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Abstract

Algorithms are presented which generate two certain subsets of the simple games,
namely the directed and the directed zero—sum games with n players.

Both classes of games are ranked partially ordered sets in a natural way, the first
being additionally a rank symmetric and unitary modular lattice.

The subclass of n-person weighted majority games is characterized by the
n+1-person weighted majority zero—sum games, being a subset of the directed
ZEro—sum games.

Using methods of linear programming Algorithms, especially styled for the shift
minimal coalitions of directed zero—sum games, are presented, which generate a
representation of such a game, if and only if this game is a weighted majority
game. This representation often is a minimal one. Additionally, some examples are
offered which illustrate the theoretical results.



§1 Basic notation and preliminary results

During this paper let n be a natural number and 2 = Qn = {1,...,n}. A simple

n—person game is a mapping v : £ () — {0,1}. The elements of Q are the players
and those of 2(f), i.e., the subsets of Q, are the coalitions. A coalition S is often
identified with the indicator function IS’ considered as n—vector. A coalition S is

winning, if v(S) = 1, and losing otherwise. The set of winning coalitions is abbre-
viated by Wv.

In a monotone simple game all subcoalitions of the losing coalitions are losing. If
each proper subcoalition of a winning coalition is losing, this coalition is a minimal
winning coalition. It should be noted that a monotone simple game is completely
determined by the set of its minimal winning coalitions, denoted by W™ or WI‘?, if

the dependence of the game is to be stressed.

Each coalition S can be canonically considered as a number in the dual system,
which can be decoded as usual. Let D(S) denote the corresponding number in the

decimal system ¥ 2" and § = (5;,--+5,) be the n-vector defined by
i€S
S 5= | SN Qj |, i.e., the number of elements of S having indices less or equal to j,

for all je S
From now on all considered simple games are assumed to be monotonous.

The matrix with n columns

I:=1(v) := (S)SEWI‘I;

and with rows ordered with respect to D, i.e., D(I j-) > D(I,, ) whenever j <k, is

called incidence matrix of v.

Two simple n—person games v and v’ are equivalent, if there is a permutation 7 of
2 such that v o 7 = v’. As our interest is restricted to these equivalence classes of
simple games only, we will choose a canonical representative of each class. The
formal notation is given in



Definition 1.1: If the equivalence class of a simple game v is denoted [v],
then v® is defined to be the representative of [ v], such that

Y D) i {2 DO vy
SEW _, SEW .,

is satisfied.

Therefore the canonical representative v° of [ v] is the first in
some lexicographical ordering of Wv,, considered as subset of

2(9).

Let v be a simple game. The relation < C Qz, defined by i < j, if

v({i} U S) < v({j} U S), for all coalition S satisfying {i,j} NS = @, is called desirabi-
lity relation of v (see Maschler and Peleg (1966), Einy (1985)).

The simple game v is called an ordered game if its desirability relation is complete
and a directed game if additionally 1 > 2 »...> n is valid. Concerning this notation

we also refer to Ostmann (1987, 1989) and Sudholter (1989).

Two players i and j are of the same type iffi » jand j» i, which is abbreviated by
i ~ j. Besides we recall that i is a dummy, if v(S U {i}) = v(8) for all S € 2(0).

Lemma 1.2: Let v be an ordered game. Then the following assertions are valid.
(1) The equivalence class [ v] of v contains a unique directed game v’.

(2) If vis directed, then =

Proof: The first assertion is a trivial consequence of the definitions of ordered
and directed games. It remains to show: if v is directed, then v =v.

Consider the game v®. We show for all 1 < k < n-1 that i > j for all
i€ Qk, jE Qn \ Qk Assume on the contrary that thereisa k and i€ Qk,
j#y, such thati<j, j £ 1i. Let 7 be the transposition on {2 defined by
7(i) = j. Then D(S) > D(x(S)) (i €S €£2), thus



Ezzn-D(S)> 2 ,2"-D(S),
SEW_, SEW

veom

a contradiction. q.e.d.

A weighted majority game v is a simple game having a representation (Am), i.e a
level A € [NO and a vector of weights m € INS such that

1,ifm(S) 2 A
v(S) = [ , wherem(S) = T m, (S € 2(2))
0, if m(S) < A ieS

is the weight of coalition S.

A representation is called minimal, if it is minimal w.r.t. the weight of the grand
coalition €. Each weighted majority game is ordered and thus directed, iff it has a
representation satisfying m, > m,, P m . Note that m, > mj implies i » j. For

these definitions and assertions we refer to Ostmann (1987). The terms "simple"
and "weighted majority" were introduced by von Neumann and Morgenstern
(1944). They, of course, assumed the zero—sum property.

A simple game is a zero—sum game, if either S or Q\S is winning and is a super-
additive game, if at most S or Q\S is winning for each coalition S. The dual game
v* is defined by v¥(S) = 1, iff v(2\S) = 0 (see e.g. Shapley (1962)). The game v is
dual superadditive iff v* is superadditive. Note that both the classes of weighted
majority games and of directed games are closed under duality. Moreover, ¥ =

iff v is a zero—sum game, and each weighted majority game is dual— or superaddi-
tive. At last observe that * is an involution, i.e. v¥* = v. Using Lemma 1.2 and
some of the preceding assertions we obtain that [v] =[v*] enforces v to be a
zero—sum game in the case of directed games. This is no longer true in general, if v
is only monotonous (see e.g. Dubey and Shapley (1978)).

A directed game is completely determined by a subset of its minimal winning coali-
tions. In order to specify this subset we need some more notation.



Definition 1.3: The span of a coalition S is the set <S> = {TcQ| T > S3.
Moreover, define the span of a subset A C 2() by
<A>= U <85>

SeA
It is known that v is a directed game, iff <W = W_. Moreover, in this case
there is a unique minimal subset W‘Sr £ Wv such that <W3> = Wv. The elements
of W‘Sr are the shift minimal coalitions of v, which are automatically minimal
winning coalitions. The directed game v is completely determined by Ws. The

corresponding submatrix of the incidence matrix is the ghift minimal matrix of v,

abbreviated

P=rF)=() -
Ser

For this notation we again refer to Ostmann (1987).

Definition 1.4: Two coalitions S,T are defined to satisfy S < T, if § < T; and
S<- TifS#T,S < T and additionally S < R < T implies

R € {S,T}.
The relations < and <- are called order relation and cover

relation respectively.

With this notation (£(), <) is a partially ordered set and the order relation is the

reflexive and transitive closure of the cover relation. This partially ordered set can
be illustrated by its Hasse diagram, i.e. by the directed graph, whose vertex set is
2(€) and whose edge set consists of all pairs (S,T) with S <- T. In Fig.1 S and T
are joined by an edge and T lies above S, iff S <- T (n = 4).
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Figure 1

The partially ordered set (. 2(Q), <) is isomorphic to the famous partially ordered

set of "partitions" (M(n), <), where
n
M(n) = {a = (ay,,2,) €Ny | 0=2; =ay=..=a; <3y 4 <.<a <n

for some h € {0} U Q2 }

The isomorphism is obviously induced by the bijective mapping on the correspon-
ding vertex sets

2(Q) — M(n), S+ (0,...,0,n+1—i1, n+1—-i2,...,n+1-—i|s|),

where

This partially ordered set (M(n), <) was introduced by Euler (1750) and it can

n
easily be seen that it has a unique rank function (given by a _21 ai) with maxi-
1=

mal rank (n';l), that it is a lattice, i.e., to each two elements a,b there is a unique

minimal element covering both and a unique maximal element covered by both a
and b (which can be seen in #(Q) by observing that R = max (min) {S,T}, where
f{j = max (min) {gj, Tj} componentwise), and finally that it is rank symmetric

(which is seen in (2(€),4) using the map S — §\S). Proctor (1982b) proved that



(M(n),<) is strongly Sperner and rank unimodal, which — besides — shows a famous
conjecture of Erdos and Moser (1965). For these properties we refer also to Engel
and Gronau (1985) and Proctor (1982a). Now it is clear that the directed n—person
games are exactly the filters of (P(%), ), i.e. if v is directed, then W_is a filter

and vice versa. Moreover each filter is spanned by its minimal elements, which are
exactly the shift minimal coalitions of the corresponding game.

