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Abstract

The structure of a homogeneous weighted majority game (in general
not constant-sum) is analyzed via the concepts of characters of
types and of satellite games being played by smaller players in
order to replace larger ones. Two proofs for the existénce of the
minimal representation (see OSTMANN [S]Jare given. An algorithm
to construct the satellite games, the characters and the minimal

representation directly from any homogeneous representation is
described.



1. Introduction, Notations, and the Basic Lemma

Let g = {1,...,n} denote the "set of players". A pair of
vectors

. _ ) 2{r+1)
(g,k) - (go,--.,gr‘ LY kogc--,kr) € NO

induces an additive set function M (a measure) on the subsets
of o (the “coalitions") in a natural way provided

Indeed, put K := {w €@ | kooq < w kb (kg :=-1) such that

Q= KO + Kl +,, .+ Kr

is a decomposition of o ("+" is used instead of "u" iff the
union is disjoint) and define, for Scaq .,

r
(1) MS) = 1Sk g

Thus M : R (2) - NO is a mapping defined on the power set of 0
("the coalitions"). Clearly, any No -valued measure M may be

represented by a suitable (g ; k) € Ng (r+1)

reordering Q.

, possibly after

A (simple) game is a mapping

RE™: (o) - {0,1}

such that v(@) = 0 (and, in general, v(®) = 1) The term game
throughout this paper refers to simple games. A game is a weighted
majority if there exists a measure M and a number X € N such
that for 5C @

{1 M(S) > A
2 S) =
{(2) v(S) o MS) <



In this case, (M,x) 1is called a representation of v and the

relation (2) is indicated by writing v = v . If e Ks» then

A
95

is the weight of w.

Of course, a game may have various representations. Let us discuss
the symmetry-properties of a game and its representation: if w, n ¢ @

are players with equal weight, then (M,1) {and v) is not affected by
exchanging w and .

In particular, exchanging players inside the same Ki does not affect
v; we shall call the elements of Ky fellows (w.r.t. (M,2)) and i
a fellowship.

For any game v, the symmetry group

AR F I SN | = a permutation which does not affect v}

describes the symmetry properties of v. i decomposes @ into
transivity domains, the "types",

If v 1is a weighted majority then w and n belong to the same type
if and only if exchanging w and n leaves v unaffected.

It is also easy to verify (see OSTMANN [5]) that the representations
induce an ordering of the types, i.e., if w and n belong to different
types and, for some representation (M,x) of v , we have M(w) < M(n),
then, for any other representation (M', 1A'}, it follows that

M'{w) < M'(n).

It i{s, therefore, no 1oss of generality to assume that players are
ordered in advance and that this ordering is provided by any
representation to start out with.



We shall assume that "smaller players are recognized by smaller numbers"
and that players withweights zero (if any) are first in our ordering.
Thus we restrict the term "representation® as foliows.

Let W' denote the set of all vectors

= . 2(r+1)
(g!k) = (goggls-.-ggr a kogkl,...,kr) € NO
such that
(3) 0=g,31<9; <..cg,
1 r
(4) Okg s Lakponske s 2 ky=m

is satisfied, Let W= LJ W, any M= (g,k) € T s always
r=1

interpreted as an measure on Q. Therefore, given M e‘TT(r ,, the
projections
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(for 1 <ig=r and 1<c <k, } may be interpreted as restrictions
0

of M, that is, measures which are regarded to live on an appropriate

subset of . E.d., in case of (5), this subset is of the form

where D c K. , |D | =k -c.
o 0



As a notational convention, the total mass of M is always denoted by

m {indices are carried through appropriately) i.e.

r
m= I k. g. = M)
j=p 171
i -1
c © c c
(7) m; = E ki 95+ (k1 - c)gi = Mi () = Mi (C)
0 i=1 0 0 0 Q
io—l
m. = I kig.=M ()
1, 1 i=1 i 9 1 1

etc.

