that s{i} 3‘3'. As a consequence we find

(5) ve > visttly > ey,

i

contradicting (4). Thus, 1 is a sum.

Lemma 4.6. Suppose, a min-win profile s has the shape

5 = {Slg-o-;sls ﬂs01---}
Then, for the satellite measure uE]} = Ev{1}, k{]}}

(1)
et ST RORE R S

and for 1 <1

(1) =
B o ke ke K )

Proof: s is min-win for ("M, "A) with sufficiently large r, therefore
the statement is a consequence of the corresponding one in the
finite case, i.e., of Lemma 5.4. in [ 9].



The following theorem is the analogue of the representation theorem
which is known in the finite case (cf. Remarks 1.2.7 and 1.2.8). Of
course, if there are countably many steps, we cannot expect anything
like a minimal or unigue representation as (given rational weights)
steps may surpass the total mass of their substitutes by an arbitrarily
small amount. Thus, the appropriate analogue to lTook for is a
generalization of 1.2.7. and not of 1.2.8.

It shall be useful to employ the following notation within the proof
of the theorem.

For any profile s = {51,52,53,.+.} and r ¢ N let us write

s

n

{51g521---15r;9}
and

1]

=
= {0,0....5 05 S 5r+2""]

Also, if 1 is step (w.r.t. some (u,a)) and y{i} = (v{i}, k{i}} his
satellite measure, s“:| his substitutes, then put

(6) eg =y =m0 =y o sty (Hem

where m{i} as usually denotes the total mass of u[i}.

Theorem 4.7. Let (u,a) € OPL ™ x @  (with y(k) < « and not
essentially finite). Also, let (ai}
sequence of rationals such that

jeT be a decreasing

{(7) D% 8: 5 gy

3 i (i € T)

holds true. Then there is (n,a) € 00C " x Q satisfying

(8) 7= 3(sti) (iezx)
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and

{9} :H =\-I"':5{1}+"f-i -ml:-l}+T.I' [:1 ETJ
such that

(10) .=l

that is in particular, (u,a) represents the same game as (u,a) (and
steps and sums cooincide w.r.t. both representations).

Proof:

1st 5TEP: For r = 1,2,... consider the finite game represented by
(ru,a}. W.r.t. this representation we have a decomposition
of fellowships into characters, say

{li...r¥l} = vt Tratl
(11)

(20 {lacicar#ll) + (T 0 {1;....141}])

where © and T refer to (u,a). We are going to define a vector

{r}; ¢ @1 and (") ¢ @ as follows, beginning with the coordinate

r+l and proceeding inductively:
(r)- >

13 For every dummy i ¢ p i ey puk

(12) s

1]

o

2. For every sum i€z, 1¢ D, of (y,a) put

(13) (N7, = M3l 4 (o))

(note that ;i ";r+1 is defined by induction hypothesis; also

+1,..

v; is rational, since [r)?irs{‘}} is rational by induction and



darl SRR

is rational)

3. Forevery step ieT, i€ g of (ysa) put

(14) L

g = 05 (sl 4 g (™slV)) 4

4, Finally, put

(15) (FI3 = V1S {s:”} = (M3(sT)

5
A

2nd STEP: Let EP}E : {(r};’ rk}-

We claim that {{r};, {P}E} represents the same game as

("usa) or ("M, 1) respectively.

To this end it suffices to show that {{r};‘ {r}a} is "compatible" with
{PM, rl} in the sense of Remark 1.2.7.

Now, for dummies i € 'D there is nothing to show.

Next, consider i € "z. Then, a fortiori, i € £ and, in view of the
projection lemma (Theorem 2.5.) we have

(16) (")) = sty =y
(and “"s(1) = (0,0,...)). Thus, (13) reads

(17) (r)3. = (N7 (s ie's
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Finally, consider 1 € Fr. No matter whether i € T or i € L, we

have v (Ts{1)) > 0 and therefore by either (13) or (14).

(18) (N7, > (M3 (rs(i)y iehr

Therefore, it is seen by comparing (12), (17), (18), and (15) with
the conditions of 1.1.7., that {{PJE, {P}M is indeed compatible

with ("u,a).
3rd STEP: Let us show that for r =1.,2,....
(19) (r)g < vy

This is certainly true for the dummies of {rv,a} in view of (12). Hence,
concerning the other characters, we proceed by induction. For, if 1 ¢ hy

S {F);j i.;j (i < j < r+l) then, by (13)

(20) (F)7. < "y("st)y 4+ 4"

YE5{1}} =0

Furthermore, if i ¢ 'r and i ¢ r, then we may just copy (20). Finally,
if i €T then

thlse o runslily , Gentily o

| A

(21) = vts{i}} kg x T{S{i]} t ey

-T
=m|:}+E"i=Y'i’

this settles (19).
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4th STEP: In view of the 3rd step the limit

(22) Yot Y o

i

exists at lTeast along a subsequence of N for every i € N and we have

(23)

n g

Analogously, « := lim {r}a , is well defined. However, it is not hard

=

to check that (r]ﬁi

inductive method of the 3rd step).

is in fact a decreasing sequence in r (use the

In any case, the Lebesgue dominated convergence theorem ensures that for
any profile s <k

(24) 7(s) = 1im (M3 ()

1=
In particular, if 1 € £, then (13) implies
(25) Y; = 3(stt)y,
and if i £ T, then we have analogously by (14)
(26) 3y = wst) + 6,
That is, (8) and (9) are satisfied.