Let aﬁ denote the number of elements in the k—th rank of (M(n),<). Then it is

n+l _ n n . n
known that og '~ =04 + 05 4 holds true. Thus especially the number a[(“i 1)]
N

can easily be computed recursively. Using the Sperner property, the rank unimo-
dality and symmetry of the lattice (M(n),<), we easily obtain the following inter-
esting result.

Proposition 1.5: max {|W5(v)| | v is a directed n—person game}

= "‘T(“H] ’

2

Now we come back to the directed games, considered as filters of (£(€), <) or

(M(n), <). These filters are ordered by inclusion and it easily turns out that
{w, | v is a directed n—person game}, ) again is a ranked partially ordered set

(with rank function r, defined by r(W_) = y |W,|) and total rank 2". The case
n = 4 is illustrated in Fig.2, where I°(v) is written instead of W.. In order to
distinguish these partially ordered sets from the sets (2(9), <), we sketch the

corresponding Hasse diagrams in such a way that the larger elements are on the
right hand side of the smaller elements (not above as in the sketches of the

(2(9), 2)-
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This partially ordered set is a lattice, since <W_ U W.,>=W_ U W_,and <W_ n
W..> = wo nw., for each pair of directed games (v,v’). Moreover the rank

symmetry is easily checked by applying the mapping v — v* and observing that
the restriction on the k—th rank is bijective on the 2" — k-th rank. Moreover we
conjecture that it is rank unimodal, although the linear algebra methods used by
Proctor (1982a,b) cannot solve this problem. The set of filters ordered by inclusion
is indeed unitary modular but there is no edge labeling for general n as it exists in
the lattice (M(n), <).

Up to the end of this chapter we show that the knowledge of the (n+1)-person
zero—sum weighted majority games is, in some way, sufficient and necessary for the
knowledge of all n—person weighted majority games as suggested by e.g. Wolsey
(1976). At first we need some notation.

Definition 1.6: Let v be a directed superadditive n—person game and let v be
the n+1-person game, defined by ¥(S) =1, iff (S € W_) or

(n+1€S and S\{n+1} €W ). Then v) = ¢ is called the

zero—sum extension of v.
For a more general definition we refer to e.g. Einy and Lehrer (1989).

Lemma 1.7: Let v be a superadditive directed n—person game. Then

(i) v is a monotone simple n+1-person zero-sum game, not necessarily
ordered, i.e. directed.

0

(i) If v is a weighted majority game, then v~ is. In this case both of the

following assertions are valid:
(a) If (A\;m) represents v and
iy = max {0} U k{ilmi > 2\ —m(Q) -1},
then
(A;ml,...,miO, 2)-m()-1, miO_H,...,mn)
is a representation of vO.
(b) If (/\;ml,...,mn +1) represents vO, then
(/\;ml,...,mio, mi0+2,...,mn+1)

represents v.



Proof: ad (i): Let S,T gﬂn 41 and S C T. Three cases are distinguished to
show monotonicity:

(@) n+l1¢T: Then ¥(S) = v(S) and ¥(T) = v(T),
thus ¥(S) < ¥(T), since v is monotonous.

(B) n+1e€S: Then ¥(S) = v*(S\{n+1}) and ¥(T) = v¥(T\{n+1}),
thus ¥(S) < ¥(T), since v* is monotonous.

(7) SAn+1€T: Then ¥(S) = v(S) and ¥(T) = v* (T\{n+1}),
ie ¥(T)=1- v(9n+1\T). Assume ¥(S) > ¥(T),

ie. v(S)=1and V(Qn+1\T) = 1. Furthermore,
Q\S2Q +1\T, showing that S and ©_\S are winning

with respect to v. This fact contradicts the
superadditivity of v.

The zero—sum property is a trivial consequence of the definition of V.

The second part of this assertion is shown by an example: Let v be the 7—person
game which has the shift minimal matrix

Is(v) =

OO =
O =
oO~OO
- O
HO MO
— O =
O

Then it can easily be verified that v is superadditive and that

(v¥)=

OO =
OO
HOOO
oo
= —-0 O
-0 O
OO

From the construction of v it is clear that

(11000001)€W, ,(11000010)¢W;
(10001110)€W,,(10001101)¢W,.

Thus, for the players 7,8 it follows 7 } 8 and 8 i 7, i.e. the desirability relation is

not complete.
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ad(ii):
If v represented by (A;m), then it is well-known that v* is represented by
(m(€)+1-\;m) (and vice versa).
In view of Definition 1.6 it is clear that ¥ can be represented by
(X)) := (X my,...,m , 2>-m(§2)-1) since
then m(S) = m(S), ifn+1¢S, and

m(S) = m(S\{n+1}) + 2A-m(Q)-1,if n+1 €S,
which means

m(S) > A, iff (m(S) > A and n+1 ¢ S(v(S) = 1)) or
(m(S\{n+1}) > m(©)+1-)A and n+1 €S (v¥(S) = 1)).

Consequently the game represented by (A my,..,m; , 2)-m(Q)-1,
0
m, +1,...,mn) is the directed representative of [V], thus part (a) of
0
assertion (ii) follows by Lemma 1.2.

Now take another representation of vO, let us say (; El,...,ﬁn +1). Then

m(S) > A, iff f@(n(S)) 2 A; where 7 is the following permutation of @ _ ,:

i, ifi<i,
n(i) = {ig+1, if i=n+1

i+ 1, otherwise

This assertion (ii) is shown. q.e.d.

There is a converse statement to Lemma 1.7 in the case of a weighted majority
game, which is formulated in Proposition 1.10 with the help of

Definition 1.8: Let v be a directed (n+1)-person zero—sum game and
Tl""’Tt(v) an+1 which satisfy:

t(v)

(2) Ty = Qn+1
k=1
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(b) i,j € T implies i and j are of the same type for all
1<k<t(v)

(c) iETk,jETk+1impliesjii,jybiforall15k<t(v).

(The sets T} are the types of the game.) Let t(v) be the number of non dummy

types, i.e. t(v) = t(v), if n+1 is not a dummy, and t(v) = t(v) -1 otherwise.
For each k Eﬂt&vg we define the k—-th underlying game of v to be an n—person

game, denoted v k , defined by

v®)(8) = 1, it v({i €, | | (i <igandi€S)or (i >ijandiy—1€S)}

=1 for some iO € Tk‘

It should be noted that the k—th underlying game of v is the game which arises
from v by dropping an arbitrary player of the k—th type Tk’ and considering only

the winning coalitions not containing this player to be the winning coalitions of the
new game.

Lemma 1.9: If v is a directed (n+1)-person zero—sum game and k, k € Qt(v)’ then
(i) v(k) is a superadditive directed game,
(ii) v®) = v® i ang onlyifk =k,
) )=y,

(iv) if v(%) is a zerosum game then k = t(v) > §(v), i.e. player
n+1 is a dummy of v.

A proof is skipped, as all necessary arguments are straightforward and almost
trivial. Using the last two lemmata we get our proclaimed result.

Proposition 1.10:  The set of directed superadditive n—person weighted majority
games is the union of all underlying games of the directed
(n+1)-person zero—sum weighted majority games.

The missing assertion concerning dual superadditive n—person weighted majority
games follows especially from Lemma 1.9 (iv) by looking at dual games and is
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therefore not stated in detail. We only formulate the exact result concerning the
cardinalities of these sets of games.

Let Z and ZII1 denote the set of directed n—person zero—sum games and those
having a representation respectively. Moreover let RIl be the set of directed

n-person weighted majority games.
From the fact that RIl can be partitioned into its superadditive and dual
superadditive, not zero—sum games, formally written

R = {veR, | v superadditive} U {veR | v E€R, v* superadditive, v* ¢ Z;},

we obtain the following result, concerning the cardinality of R

Corollary 1.11: (i) | R, N{v | vis superadditive} | = X t(v)
veZrl

n+l

= | R N{v|is dual superadditive} |

@ 1zil= =T #(v)-tH)
VEZ] 4
@) |R 1= tv)+iv)=2: zrt(v)—|z;|.

r
VEZ] 4 VEZ] .