Next, it will be necessary to compare measures (vectors (g,k}) of
different length; the prerequisits for this procedure are provided

by

Definition 1.1. 1. k' e N *1 extends ke N*' i ' > r and

there is 1= (1.,...,1) ¢ NJ*'  satisfying

-l=2 1, <1, <1 <o 1 and

(8) T k' = k
1 1<i<1 !
p- -

2. Let (g.k)eB" and (g'.k') e . We shall
say that (g',k') extends (g,k} if k' ext k
and

(9) 9i =9, (g +l<cicl]),

where 1 s specified by 1. If {g,k) ¢ ' and,
for some k' ¢ Ngl+1 , k' ext k, then there is a
unique ¢' such that {g',k') ext (g,k); let us
write

9 = ext’k. g

{extension of g w.r.t. k'}.



Rema

~—

3. A half ordering £ on Y¥€ is defined by "(g,k) £ (9.K)
if and only if K ext k and exty g < g

rk 1.2.

1.

(10)

For any (g',k')€¥® there is a unique minimal (w.r.t.=) element
{g,k) € Wlsuch that (g',k') ext (g,k} ("grouping fellowships of equal
weight together"); g satisfies

0= 9y < 91 <---< G, -
We call (g,k) the reduction of (g',k') and any (g,k) satisfying (10)
is said to be reduced.

2. Clearly, whenever k' ext k , then
(g,k)  (ext| g, k').
kl

3. If'jg c B x N is a family of representations of a game v, then

the term minimal refers to an element (ﬁ,i) € &) such that for

(M,1) €4y , we have MAM and T <.

1t Me W ", then a vector s € No'' is a profile feasible for

M if s < k.

Profiles correspond to coalitions S C o such that s, =135n Kilﬁ

we have

r r
(11) M(S) = = | SnKi|gy= T s;8; =:Ms),
i=0 i=0
and thus we shall frequently regard M as a (additive) function on
profiles.
i+l c
Similarly, s' € NOO is a profile feasible for Mi if
0
s' < (kgoeoos ki _ps Ky c) ,
0 o)

thus, s' corresponds to a coalition in 2, = K. +...+ K,

1 -
0 o 1



However, as s' may also describe a coalition in o we may as well
regard

s" = (s' h.es 81 0,...,0) € N+
as to be feasible for M? . Frequently it is not necessary to distinquish
0
between s' and s" and we will use both notations freely (and switch

between them) in particular as we decompose 2 1in order to construct sub-
games .

The "largest" profile feasible for M s

C(M) 5= (Kypeooskp)

which is (somewhat sloppily) called the "carrier" of M.
Note: if (g',k') ext (g.k), then a profile s' w.r.t. (g',k') corresponds

naturally to a profile s (w.r.t. (g,k)} (sp = : L : s%) and we
have o-1%120

If (g,k)<L (g',k') then s' »s 1is also well defined and we have

in this case.

The term homogeneous for a {simple) game has been introduced by VON
NEUMANN and MORGENSTERN ([ 41]).

Let (M,)) € Wx N. M is said to be homogeneous w.r.t. » if
1. M) > &

2, For S ca, M(S) > A there is TcS such that M(T) = Xx.

We write M hom » as an abbreviation; also, M hom0 » means that
either M hom A or M(Q) < X.



A game v 1is homogeneous if there exists a homogeneous representation,
i.e., if there is (M,2) ¢ 7 x N s.t.

Vv = VT , M hom X\.

Essentially, a game is described by its minimal winning coalitions
(the min-win coalitions) and in a homogeneous game the min-win coalitions
have exactly weight A.

Homogeneous games are of special interest, because they allow for “nice"
solution concepts. (see [ 61)

It is the aim of this paper to exactly describe the structure of all
homogeneous representations of such a game. The construction of
homogeneous games with arbitrarily prescribed weights is indicated in

[ 91. From this paper we take the following Lemma (Theorem 1.4., [ 9 1),
we shall refer to it as to the

BASIC LEMMA let M= (g,k) be reduced, X € N,and assume
r
A<m=Mga)= =

Then M hom a if and only if there is ioe £1,...,r} and
ce N, l1<c<ks such that

o
r
(12) A =cg: + T ki g
Yo =il VT
o
(13) Mio hom 9; (i, * l<j<r)
(14) M. _, hom_ g
1 1 o i,

Intuitively, the Basic Lemma states that, given a homogeneous representation
of a game, the measure of the largest min-win coalition (when collecting
players according to rank) must exactly hit the majority level. Moreover,



the remaining players - collecting their weights according to the measure
M? - are going to play a series of homogeneous "satellite games" in order

to’replace the "large players" (j > io + 1) and the medium players (10)

or rather, the members of the large and medium feltowships. (c¢f.Fig, 1}

The fact, that [ 9 ] deals only with reduced representations may be
neglected. This is verified at once by reducing and extending
representations at will.