It is worthwile to note that ¥ > 0 and ;i 3_§1+1. For, the monotonicity

follows from the one of the {r]; (Remark 1.2.7) and positivity is a
consequence of ?i > 8; >0 (ieg), if there are countably many steps, and of

¥; = v; (eventually) if there are finitely many steps.
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Of course, » := (v.,k) is our candidate for the proof of the theorem
and we have to verify that (u,z) is indeed a representation of the game.

Sth STEP: If y(s) =a , then ¥(5) = e .

a) If oF equals zero eventually, then for large r, (r];{s} = (r)a

(as {Erjﬁ,(rjéj is a representation)and our claim follows by a
passage to the limit.

b} MNext, if §; < ki for infinitely many 1 € N, then, for any i

with this property use homogeneity (the BASIC LEMMA) to find
5' = {51,,;455i+1,+;;5 SL_lg SL'C, D,Ug--c}
with v(s') = a. By a), ¥(s') = a , and hence

(26) Y(s) = v(s') - ;i + 5 (00.250,Cs8) 155 pse-2) =2 @ = Ny

As i can be chosen arbitrarily large, the term N is arbitrarily small,
thus y(s) = a .

c) It remains to study the case that S < ki and Sj = kj for
5 > 141, say. By Lemma 4.5., i is a sum and by (25) ¥, = ¥(s{')
(and, of course ¥e o= Yi{a{i}jj. Clearly, s' :=s + ei - s{i} is

a feasible profile for k and

¥(s') = (s) + 75 - 7(s1)y = §¢(s)

(27)

15" ) = v(s)

is satisfied. Now, if i is an improper sum (and 5{1} has coordinates kN

eventually) then we are done as s' is treated in a). Otherwise, we may
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repeat the procedure with some {' > 1 and s;i < kjis 55 = ky (32 1').

If the procedure does not terminate, then we consider the profiles

: 1 fa
T se

L=l

<]

and
e () a(n)
TR SR e T

ste -sli)ie s

(¥
1l

We have 7(s") = 7(s) and ~+(s™) = v(s) = «. Moreover (s™) = F(s7)

and yisnj + v(s7) (ns=) as i{n} + = (n+=). Hence
(29) v(s) = ¥(s¥) 4 v(s) = v(s") = a

But s” s of the type treated in b). This completes the 5th step.

6th STEP: If s is a maximal losing profile, then %(s) <a .

Suppose i € N is such that S5 < k1 and

S = (SysSpsenes Sin Kipgakiinsnnt)
(cf. Remarks 3.2.1. and 4.4.2.)

a) Let i be a step. Now, s +e' is winning, if it is min-win, then

we have (by the 5th step) Y(s+e') =a and 3(s) < 7(s+e'), thus
we are already done. Assume T{5+e1} > a, By homogeneity, find

+

s = {51,...,5f+1, k +sK1_15€50,0,...)

i+l

which is min-win, thus 7(s¥) = & (5th step). By Lemma 4.6., as i is a
step and k(1) = (1)

5(1} i [D,.--gl:lg k-[-ﬁ, ki+l,.+a} = 50 .
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That is : :
gegt gl L il
and
¥(s) = ¥(s") - ¥4 + ¥(3)
(30) <a-5; 43t

b) Now let i be a sum (proper or not). The profile

st =5 +el - sli)

has the same measure as s (w.r.t. y and y) thus, it is losing, but
not necessarily maximal. s’ has coordinates "smaller than k" to
the right of 1 , say

k

5+= {51]---,5:'-"'1, k oc,k],t:ﬂ,cqr!ﬂ,d!k

P41 rokpsreee-)

Filling these up from the right we obtain a maximal losing profile 52
with s’ < 52, ; 79 - P

(31) s=st-el 4+ s(i) s+_§ s
The first j with 5? < kj satisfies j > i. Thus, we apply the same
2

procedure to the maximal losing coalition s~.

S++ - EJ 4 S(J) 5++ <= 5{3}

(32)

(M) o () _or () (1) _ (n#1)

where s, 5{2}, s[EJ,...,s{”} is maximal losing.
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Suppose, the procedure terminates. That is, in s,|:n'|'1:I the last

coordinate, say L, such that SE“+1} < kL is a step. Then, by part a)
of the present 6th step

(33) v(s(™hy <3
Hence
¥(s) = 9sh) - 7y + 3t < 7 (6H)
AR
0

by (31) and, consequently,
7s%) <o ¥ (s

by (32) and (33).

Suppose, on the other hand, the procedure does not terminate, i.e..
(32) may be continued for n = 2,3,... .

Now, changing from s to 5{2} does not affect coordinates < i, changing
from 5(2] to 5E3} does not affect coordinates < j etc. Thus, there is

an admissible profile s such that Eﬂn] = s; for N > N(n).
Obviously T{s{n}} = y(s") and y(s) 5_7(5{2}] Lanat v(sinjj; thus,
8 2y v 2 57 5
On the other hand
kR

2y

&l
o : v( :

a - y(s{M) Yp



=g~ (4)

follows from (32) (see also Remark 4.4.2.). Hence

R e e o

i e

i.e., s s min-win. Therefore ¥(s”) = & (5th step). In view of
v(s) < y(s~) we must have

S(m+) 3 ((n+1)

for some n. Hence

Giu) « siatlly o UL St - 5

|~

g.e.d.

Remark 4.8. 1. It is sufficient to require that 0 <4, < Ce, (i €7T)
for some positive constant C holds true instead of (7).

2. The reader may want to classify the fellowships of
the examples provided in 3.1.
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