In the next chapter we construct an algorithm which generates the directed
n—person games and the directed n—person zero—sum games respectively.
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§2 Generation of directed and directed zero-sum games

The procedures to generate these subclasses of the simple games presented in this
chapter have been used explicitly to enumerate the games with the help of a
computer. For detailed results we refer to the Appendix.

In the last chapter we showed that the directed games can be considered as a
certain lattice. Moreover it turns out that the directed n—person zero—sum games
form a partially ordered set in a canonical way, though no lattice. The algorithms
of generating are very fast omes, but they do not reveal the structures of the
corresponding ordered set. Of course we also know procedures to generate the
Hasse diagrams, but these algorithms are quite slow ones, because the sets of edges
(having large cardinalities compared with the sets of vertices) must be computed in
addition.

Definition 2.1: Let VY] be the lexicographic enumeration of the directed
n—person games, i.e.

WVl = ¢ and W = 2(9) ,

n n
s 2P0 5 22 DO geranjen .
SEW . SeW,
J J+

Define the successor of a directed game v, let us say Vi to be v if j#1; written

iap &

o(v) := Vitl-

We shall construct an algorithm which starts with vy and generates the chain of
games vy,...,v; recursively. To do this the successor of a game v is characterized in

terms of v.

Lemma 2.2: Let v be a directed n—person game with W_# 2(£2). Take the coali-
tion S € 2(2)\W_, which maximizes D(S). Then

wj(v) ={T €W} | D(T) < D(S)} U {S} .
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Proof: We have Wa(v) C WV by the definition of the successor. If
g' € W)\ W, which is the coalition minimizing D(SY), then it is
clear by the definition of S that D(Sl) < D(S). Let

A:={TeW; | D(T) < D(S)} U {S} .
The <A> is the set of winning coalitions of a certain directed
n—person game v’. It remains to show that v’ = o(v) and that A con-

tains no proper subset spanning <A>. The second assertion is
obvious.

For the first assertion assume D(Sl) < D(S), thus

Z 2UD(T) 2 2"D(T) z ,2"-D(T)
Te<A> Te<A> Te<A>
D(T)<D(S) D(T)>D(S1)

z ,2"-D(T) 2 22"D(T)
Te<A>U{S1} ~ TeW (v
D(T)D(SY

a contradiction. Thus Wa(v) = <A>, which finishes the proof. q.e.d.

From Lemma 2.2 we obtain the desired algorithm:

i S _ _
Start with Wvl =0= WVl )

If W‘S,. and W_ are known and W‘s,_ # {0} (i.e. j #1), take the lexicographically
J J J
maximal losing coalition S and observe that

w? ={S}U{T€W§ | D(T) < S}.

i+l
Moreover WV = <W‘SI > .
+1 +1
Note that WV =<8 > U Wv,, where v’ is already constructed, since
+1

W, =<{TeW_ | D(T)<S}>.
J
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If only the number of directed n—person games is to be computed, this algorithm
should be simplified as follows: Before starting the proper algorithm the principal
filters <T>, T € £(Q), are computed.

If WV , W‘S, is known and if S is as above, then Wv ; Wf, are computed as
j j +1 +1

indicated before. Now all games v, already constructed, which satisfy

Wf’l' N{T | D(T) > S}, are dropped. If j+1 < 1, the successor of Vigp Can be com-
i

puted easily only using the computed principal filters and the present games.

The rest of this chapter is used to establish an algorithm, which generates the
directed n—person zero-sum games Z . It does not seem to be natural to generate

these games recursively w.r.t. the lexicographic order in view of the fact that the
cardinalities of the sets of winning coalitions are constant.

At first we define a relation on Zn, where n > 2 for the rest of this chapter.

Definition 2.3: For games v, Vis Vo € Zn define vy £V, iff Wv(l) vi (1)
1

Besides, notice that there is a canonical bijection from W (1)
\'%

to Wvﬂ{S§Q|1 ¢ S}, given by (S48, ;)

(0,8,...,S,_;)- Define a partition of Z_ by Z ; ={v€Z |

n,i
|W (1)| =i} for all i€, Moreover, let T™3X(y) be the
v

lexicographically maximal losing coalition of v, i.e., the losing
coalition satisfying

D(T™#¥(v)) = max {D(T) | Te ZQ\W }.

At last define the set of large coalitions of v to be

wli= {SeW_ | TeW,,if T ¢Qand D(T) 2 D(S)}.

It should be remarked that (Z o <) is a ranked partially ordered set, where the rank

function Zn_' INO is given by v — |W (l)l Fig.3 sketches the corresponding
v
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Hasse diagram in the case n=>5 and shows that (Zn, <) is not a lattice in general,

sincee.g. (00111)and (0110 0) have no supremum.

ciedd —(00111)
10100
10001 10010
(10000)—[ ]—( —l10011
01111 01110 01101
(01100)
Figure 3

It is clear that Z  contains the unique game v characterized by Wf, = {{1}}.

Moreover Z_ vanishes for i > 2n—2, because the injective mapping
)

{ScQ1¢S} —{ScQ|1€eS}, S+ SU {1}, shows that

-1
W <|W €Z ), but |W W =|W_| =2""
| v(1)|_| V(2)|(V o) but | V(1)|'*'| V(z)l W, |

For the sake of completeness we proof an exact result concerning the proper total
rank of the partially ordered set (Zn’ <).

Lemma 2.4: Zn,i #0,iffie{0} U an, where r = g [ [n3—272] ] . Moreover

Zn . contains a unique game, characterized by the unique shift-
n

minimal coalition

[ (0,...,0,1,...,1) , if nis odd
~
n+1/2 times

(o,...,0,1,...,1,0) ,if nis even
~—
n/2 times

Proof: Define i := max {i €l | Zn,i #0}.

(1) At first it will be shown by induction that Z . #@forall 0 <i<iy. 2, ; is
) ) 0

nonempty by definition. Let v be an element of Zn,i +1 and S be the lexico-

graphically minimal winning coalition of v, thus S # 1 and S is shiftminimal.



(3)

S

Moreover W_\{S} characterizes a directed game v’ with ot _q winning

coalitions. Obviously the coalition \S is the lexicographically maximal
losing coalition of v’. Therefore W_, U {Q\S} characterizes a zero—sum game

Ve Zn,i’ thus

WU T )N ATT ()}

characterizes v.

An easy argument of the elementary theory of combinations concerning

Pascal’s triangle verifies that Z . indeed contains the game, defined in the
n

second assertion of the lemma.

Therefore it remains to show that iy <1 and |Z | =1.

n,r
n

In order to complete the proof of this lemma it suffices to show the
following:

Let v be a directed (n—1)-person game (not necessarily a zero—sum game)
and U‘lr = Wv n{s IQi €S}, for all 0 <i < n. Let S be one of the elements

(0,...,0,1,...,1), (0,...,0,1,...,1,0)

~~ ~~
k times k-1 times

for some k € _; and v be defined by the prime filter W = <S>.

p i i ; ;
If v v and IWV| > |W<|, then U1 2 IU;I for alli €, and there is
: i i
some i, such that [U_| > |05
For n=2 these assertions are trivially satisfied (there are exactly three

directed 1-person games which behave in the desired way). Assume the
assertions are valid for some n > 2 and define v, v to be n—person games.

The following three disjoint cases are distinguished.



(@)

(6)

()

(*)

R

There is a coalition S' € W such D(Sl) < D(S). Then it is obvious by

the definition of S that <Sl> 3 S and thus <Sl> 281 U <S>. This
completes the proof in this case. Now assume (*) is not valid.

w > |W yie [W_N{S|1¢S}| > |W=-N{S|1¢£S}|.
|v(1)| lv(1)|lelv{| H |v{| H

v g again characterized by one coalition, namely gt = S\{1}, since
W—-(l) = (Wzn{s|1 £ S}\{1}. Thus we can apply the inductive
v

hypothesis to ?(1), v(l) and obtain:

(*) 'Uia)‘ > |U;(1)| (0¢i<n-1)
(***) |U;(11)| > |U;l(1)| for some i, .