The term "largest coalition”, suggested by the Basic Lemma leads to an
ordering of profiles. As the largest fellows have weight 9p s it is
reasonable to introduce the lexicographic order backwards on vectors

(profiles) s € N'; thus the last coordinate Sy is the first to

be considered for the lexicographic ordering.

7
/7
O

\\\
SN

=/
!

Fig. 1 : "The Basic Lemma"



- 10 -

According to (15) (16) (17), the profile of the "lexicographically
largest coalition" (the lex-max coalition) is uniquely determined by
M and ) and given by

Ao A
$7 = sy = (0y...,0, ¢, k10+1,...,kr)

The Basic Lemma permits to define (recursively) a test for homogeneity
of a pair (M, ). In addition, it provides a method of computing "all

homogeneous games" via the "matrix of homogeneity" - the details may
be found in [9] .

OSTMANN [5] proves the following

Theorem  ("The smallest committee") For any homogeneous game there is

a unique representation (M,x) ¢ WCx N such that M(Q} is
minimal.

The present paper offers the following results.

The fellowships of a homogeneous game may be classified according to
their character, we know three characters called "sum", "step", and
"dummy". These characters are defined inductively via the satellite games
as suggested by the Basic Lemma. Whenever a fellowship is a sum, it in-
duces in turn its satellite game to be played by smaller players in order
to substitute the sum. Thus, the first aim of this paper is to clear up
the relationship between the BASIC LEMMA and the theory of the minimal
representation presented in [9] (where the characters apply to players).

The second aim is to provide a completely independent proof for the
existence of the minimal representation which essentially runs by induction
via the satellite games.

The third aim is to supply an algorithm which, given any homogeneous re-
presentation, computes the minimal one. This is done in a direct way and
without referring to the game v (i.e. to the incidence matrix of the minimal
winning coalitions).
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2. Games with few non-dummies

In view of the Basic Lemma, the measures M,

i-1 and M? play a

] 0

decisive rdle concerning the relations between smaller fellowships (i « io),
the medium one (i = 10) and larger fellowships (i > io).

In Section 3, dummies, sums, and steps will be defined inductively as to be
one of three possible characters of any fellowship. The present section
provides the induction beginning by dealing with some degenerate cases

(small fellowships are dummies and large ones constitute one type).

In this context let us write M = 0 for a measure which is understood to

live on K0 (thus corresponding to (O,go)), even if K0 = (kO = 0), in

which case M = 0 may be regarded as the trivial measure on the empty set.
Remark 2.1. Let M e W ! and » € N be such that M hom x and

consider

Then there is ¢ e N, 1 < ¢ < k; such that A = cgq. Thus, a typical
game of this class (r=1) is specified by

(1) (g3ksa) = (0,975 kookys €g7)  (kgtky = my gy > 1, 1 cc < k)

Let us define the characters of the two fellowships involved as fellows.

(2) Fellowship i =0 s a dummy.

(3) Fellowship i =1 is a step.

Its satellite measure is Mi = 0.

Note, that there is a unique minimal representation of VT given by

(4) (a;k;i) = (091; koskl; C)
k0 + k
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Remark 2.2, Let Meyme", r >2 ,and 1€ N be such that

M hom A. Let io € {l,...,r} and ce N, 1 <c f-ki

0
be specified by the Basic Lemma. Consider the case that

C
() T T T

(Recall m =M (o) etc.) and let us analyze the game v = VM

'lo"l 'IO-]. '

It is seen at once that st = (0,...,0, ¢, K "kr) is the only min-

i +1°°°
0
win profile. Fellowships i +l,...,r are "inevitable" while exactly c¢

players of fellowships 10 are entering a min-win coalition with profile
A
sT .