ETCQ,1¢Tand (Qt\{l}) CT (2<t<n), define

oT)=9_, U (T\&,), thus oT) e<T>.

From the obvious fact that Uta) corresponds bijectively to
v

W_n{T | (@\{1})cT41}

we conclude that

|UJ | > 3 bt +1
t=j+1 v(l)
and

|ul| = 2 |U_(1)| +1,since D(S) < 2°7L
Therefore this case is finished by using (**) and (***).

If neither the prerequisites of (@) nor those of (f§) are satisfied, then
dearly UL > UL
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Now it is obvious that U‘_ll = <Sl>, where

st = (1,0,..,0,1,...,1) or 8! = (1,0,...,0,1,...,1,0)
~ N
k-1 times k-2 times

respectively (we do not have to consider the case k=1 since this case is trivial).
If there is a coalition S € U‘lr with D(S) ¢ D(Sl), then the proof is finished by an

argument completely analog to the one of case (a).
* *
Otherwise consider v(l) and V(l) respectively and observe that
i i+1 i i+1
lUv(l)*l = |Uv |, |U‘_,(1)*| =|U |-

v

Consequently tl}ke asseitions follow from the inductive hypothesis applied to the
dual games v(l) ,V(l) ; q.e.d.

Next a result is formulated which directly leads to the algorithm.

Lemma 2.5: Let v be a game in Zni and n > 3 for some 0 <i¢ I

24

(i) The game ¥, characterized by W, = (Wv\{Q\TI?i}){}) U {Tr?g})(}, is
an element of Zn,i—l’ ifi > 0, and of Zn,l’ ifti =0
(ii) If S is a large coalition of v, then v € Z,; 41 where v is the game,

characterized by W = (W_\{S}) U {@\S}, and T2 = Q\S.

Proof: The same arguments as in the proof of Lemma 2.4, part (1), show that
¥ is a directed and thus zero—sum game, if i # 0. But in the case i=0
we also see that ¥ is directed, because n > 3. It remains to show that v
is directed.

Assume on the contrary that v is not directed and put T := Q\S, thus
<T>\ (W \{S} U {T}) # 6. Take a coalition T of this nonvoid sub-

set of all coalitions, then T ¢ T1, T! ¢W_, thus AT ¢ O\T = § and
Q\T1 € Wv‘ Therefore T! must coincide with S, because S is shift

minimal.
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If |T| =1,then S= (1L.101.1)€W,,
(01.11.1)¢W,,
(10..00..0)¢ W5 byn > 3.

The union of these last two coalitions is €}, a contradiction to the
zero—sum property of v. Therefore define: t, = min T, t, = min

T\{tl}.

If to = t1+1, then

<T> 5 T2 := TU{1}\{t;} #T° := TU {1}\{t,} € <T>

25 0 <T3>,

which contradicts the shift minimality of S. In the remaining case, i.e.
ty > t;+1, T3 can be substituted by T U {t,~1}\{t,} and the same

and clearly S covers both of these coalitions, i.e. S € <T

arguments lead to a contradiction. q.e.d.

Definition 2.6: Let ¥: 2 \ Z_ ,— Z, be defined by Av) = ¥, where 7 is the

game given by Lemma 2.5 (i). Note that {‘Pl(v)} =Z, o if

vel .. If S is a large coalition of v €Z_, i.e. S EWSl

i iy then

define v to be the game v of Lemma 2.5 (ii) and
p: 2 — 2I)
sl
vi= {vg | Sew '}

Combining the last definitions and results we obtain

Proposition 2.7: (i) Ap(v)) = {v} for all veZ_with p(v) #0

(ii) p(Av))3viorallve Zn\Zn,0

(i)  o(v) | = | WS | forallvez
iv) Z .,,= U p(v),forall0<i<r
n,i+1 veZ n

n,i

(v) p(v) =0,ifve Zn,rn :



LT i

Now the algorithm to generate the directed n—person zero—sum games proceeds as
follows: ‘

If Z_ . is con-

Starting with the unique game of Zn,O and applying p yields Zn,l‘ ni

structed and i < I then Z ni is obtained by applying p to each element of Zn ..
? bl

+1 i

It should be remarked that this algorithm can be modified in such a way that the
arising procedure computes all edges of the partially ordered set (Zn’ <)

If veZ and v’ €p(v), then v and v’ are joined by an edge. But there is a canonical

extension p of p, which considers all shiftminimal coalitions S of v with
D(S) 2 981 instead of the large coalitions only and we obtain that v < v’ and v, v’

are joined by an edge, iff v’ € p(v). The proof is analogous to the one of Lemma 2.5.
The first algorithm is clearly faster, since it generates a subgraph of (Zn, <), which

contains all vertices and which is a tree.
For an example we refer to the Appendix.

The last chapter gives an answer to the question how the games of Z_ can be

tested on representability.
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83 Weighted majority zero-sum games

If (\;m) is a representation of an n—person weighted majority zero—sum game,
m(T) < m(©2)/2 < m(S) for all coalitions T ¢W_, S € W_. Therefore the game

remains unchanged if A is substituted by [ (1+m(£2))/2].

For the sake of brevity we will drop the level ) in the zero—sum case, i.e. (A\;m) is
m m
identified with m = (ml,...,mn). Moreover m = [rT(Klij’”" ﬁ'("?f)' ] is called a

normed representation of v.

Conversely, a payoff vector m = (ﬁll,...,ﬁln) is the normed representation of a

weighted majority zero-sum game, if there is no coalition S with m(S) = % :

Additionally it is known that a simple zero-sum game v is a weighted majority
game, iff the nucleolus of v is a normed representation of v (see Peleg (1968) and
Schmeidler (1966)).

In what follows we use an approach similar to the first step of the algorithm com-
puting the nucleolus considered by Wolsey (1976) (we also refer to Kopelowitz
(1967)), to compute a payoff vector to each directed zero-sum game, which is a
representation in the case of a weighted majority game.

Definition 3.1: Ifve Zn’ then define XV e

{xE[Rn

x >0, x(2) = 1and x(S)>
max {min{y(T) |T € Wv}l y20,y(€) =1} forall SEW_

q, := min {x(S) | SeWT} foreach x €X_

X, ={xeX |x; 2.2 x,}

Note that the set XV remains unchanged, if Wv is substituted by WI‘II1 at all places,

and that this set is the least core in the sense of Maschler, Peleg and Shapley
(1978).

Observe that Xv and Xv are convex polyeders, containing the nucleolus of v and

being subsets of the set of normed representations of v in the weighted majority
case.
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We want to compute an extreme point of Xv or Xv using the equilibrium concept

of a mon—cooperative matrix game which is characterized, roughly speaking, by
WI‘? or W‘SI respectively.

Now we come to the detailed description of the matrix games.
Let Fv be the matrix game characterized by the transpose matrix of the incidence

matrix of the directed n—person zero—sum game v, namely A := I(v)t (i.e. if
k = IWI::I, then Y = {y|y is a payoff k-vector} and X = {x|x is a payoff

n-vector} are the sets of strategies for player II and player I respectively. A tupel
of strategies (x,y) €X x Y leads to the payoff xAy for player I and to —xAy for
player II). Moreover X € X is an optimal strategy for player I, iff XE€ X, For this

pioperty we refer to e.g. Rosenmiiller (1981), chapter 1. The second matrix game
I‘V is characterized by the matrix

A" =B, _-I(v), where B, = | >}
"~ “k,n ’ kn = |
1...1
is a k x n matrix. We conclude that % is an optimal strategy for player Il w.r.t. I',

iff X €X_. Let e denote the n—vector (1,...,1).

An arbitrary k x n matrix B is defined to have property (P), if each entry of B is
nonnegative and B has no all-zero column.

If T'is the matrix game characterized by B, then the following lemma is well known
(see Brickmann (1989) and again Rosenmiiller (1981)).

Lemma 3.2: max {y(®) | y20and By < e, } and
min {x(€) | x> 0and B > e_} exist.
If 7 and X is a maximizer and minimizer respectively, then (x,y)/y(%)
is an optimal pair of strategies for I Conversely, if X or ¥ is an opti-

mal pair of strategy for player I or II, then there is a vector X ory
such that & = x/x(€ ) or § = y/7(€) respectively.

The maximization problem of Lemma 3.2 is the dual of the minimization problem,

thus X(0) = F(9).
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The matrix A (transpose of I(v)) trivia;lly has property (P), since no minimal
winning coalition is empty. Moreover A (consisting of all maximal losing coali-
tions) has property (P), as long as {v} #Z_  is valid (see the last chapter). It is

sufficient to test the elements of Zn\Zn o on representability, because the only

remaining game is trivially a weighted majority game ((1,0,...,0) is a (normed)
representation). Therefore v is assumed to be an element of Zn\Z 0.0 from now on.
)

Corollary 3.3: Let v be a game of Z \Z_  and k = |W('|. The following
assertions are equivalent:

(i) v is a weighted majority game.
(ii) max {y( )0 ¢ y is a k-vector and y- I(v)<e } <2

(iii)  max {x(_)|0 < xis an n—vector, (B ;7 1(v)) x < e} >2

The maximization problems (ii), (iii) of Corollary 3.3 can be solved by the Simplex

Method.
Algorithm 1: LetveZ ,A= I(v)t, k= |W13|
First step: Start with the initial tableau (see Brickmann (1989))

0fn+l -+ mnt+k| O
i 1
: L
n 1
0] -1 «+o 1|0

Second step: Apply the Simplex Method by choosing the pivot element
according to e.g. Bland’s Rule. If the entry p in the last row
and column is not smaller than 2, then continue with the
fourth step. If no optimum is reached, take this new tableau
and continue with the second step.
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Third step: Define for each i € Qn

0, if i is not contained in the first row of
the tableau

m; =

the last entry of the column with first
entry i, otherwise

and observe that (ml,...,mn)/p is a normed representation of

v. Now stop the algorithm.

Fourth step: Conclude that v is no weighted majority game (by (ii) of
Corollary 3.3).

*
Algorithm 2: LetveZ, \ Z jand A =By , —1(v), where k = W3l
(1) Start with the initial tableau
0 11 n| 0
n+l 1
. y :
n+k 1
0 |1 -1]0
(2) Apply the Simplex Method by choosing the pivot element according

to Bland’s Rule. If the entry p in the last row and column exceeds 2,
continue with (4). If no optimum is reached, take this new tableau
and continue with (2).

(3) Conclude that v is no weighted majority game (by (iii) of Corollary
3.3) and stop this algorithm.

(4) By (iii) of Corollary 3.3 v is a weighted majority game.



-96 —

This Algorithm 2 can be modified to

Algorithm 2a: Let the steps (1a) and (3a) be exactly the steps (1) and (3)
from Algorithm 2 and introduce two further steps:

(2a) Apply the Simplex Method and compute p as in (2). If no optimum is
reached, take the new tableau and continue with (2a). If p > 2, con-
tinue with (4a).

(4a) Define

0, if i is not contained in the first column

the last entry in the row with first entry i,
otherwise

and conclude that (ml,...,mn) /p is a normed representation of v.

It should be remarked that both algorithms, slightly modified, can be used to com-
pute an extreme point of X, even in the case v being no weighted majority game:

Apply the Simplex method until an optimum is reached. Now define the vector
m/p according to the third step or (4a) respectively and observe that this vector is
" an extreme point of Xv in any case.

The algorithms, just presented, work even in the case that the game started with is
not directed (but still monotonous). We proceed by constructing generically faster
and quite similar algorithms, which can only be applied to directed zero—sum
games. It is our aim to substitute the incidence matrix by the shiftminimal matrix
and a few additional rows.

Definition 3.4: For each v €Z_ define the (n+k-1)x n matrices
S 3 r S
I7(v) Ek,n—I (v)
1-1 0+ 0 0 0 -1 10+ 0 00
0 1-1- 0 0 O 0-1 1- 0 00
; 0 0 1:4+00 0 B 0 0-1-++ 0 00
I(v) = Do Do IV =1 : Do
000 1200 000 1 00
0 0 0- 1-1 0 0 00 -1 10
0 0 0« 0 1-1 L 000 0-11
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where k = |W‘Sr|.

Now the direct analogon of Corollary 3.3 is the following

Lemma 3.5: Let v €Z \Z ,and k = |W‘s,m|. Then the following assertions are
equivalent.

(i) v is a weighted majority game.
() max{y(®) | yeR* L yr0andy- I(v) ce} <2

(i)  max {x(?) | x€R", x> 0and I(v) - x< (&),0,..,0)} > 2.

~~
n-1 times

Proof: Putk = IWI\I}l It suffices to show that

(1) §y:=max{y(%) | 0<y ek andy - I(v)<e,)
= max {y(®,) | 0<yeR  andy - I(v) <e } =:4,

and
(2) 7 :=max {x() | 0 < x€ R™ and (Bg p —1(v) - x < eg}

= max {x(Q) | 0 ¢<x€R" and I(v) - x<(e,,0,---,0)} =: 7.

ad(2):  For each x €R" define

i(x) ;= max {ie{0}UQ |x;2..2x;2 max {xj | i< j<n}}.

Take X € R such that

(@) x20, (El_(,n ~1(v)) - x < eg and x(Q) = 7,

is valid and i(x) is maximal. Now Xx; 2..> X is to be verified.

Assume, on the contrary, i(x) < n, let us say ii = max {Ei |i> iO},

0

thus iy > i(x)+1. Therefore i(x) > i(x), where

X = (xl""’xi(i)’ xiO, xi(§)+2,...,xi0_1, Xi(2) 41 Xi0+1""’xn)'
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Moreover there is a maximal losing coalition T, i.e. \T € W7, with
x(T) > 1 (because of the maximality of i(x)). Thus ij ¢ T, i(x)+1€T.
Therefore T" = T U {ij}\{i(x)+1} is a losing coalition, which satisfies

x(T’) = x(T) > 1, a contradiction.

These arguments directly imply 7 2 Yy

Conversely take x € {x €R" | x > 0 and I(v) + x ¢ (€}:0,---,0)}, thus

(B) x{ 2 X 2...2 x by the definition of I(v).

If S is a minimal winning coalition of v, then there is a shiftminimal
coalition S’ such that §? < S. Let T be a row of Eg , — I(v). Then

S = O\T is a minimal winning coalition, showing that T° = Q\S’ is a
row in B, - I%(v) and T> > T. Thus x(T) < x(T*) ¢ 1 (by (f)), im-

plying 74 2 7

Look at the dual problems:

Let x €R™, x > 0, I(v) x ¢ eg and x(Q) = 6y- Then analog arguments
as in ad (2) show that wl.o.g. x; 2.2 x , meaning i(v) - x ¢
(ek,O,...,O), thus 6, > 6, by looking at the dual problems.

Conversely take x €R”, x » 0 and I(v) - x ¢ e, Then I(v) - x <ey,

because of the fact Xy 2.2 %, thus 60 > 61. q.e.d.

Clearly the extreme points of XV and Xv are the normed extreme points of the sets

of maximizers of the problems (ii) and (iii) of Corollary 3.3 and Lemma 3.5 respec-
tively. In view of the proof of the last lemma we obtain the following

Corollary 3.6: X,={xeX [x;2.2x}

1 & <
= {% eR™ | Xy 2.2 X and there is an X EXV and a

permutation 7 of Q such that x = X o 7}

$0
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Now the analogon of Algorithm 1 is Algorithm I:
Let veZ_, A = I(v)!, k = [W5|. Here is the initial tableau:

0| n#l ...n+k n+k+l ... 2n+k-1] O
1 1
; s

n 1
-1 -1 0 01} 0

The following steps are exactly those of Algorithm 1.

x
Algorithm II and Ila respectively: Let v €I \Z ,, A = I(v), k= |Wf,|. Here is

the initial tableau:

0 1 n 0

n+l 1

. N .
n+k A 1
n+k+1 0
2n+k—1 0
0 -1 ... -1 0

The other steps are exactly those of Algorithm 2 and 2a respectively.
An example is given in the Appendix.