Let us define characters of the various fellowships by distinguishing two
cases.

If r= io’ we have X = cg, and
r-1
My g = Mp_p = 2 k;9:< g, . Then, fellowships 0,1,...,r-1 are
0 i=1

dummies. Fellowship r is called a step. It's satellite measure is

M(l) =M which has total mass m(l) =m .
r-1 . r-1

There is a unique minimal representation of VT given by

r-1
(6) (gsEsl) = (031; L k-i’ kr.; C)
i=0

hence these games are members of the class described in Remark 2.1..
Obviously, there are two types involved in the game v.

tf i, <r , then we have in general (i.e. ¢ <k, ) 3 types involved
0

in the game. Fellowships 0,...,i0-1 are dummies, fellowship i, is
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a step, fellowships 10+1,...,r are steps as well (and belong to one

. (ig) () _ uC
type!). The satellite measures are M = Mi -1 and M = Mi
0 0
(3 3_10 + 1). Again, VT has a minimal homogeneous representation
given by
L ig-1 r r
(7} (g:k,A) = (O,L,ks-c+l; T kynky I kg, o+ T kp{kgctl))
i=0 o i=1_+1 i=1 +1
0 o}
provided ¢ <« ki . For c = ki , the game is again seen to be an element
0 0

of the class discussed in Remark 2.1.
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3. Characters

During this section we assume that M € W " and e N satisfy

M hom A. Hence there is i €{l,...,r}and ¢, 1 <c<k; as specified
by the Basic Lemma. °

Using the results of section 2, we now start out to define characters
and satellite measures for the general case simultaneously by induction.

Definition 3.1. let Me W' and 2 e N

. (i)
1. For joi +1 1let M) = ME | whitle M O = wm,
— 0 10 o

u(3) (i = io,...,r) is the satellite measure of fellowship J.

2. If m(j) 3_gj , then i 1s a sum.

If m(j) < gj , then j is a step.
_ PP (3) )
3. Llet J=J(Mn) =1{J>1, | m 3_93}

4. For r =1 or J =@, characters and satellite measures are given
by Remarks 2.1. and 2.2.. Assume r > 2 and J # @ . Let

0t3) - o), g) (5€9)

denote the dummies of (M(j), gj) (being defined by induction
hypothesis). Then

(1) D= oM = Y ptd)
jed

is the set of dummies of (M,x}.

5. For 14D, i<i, Tlet

i) sgealientdlyep
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and, for J € J(1) , let M(1’J) be the satellite measure of 1
w.r.t. (M(J), gj) which is defined by induction hypothesis. This

(2) M) o max ' mii»3)

is the satellite measure of i

6. For i ¢D,1i<i, wespecify the character as follows:

if ml1) > g; then i s a sum;
if m(1) < g then 1 s a step.

Thus
{0,...4r} =D+ T +7

(all quantities presently defined w.r.t. (M,a), i.e. = =1 (M,})
denoting the steps etc.)

Remark 3.2. 1. M(1) is a projection of M and corresponds to a certain

"
k. -d)e e

(0,91,...,91; ko’kl""’ i

where 11 < i. In addition, we have
(1)
(3) M homO 95 -

To see this, observe that it is true for J 3_10 by the Basic Lemma and
follows for i < i, at once by induction.Let us write

(4) c(‘).:= (gokpseoosky = d)
{(the "carrier" of M(])) .

2. In particular, M(i’J) corresponds to a certain

(go,...,g]; ko""’kl) € ]1“51. Hence, the maximizer

in (2) can be understood either to define the largest
vector (measure)'cobrdinate—wise (coalition-wise) or

to be given by the lexicographically (backwards) largest
carrier.
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We may, therefore, {regarding M(1’J) as a measure or vector) also
write (with suitable jo)

(5) mii) - 0 zM("sJ) (j ed"

or - + I} 3
(6) M) 2 1ex max B9 5 e dhy
Definition 3.3. 1. Let v =v' and i4¢D=D(M2) .