Concluding Remarks:

(1)  Let v be an element of Z_ or Z \Z , respectively, which is a weighted
?
majority game.
Then each of the algorithm 1 and I or 2a and Ila generates a normed repre-
m, m
; 1 n . " _ s n .
sentation (3—-,...,?) respectively. A representation (ml,...,mn) €Ny is

obtained by the following procedure:



(2)
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m. =m - q (i €9), where q is the product of the pivot elements. Indeed the
fact that m, is a nonnegative integer can easily be verified by an inductive

argument.

In each case the vector m = (ml,...,mn) together with p has the interesting

property
2—p, if Algorithm 1 or I
is used
min {m(S)|S € W_} -max {m(T)|T ¢ W _} =
p—2, if Algorithm 2a or IIa
is used

This fact is shown for Algorithm 1, I by observing that min {m(S)|S € Wv}

=1 and m(©) = p, thus max {(T)| T ¢ W_} = p-1 (v is a zero-sum game),
and for Algorithm 2a, ITa analogously by interchanging the roles of S and T.

Therefore m/|2-p| is a minimal representation in the weighted majority
case, if m./|2-p| €N, is satisfied. Surprisingly it turns out that this vector

is indeed an integer vector in many cases. To be more precise each weighted
majority zero—sum game with less than 9 persons has an extreme point of
X, and Xv which is a normed minimal representation of v (due to e.g. Algo-

rithm II, I). In the 9—person case the algorithms of the last chapter gene-
rates 319,124 directed zero—sum games, from which exactly 175,428 are
weighted majority games and exactly two of which are "counter examples".

Here is the first game v,:

This game is represented by m = (15 13 10 8 6 4 4 2 1), but the normed
representation m/63 cannot be an element of le or le, since each of the

preceding algorithms yields m = (14.5 12.5 9.5 7.5 6 4 4 1.5 1.5)/61 thus
#(S) 2 31/61 > 32/63 = m(S))/63 for all S € W, and S = {1,2,6}.
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It remains to show that m is a minimal representation of v. Let m be a
minimal representation. Then mgz 1, since this game has no dummies. If

mg > 2 is presumed, then we can prove 7 lemmata which successively show
that m, >4, mg > 4, m, > 6, m, > 8, m, > 10, m, > 13, m, > 15. We only
have to exclude w.l.o.g. that mg =mg = 1. In this case each coalition
Se w‘?l with {8,0} N'S # ¢ would satisfy m(S) = A := min {m(S)|S €W}
Using these coalitions we successively obtain m, = mg, m, = 2m, -1 =
m, + 1, thus m, = 2, my = 2m7, m, = 3m7-—1, m, =m, + 1; therefore
(m3,...,m9) =(5432211). Since (111000000)is a minimal winning
coalition, we additionally obtain 9 < 2m2+1 < 10, thus m, = 5, m,, = 4,

A = 14, but then m({1,2,6}) = 11 < 14, a contradiction in view of the fact
that this coalition is winning.

The second game v, is the one represented by (171511975 4 2 1), this

representation being minimal (this can be verified analogously to the first
game), and (16.5 14.5 10.5 8.5 7 5 4 1.5 1.5)/69 er2. We conclude again

that no normed minimal representation of v, is in Xv2.

Conversely using Algorithm I we obtain additionally 12 weighted majority
zero—sum games v with an extreme point in Xv’ which is not a normed

minimal representation (we conjecture that there is no further 9-person
game with this property).

This fact can be motivated heuristically as follows. All these games have
two normed minimal representations which are extreme points of Xv and

which are different only on one type of players (we refer to table 2 of the
Appendix). One representation is in XV but not the other and a certain pure

convex combination of the representations is an extreme point of Xv’ The

zero—sum extension of the game considered by Dubey and Shapley (1978) is
an example: (13 7 6 6 4 4 4 3 2)/49 is a normed minimal representation of
this game but the last two weights can be exchanged. Both normed repre-
sentations are extreme points of X_ and the first is in XV but Xv contains

the midpoint of these representations as extreme point, too.
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Applying each algorithm to the famous 12—person weighted majority zero—
sum game introduced by Isbell (1959), which has two minimal representa-
tions such that the affected players 1 and 9 are of different type, we obtain
one of the normed minimal representation, i.e. both are extreme points of
X and Xv‘

Both Algorithms I and II(a) can be modified in such a way that the shift
minimal and shift maximal coalitions (i.e. the complements of the shift

minimal coalitions) are identified with the types of these coalitions or pro-
files:

S —a(s) := (al(S),...,at(v)(S)),
where
aj(S) =[S ﬂTjI (1 <j<t(v)),
Tj is defined according to Definition 1.8. Using the notation of Definition

3.4 I(v) and I(v) must be substituted by the (t(v)+k-1) x t(v) matrices

[ a(S) 1 ( a(T) ]
1-1 0 0 -1 1 00
0 1 0 0 0-1 00
: : , and .o . | respectively
0 0 .—=1 0 0 0 10
00 ... 1-1 g 00 ...-11 .
L J Sel (V) - . TEEk,n_I(v)

Note that it is very easy to compute the partition sets Tj (see Sudholter (1989),

chapter 4) and therefore this procedure will generically diminish the initial tableau

and the simplex steps. The disadvantage of the necessary computation of the Tj

will thus be compensated especially if the number of players is large. These new

algorithms yield an extreme point of the nonvoid convex subset

{x(fxlei=xj if inj} of X .
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Appendix

Some figures and tables are sketched as illustrations of the presented algorithms. Fig. 4
shows the lattice (2 (),%) (or M(n),<) for n = 3, 4, 5, 6, 7, 8. Fig. 5 sketches the
lattice of directed n—person games (n = 4, 5, 6), considered as filters of (#({),4) which
are ordered by inclusion (see Chapter 1). The resuls of Table 1 have been developed
with the help of a computer as follows:

The numbers of directed games (n = 1,...,8) are obtained using the corresponding gene-
rating algorithm of Chapter 2. The number of edges in the corresponding lattice are the
numbers of occuring shift minimal coalitions, since two directed games are joined by an
edge, iff the larger one arises from the smaller one by dropping one shift minimal coali-
tion in the corresponding filter. Analogously, the numbers of directed n—person zero—
sum games are computed using the second algorithm of Chapter 2 for n = 1,...,9.
Testing these games on representability (see e.g. Algorithm II of Chapter 3) yields the
numbers of directed n—person weighted majority zero—sum games (see the sixth row).
The numbers of directed n-person weighted majority games (see the fourth row) are
obtained by considering the types of the corresponding zero-sum extensions due to
Corollary 1.11. In order to illustrate the extraordinary growth of the numbers of the
games of the just mentioned classes we additionally show the numbers of homogeneous
games, wich are easily computed using the recursive formulae of Sudhdlter (1989).
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n 12 3 4 5 6 7 8 9
number of directed games 3 510 27 119 1173 44315 16175190 ?
number of edges in directed lattice|2 4 10 36 224 3264 190162 110433364 ?
number of weighted majority games |3 5 10 27 119 1113 29375 2730166 ?
number of directed zero-sum games (11 2 3 7 21 135 2470 319124
number of games in Z] 1123 7 21 135 2470 175428
number of homogeneous games 13 823 76 293 1307 6642 37882




-35 -~

Fig. 6 illustrates the lattice of directed 7—person games in
the same way as Fig. 5. Both axis, the vertical and horizon-
tal, have been deminished proportionally in order to get a
one-page picture.

Fig. 7 sketches the Hasse diagram of the directed 6—person
zero-sum games. The tree, consisting of all vertices, i.e. the
corresponding shift minimal matrices, and the "straight
line" edges, is generated by the original algorithm pre-
sented after Proposition 2.7. The additional edges result
from the corresponding modified algorithm.