2. If i 1is a sum, then

is the satellite game of i {and (M(i),gi) is hom
representation of V(1)) The lexicographically

largest profile of a min win coalition (in v(i))
Gy . MY
5 =5
%
is said to represent the substitutes of 1 , s(i)
has the shape

(i) _ -
(7) S = (0,...,8, ki2+1,...,k11_1, kT.1 d)

and satisfies, of course

(8) () sty = g, ;
3. If 4 s a step, then the carrier of M(i)

(9) S U TS

is said to represent the pseudo substitutes of 1; clearly we have
in this case:

a0)  uD (s0h g,
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Thus, a fellowship must have one of three characters. If it is a dummy,
it plays no essential rBle in the game; it's satellite measure is not
defined at all. If it is a step, then it's satellite measure is well
defined; but as it is too small, there is no satellite game. If it

is a sum, then it's satellite measure is sufficiently large, the smaller
players can combine their weights in order to play the satellite game
and the substitutes are the largest (lex) coalition to replace it in a
min win coalition of v. (cf. Fig. 2)

Note that steps of J 3_i0 are inevitable players: they all show up in
any min win coalition. On the other hand, the only way smaller fellows

(i < io) may enter a min win coalition is via replacing successively

sums by playing satellite games. This will become obvious during the later
development.

Remark 3.4. 1. Fellowship 1 < i/ is a sum {w.r.t. (M,») if and only if

it is a sum w.r.t. (M(J), gj) for at least one j > 1.

2. let i <i  beasumandlet j > 1, be such that

M(T) = M(i,3,)

_ (o)
Then 1 1is a sumw.r.t. (M > 9 )
0
. (isJo) 1 . .
3. In this case clearly s = 5 {with obvious

notation) i.e., the substitutes of i w.r.t. (M,})
(J,)
and w.r.t. (M o, 93 ) are the same. (Remark 3.2.2.)
0

Our first aim is to show that the characters "“dummy", "sum", and "step"
are awarded by the game v and not by the representation (M,1).
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Remark 3.5. ("The canonical decomposition")

Let s be a min win coalition w.r.t. (M,A) . Given 10 € {l,...,r} and

ce N, 1 <c< ki (by the Basic Lemma) consider the profiles
0

g := (Sgs--» S§ _1» (85 —€)75 0,...,0)

wno
I
—
W
o
»
-
w
—
k
—
»
o
-
o
-
-
o
L

which are regarded to be feasible for M? and Mi -1 respectively. Note

Ayt 0
that & = (s-s")". In view of
i r
s = (s - s)‘)+ + (c A ¥ Je ° 4 I 5. e
0 j=igl

we have r
Q
M(s) = M? (s) + {cas; )g; + 2 5595 -
v 0 0 J=10+1

As s is min-win, we have also

r
M{s) =A=cg. + I k. 9.
i

o geigrl J J
and it follows that
c + r
(11) M'i (8) = (c - Sy ) 9 + I (kj'sj) gj
0 0 0 j=i0+1
Assume now that s # sA. Then at least one of the terms d. := s.
(i > io), di 1= (¢ - S5 )+ on the right hand side of (11} is positive.

o

0 .
For each j Z.io with d. > 0 we have M(J) hom gj by the Basic Lemma.
Therefore we can take successively dj subcoalitions represented by pro-

files st (v = 1,...,dj) out of the coalition represented by § such that

Ml (s9%) = 95 {k=1,....dy) .



- 19 -

In doing so we may start with an arbitrary j s.t. d, > 0 but
continue by collecting the largest coordinates of g first (i.e.,
collecting from right to left) (Basic Lemma). Thus ¢ is decomposed

S s) ¢
0 ~ ( e Torn B N e e
S = Sgr Sq2 Sprreerrar eeseaecnns s S5 -}
0
or
Q r dj jx
(12) S = L LS
=1, k=1
where e.q.

Je _
s¥" = (0....0, e, Spe127-25g-1° f, 0,...,0)

(1l <ec< sp, 1<f f_sq). 0f course, for dj >0, J 1is a sum and gk

is min win "in v(j)" or w.r.t. (M(j), gj) and feasible for M(J) .

Lemma 3.6, Let v = VT . Then D is independent of the representation.

More precisely:

1. jeD=D(Mn) iff each w€ Kj is a v-Dummy in the ordinary sense
{see e.g. {8], Ch.II1, SEC.2}.

2. If (M',n') is a further homogenous representation of v we may
(after suitable extension (cf. section 1) assume that M, M' € W,
Then

D(M,A) = D(M',2').

Proof: 1t suffices to check that the dummies given by Definition 3.1. are

exactly the ones of v in the ordinary sense. This is performed by
induction.
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1. For r

1 or 1 =p our statement is obvious.

2. For r>0 and 1 # @ our statement is obvious for j > io‘

Let

-ad
A

< i,-1. Suppose id J p3) , say i ¢ pld) ;
jel

Clearly, g7 > 0, i.e., i>0. By induction w € Kz is not a

dummy in v(3) (in the ordinary sense). Assume 3 > 1 + 1 (J =i

o 0

runs analogously). There is a profile

0 0 0
5" = (51""’51 }
o

of a min-win coalition in V(J) ("feasible for M(j)ﬂ) such that s%:~0

and (3
M) (s%) = ME (s°) = gy .
1 J
)
Note that s§ <k, = c.
o 0
The profile
- 0 0 )
S = (Sqs.--s S; _qs S5: +C, K, seeasky = 1,....k)
1 i, 1 iy 10+1 J r

reflects a min~win coalition in © since
M(s) = a

and as E; = s% >0, 0 €Ky is not a v-Dummy, which completes the first

part of the proof.

On the other hand, suppose that 1 < i-1 and o€ Ks isnota

v=dummy; again gz > D is necessarily true. Let S be the profile
of a min-win coalition (in Q) s.t. §7 >0 .
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. A X . Cy 0
Since s # s" , we may consider a canonical decomposition of s = (s - s)‘)+

(cf. Remark 3.5.), say

such that st is feasible for M(J). Now, as sg >0, at least one of

the terms s9° is positive and hence o € K3 is a member of a min-win

coalition in some v(j).
By induction, i & 003) and by Definition 3.1.4., 1 & D = D(M,2), g.e.d.

Theorem 3.7. Assume M to be reduced. lLet v = VT and let 1 be a sum

is of the same type as i

(w.r.t. (M,2)). Suppose i
(w.r.t. v). The i =1i'.

Proof: For r =1 and for r > 2, J =@, there is nothing to be
proved as there are no sums (Remarks 2.1., 2.2.}. Assume
therefore, r >2 and J 7 @ .

Next observe that 1 > i =~ implies i' » i, and vice versa for
I

otherwise it is easily verified that i and 1i' cannot be of the
same type.

st . soa .
17" CAsE: i, 1" > 1.
Suppose 1 < i'. As i is a sum, one player of fellowship 1 may be
replaced by his substitutes in order to change the profile of the lex
max coalition; thus there is a min win coalition with profile

§ = (Syser-s8y

IEERK
o)

SA - ei gi + S(i)

fl

(say, the tacit assumption 1 > 10 made by writing down (11) is un-

important). Here, ei is the i'th coordinate vector and 5(1) the lex
max profile in (M(1), gi), i.e.

s(i):= (sl,..., si0 -c).
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However, the profile

T = € + . - .
S S+e g -e g

has to total weight M(S) < A, thus i and i' are different types if
9jr <9 » 2 contradiction.

On the other hand, if i > i' , then

(i") - ¢ - (1)

m m1. =m ig_i:’g.ils

O

thus i' 1is a sum. We may then repeat the above argument, exchanging

i and 1i'. This settles the first case.

2" case: 5, it < i, . As i is a sum (w.r.t. (M,3)) he is a sum w.r.t.

. By induction, we have 1 = i', q.e.d.

some (M(J), Qj) (J > 1,)

Remark 3.8. 1. In any reduced representation of a homogeneous game v,
sums of the same type have the same weight.