011000

180000 4 001110

Figure 7
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Two examples for the working method of Algorithm II are presented as follows:
Let v, be the directed 9-person zero—sum game characerized by
100010011
I3(vo)=1011110000

000111111
T1 is the initial tableau of Algorithm II and T2, T11 and T12 is the 2nd, 11th and 12th

tableau respectively. Since T12 contains no negative numbers in its last row, the Sim-
plex Method stops here.

001 2 3 4 5 6 7 8 910 0j11 2 3 4 5 6 7 8 9]0
1000 1 11 0 1 1 0 0j1 1000 1 11 0 1 1 0 Of1
1111 0 0 0 0 1 1 1 1j1 i1 0 0 0 0 1 1 1 1j1
12111 0 0 0 0 0 01 12171 1 1 0 0°17°17171}0
13|11 1 0 0 0 0 0 0 0f0 1311 00 01 1 1 11
14071 1.0 0 0 0 0 0f0 14/ 071 1.0 0 0 0 0 0)0
150 0°1 1.0 0 0 0 0f0 1500 071 1 0 0 0 0 0}0
160 0 071 1 0 0 0 0f0 16/ 0 0 071 1 0 0 0 0)0
1770 0 0 071 1 0 0 0f0 1710 0 0 071 1 0 0 0)0
18/ 0 0 0 0 071 1 0 0}0 180 0 0 0 071 1 0 0f0
1910 0 0 0 0 071 1 0}0 190 0 0 0 0 071 1 0f0
2000 0 0 0 0 0 071 110 2000 0 0 0 0 0 0~-1 1i0

0/"1"1°171°1°1°1"°1"1(0 0 1°171°1"1 0 0 0 0Ol1

T1 12

0[11 12 17 15 16 14 10 19 20 0 |

71 0.308 -0.308 ~0.385 “0.462 ~0.385 ~0.231 0.0769 ~0.615 ~0.308 |0.0769

1| 0.154 0.846 0.308 0.769 0.308 0.385 ~0.462 ~0.308 "0.154 |[0.538

3/-0.0769 0.0769 ~0.154 ~0.385 ~0.154 0.308 0.231 0.154 0.0769|0.231
13| 0.231 0.769 0.462 1.15 0.462 1.08 ~0.692 ~0.462 ~0.231 |0.308

6/-0.0769 0.0769 0.846 0.615 0.846 0.308 0.231 0.154 0.0769|0.231

4170.0769 0.0769 ~0.154 0.615 ~0.154 0.308 0.231 0.154 0.0769}0.231

5/-0.0769 0.0769 ~0.154 0.615 0.846 0.308 0.231 0.154 0.0769|0.231

2170.0769 0.0769 ~0.154 ~0.385 ~0.154 ~0.692 0.231 0.154 0.0769{0.231
18(-0.385 0.385 1.23 1.08 1.23 0.538 0.154 0.769 0.385 |0.154

8| 0.308 ~0.308 ~0.385 ~0.462 ~0.385 "0.231 0.0769 0.385 ~0.308 |0.0769

9] 0.308 -0.308 ~0.385 0.462 ~0.385 ~0.231 0.0769 0.385 0.692 |0.0769

0] 0.692 0.308 ~0.615 0.462 0.385 0.231 0.923 0.615 0.308 {1.92

T11

0]11 12 18 15 16 14 10 19 20 0

7] 0.187 ~0.187 0.313 ~0.125 0 ~0.0625 0.125 ~0.375 ~0.187{0.125

1] 0.25 0.75 "0.25 0.5 0 0.25 ~0.5 ~0.5 ~0.25}0.5

3/70.125 0.125 0.125 “0.25 O 0.375 0.25 0.25 0.125/0.25
131 0.375 0.625 “0.375 0.75 O 0.875 ~0.75 ~0.75 ~0.375/0.25

6| 0.188 ~0.188 ~0.688 ~0.125 0 ~0.0625 0.125 ~0.375 ~0.188/0.125

4|70.125 0.125 0.125 0.75 0 0.375 0.25 0.25 0.125/0.25

5(-0.125 0.125 0.125 0.75 1 0.375 0.25 0.25 0.125{0.25

2070.125 0.125 0.125 “0.25 0 ~0.625 0.25 0.25 0.125}0.25
17,70.312 0.312 0.813 0.875 1 0.438 0.125 0.625 0.313}0.125

8| 0.188 ~0.188 0.312 ~0.125 0 ~0.0625 0.125 0.625 ~0.187|0.125

9| 0.187 ~0.187 0.313 ~0.125 0 ~0.0625 0.125 0.625 0.813]/0.125
L0 0.5 0.5 0.5 1 1 0.5 1 1 0.5 {2

T12

The entry in the last line and column does not exceed 2, thus this game is no weighted

majority game.
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The second example concerns part (2) of the Concluding Remarks of Chapter 3: v, is the
game already defined. Then |W§I| = 16. Applying Algorithm II it is seen that the 10th

and 11th tableau look as follows:

019 25 23 20 22 14 21 12 10 0
ol 0.0741 0.407 ~0.444 0.148 -0.37 ~0.148 0.185 ~0.259 0.444)0.037
1110.926 -0.503 0.556 0.148 0.63 ~0.148 0.185 ~0.259 ~0.556{0.037
8| 0.148 -0.185 0.111 0.296 0.259 ~0.296 ~0.63  0.481 70.111)0.0741
13| 0.0741 -0.593 0.556 0.148 ~0.37 ~0.148 0.185 ~0.259 ~0.556{0.037
6| 0.296 -0.37 0.222 0.593 ~0.481 0.407 ~0.259 ~0.037 ~0.222]0.148
15! 0.0741 -0.503 ~0.444 0.148 0.63 ~0.148 0.185 ~0.259 ~0.556{0.037
16| 0.0741 -0.593 ~0.444 1.15  0.63 ~0.148 ~0.815 ~0.259 ~0.556|0.037
17! 0.0741 -0.593 0.444 1.15 ~0.37 ~0.148 0.185 ~0.259 ~0.556|0.037
18] 1.07 -0.593 “0.444 1.15 ~0.37 ~0.148 ~0.815 ~0.259 ~0.556{0.037
11-0.037 0.296 0.222 ~0.0741 0.185 0.0741 0.407 ~0.37 ~0.222{0.481
4]-0.481 -0.148 ~0.111 0.037 0.407 ~0.037 0.296 0.185 0.111}0.259
71 0.222  0.922 -0.333 “0.556 ~0.111 ~0.444 0.556 0.222 0.333{0.111
5! 0.37  0.037 ~0.222 ~0.259 0.148 0.259 ~0.0741 ~0.296 0.22210.185
31-0.407 0.259 0.444 -0.815 0.037 ~0.185 0.481 ~0.0741 0.556|0.296
24| 0.0741 -0.593 ~0.444 1.15 -0.37 ~0.148 ~0.815 0.741 70.556{0.037
21-0.185 0.481 0.111 “0.37 ~0.0741 0.37  0.037 0.148 ~0.111]0.407
26! 0.148 -0.185 0.111 0.296 0.259 ~0.296 0.37 ~0.519 70.111}0.0741
27! 0.222  0.222 0.333 0.444 ~0.111 0.556 ~0.444 0.222 70.667|0.111
o8| 0.0741 0.407 0.556 ~0.852 ~0.37 ~0.148 0.185 ~0.259  0.4440.037
291-0.852 -0.185 0.111 0.296 0.259 ~0.296 0.37  0.481 70.111}0.0741
300 0.0741 0.407 ~0.444 ~0.852 0.63 ~0.148 0.185 ~0.259  0.4440.037
311 0.0741 -0.593 0.556 1.15 ~0.37  0.852 ~0.815 ~0.259 70.556{0.037
39| 0.0741 0.407 ~0.444 ~0.852 ~0.37 ~0.148 1.19 70.259  0.4440.037
33| 0.0741 -0.593 0.556 0.148 0.63 ~0.148 ~0.815 0.741 ~0.556)0.037
0} 0 1 0 "1 0 0 1 0 1 2
TT10
0719 25 23 16 22 14 21 12 10 0
9| 0.0645 0.484 -0.387 -0.129 ~0.452 ~0.129 0.29 ~0.226 0.516 }0.0323
111-0.935 -0.516 0.613 -0.129 0.548 ~0.129 0.29 ~0.226 ~0.484 |0.0323
8| 0.129 -0.0323 0.226 "~0.258 0.0968 ~0.258 ~0.419 0.548  0.0323|0.0645
13| 0.0645 -0.516 0.613 -0.129 ~0.452 ~0.129 0.29 ~0.226 ~0.484 |0.0323
6| 0.258 -0.0645 0.452 -0.516 ~0.806 0.484 0.161 0.0968 0.0645/0.129
15| 0.0645 ~0.516 -0.387 ~0.129 0.548 ~0.129 0.29 ~0.226 ~0.484 |0.0323
20! 0.0645 -0.516 -0.387 0.871 0.548 ~0.129 ~0.71 ~0.226 ~0.484 |0.0323
17| 0 0 0 -1 -1 0 1 0 0 0
18] 1 0 0 -1 -1 0 0 0 0 0
1170.0323 0.258 0.194 0.0645 0.226 0.0645 0.355 ~0.387 ~0.258 |0.484
41-0.484 -0.129 ~0.0968 ~0.0323 0.387 ~0.0323 0.323 0.194 0.129 }0.258
71 0.258 -0.0645 ~0.548 0.484 0.194 ~0.516 0.161 0.0968 0.0645/0.129
5| 0.387 -0.0968 ~0.323 0.226 0.29  0.226 ~0.258 ~0.355 0.0968|0.194
3|-0.355 -0.161 0.129 0.71  0.484 ~0.29 ~0.0968 ~0.258 0.161 |0.323
24| 0 0 0 -1 -1 0 0 1 0 0
21-0.161 0.29 "0.0323 0.323 0.129 0.323 ~0.226 0.0645 ~0.29 |0.419
26! 0.120 -0.0323 0.226 ~0.258 0.0968 ~0.258 0.581 ~0.452 0.0323)0.0645
27! 0.194 0.452 -0.161 -0.387 "0.355 0.613 ~0.129 0.323 ~0.452 |0.0968
28] 0.129 -0.0323 0.226 0.742 0.0968 ~0.258 ~0.419 ~0.452 0.03230.0645
20|-0.871 -0.0323 0.226 -0.258 0.0968 ~0.258 0.581 0.548  0.03230.0645
30| 0.129 -0.0323 -0.774 0.742 1.1  ~0.258 ~0.419 ~0.452 0.0323|0.0645
31| 0 0 1 "1 -1 1 0 0 0 0
39! 0.129 -0.0323 “0.774 0.742 0.0968 ~0.258 0.581 ~0.452 0.0323}0.0645
33! 0.0645 “0.516 0.613 ~0.129 0.548 ~0.129 ~0.71  0.774 ~0.484 ]0.0323
ol 0.0645 0.484 -0.387 0.871 0.548 ~0.129 0.29 ~0.226 0.516 [2.03

TT11
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The original Algorithm II stops at this stage, because the weighted majority property is

shown in view of the fact that the last element in the last row exceeds 2. Algorithm II a
computes four further tableaux, the last one is shown here:

0719 25 14 16 33 31 21 24 10 0

9| 0.1 0.2 “0.15 T0.05 0.55 0.05 0.1 0.2 0.25(0.05
11]70.967 ~0.267 ~0.383 ~0.35 “0.483 ~0.317 0.633 0.6 "0.25/0.0167
8| 0.1 0.2 ~0.15 70.05 70.45 0.05 ~0.1 0.2 0.25/0.05
13| 0.0667 ~0.533 ~0.767 0.3 0.0333 “0.633 0.267 0.2 70.5 |0.0333
6| 0.267 ~0.133 ~0.0667 0.2 0.133 ~0.533 0.0667 0.2 0 0.133
15| 0.0667 ~0.533 0.233 0.7 0.0333 0.367 0.267 0.2 °0.5 |0.0333
20| 0.0667 ~0.533 0.233 0.3 0.0333 0.367 ~0.733 0.2 70.5 {0.0333
17| 0.0333 ~0.267 ~0.383 ~0.35 0.517 ~0.317 0.633 0.4 0.25/0.0167
18| 1.03 ~0.267 ~0.383 ~0.35 0.517 ~0.317 ~0.367 0.4 0.25/0.0167
1{°0.0333 0.267 ~0.117 ~0.15 ~0.0167 ~0.183 0.367 0.4 70.25)0.483
4170.5 0 0.25 70.25 70.25 0.25 0.5 0 0.25{0.25

71 0.267 ~0.133 ~0.0667 0.2 0.133 0.467 0.0667 0.2 0 0.133
5/ 0.4 “0.2 0.4 0.2 0.2 0.2 “0.4 0.2 0 0.2
3/-0.367 ~0.0667 ~0.283 0.35 "0.183 ~0.0167 0.0333 0.4 0.25/0.317
12| 0.0333 ~0.267 ~0.383 ~0.35 0.517 ~0.317 ~0.367 0.6 70.25/0.0167
2/70.167 0.333 0.417 0.25 ~0.0833 0.0833 “0.167 0 70.25|0.417
26/ 0.133 ~0.0667 ~0.533 ~0.4 0.0667 ~0.267 0.533 0.4 0 0.0667
27( 0.2 0.4 0.7 0.1 0.1 0.1 "0.2 0.4 70.5 |0.

28| 0.133 ~0.0667 ~0.533 0.6 0.0667 “0.267 ~0.467 0.4 0 0.0667
29170.9 0.2 “0.15 70.05 "0.45 0.05 0.9 0.2 0.25(0.05
30| 0.133 ~0.0667 0.467 ~0.4 0.0667 0.733 ~0.467 0.4 0 0.0667
23| 0.0333 “0.267 0.617 ~0.35 0.517 0.683 ~0.367 ~0.4 70.25|0.0167
32| 0.167 ~0.333 0.0833 0.25 0.583 0.417 0.167 0 ~0.25/0.0833
22| 0.0333 ~0.267 ~0.383 0.65 0.517 ~0.317 ~0.367 ~0.4 "0.25|0.0167
0] 0.0667 0.467 0.233 0.3 0.0333 0.367 0.267 0.2 0.5 |2.03

TT15

The Algorithm I additionally yields 13 more 9-person cases in which 5

is no minimal

representation (for this notation we refer to Algorithm 1, (Third step)). These 14 games

are summerized in Table 2.

E%E:; 5%%; a minimal representation
30 ; 17 9 8 6.56.55 3 2 2 30 ; 17 9 8 765322
25 ; 13 7 6 6 4 4 4 2525) 25;13 7 6 644432
27 3 14 9 6.5 6.55 5 3 2 2 27 ;14 9 7 655322
33 ; 17 12 8 8 6.56.53 2 2 33 ;1712 8 876322
28 ; 13 9 7 7 6 4 4 2.52.5 28 ;13 9 7 764432
24 ; 11 9 6 6 4 4 4 1.51.5 24 ;11 9 6 644421
28 ; 13 11 8 6 6 4 4 1.51.5 28 ;1311 8 664421
28 ; 13 11 7 7 5 5 4 1.51.5 28 ;1311 7 755421
32 ; 15 13 9 7 7 5 4 1.51.5 32 ;1513 9 775421
31 ; 14.512.5 9.5 7.56 4 4 1.51.5 32 ;151310 864421
35 ; 16.5 14.5 10.5 8.57 5 4 1.51.5 36 ; 171511 975421
34 ; 16 14 11 9 6 4 4 1.51.5 34 ;16 14 11 964421
38 ;18 16 12 10 7 5 4 1.51.5 38 ; 1816 121075421
33 ; 13 11 10 8 6 6 4.54.52 33 ; 131110 86 6542
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