2. Dummies, steps and sums are defined w.r.t. v. For a
precise version of this statement observe that with

respect to any reduced representation, a fellowship which is a sum equals
a type; this type is suitably called a "sum" as well. The dummy type may
be decomposed into several fellowships but it is well defined by Lemma 3.6.
Any of the remaining types may be decomposed into several fellowships -
however, by Theorem 3.7., they are all steps and thus this kind of type
is called a step. Thus, types are classified to belong to one of the three
characters,

3. Consider two reduced homogeneous representations (M,)
and (M',2"} of v. If they are reduced and of the same
length, then = (M,x) = z(M',2') etc.
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4. For a non-reduced representation, a type which is a step
might be decomposed into fellowships, some of which could be
sums. Consider M= (0,1,...,1; 1,...,1) e WC", e N, » < r
for an example. This representation has sums while the reduced
version (0,1; 1,r) has none, X being unchanged.

M

Lemma 3. 9. Let v =v, and i, i' < i, Then i and i' belong

to the same type {w.r.t. v) if and only if they belong
to the same type w.r.t. each V(J) (j € 4d).

Proof: For r =1 or J =@, nothing has to be proved: both, i and
i' are dummies (Remarks 2.1., 2.2.). We may therefore, assume
that r 22 and J # @ for the remaining part of the proof.

15Y STEP:  Assume that i and i' belong to the same type w.r. to
each V(J) (i €4d).

Let s¢ Ng+1 be the profile of a min win coalition such that 5; > 0
and Si1 < ki'; we have to show that

1

s'=s-e +e
is also a min win coalition (e1 denoting the i'th basis vector).

Now, as 5; > 0 clearly s # sl, therefore we may by Remark 3.5. de-
compose s9 = (s - s")+ canonically, say

(13) =1 1 ¢

J ok
Profiles sJ° (if # 0) are min-win w.r.t. vJ and, for at least on 7,
there is ¥ such that

[

Jx €
S‘%K‘:'O,S-. <k.i|

=’
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Replace one player of fellowship i by one player of fellowship i' in
e . '
s¥", 1.e., consider

P L

-

As i and i' are of the same type w.r.t. vi9) | 7 has the same
weight as sJ%. Replacing s* within the sum (13) amounts to forming
O +el -l =843 sJ%, which obviously has the same weight

as 8. From this it is easily inferred that s + e' - e' has the same

weight (i.e. 3) as s, which completes the first step.

an STEP:  Assume now, that i and i' belong to the same type as
v is concerned, Consider a min win profile for some V(J)
(i € J), say S, such that

o] O
S; > 0, S:1 < ki’

Then i

- (2 0 -
s = (s +ce, ki +1,...,kj 1""’kr)

0
is a min win profile for v (treating the case J > i +1, which is

analogous to j = io).

Therefore 5 .

has the same weight M(s') = X which implies that

no
(]

ino
1

D

+

32

has the same weight

=
(9]
-
w
—
1]
[{a]
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Corollary 3.11. Steps i and i' belong to the same type if and only
if they have the same satellite measure (i.e., the same
pseudo substitutes).

Proof: For r =1 or J =@ the statement is obviously true. Let
r>2 and J# @. Again, for i, i' > i, or i 3:10 >i' , the
corollary is verified at once. It remains to consider the case
that 1 and 1i' both satisfy < i_; this is treated by an

09
inductive argument.

As i and 1i' are steps, they are steps or dummies in any Jj)(j € J)
and this character they share simultaneously by Lemma 3.9.

For any j € J(j)j and i' are steps in W) and by induction
they have the same satellite measure, i.e.

mlis3) o (353 5 e gli) o o0h)

By Definition 3.1. it follows immediately that MU'} = m3") 4 e.d.

Lemma 3.11. Let v = VT and Tet 1 ¢ D be a nondummy fellowship.

If i<j then (j ¢D and) mi) o nl)

Proof: For j > i  the statement is obvious. For J < 1, we have

also 1< io and we may proceed by induction.

Indeed, whenever j* > i, and M123%) denotes the satellite measure
of i w.r.t. (M(J*), gj*) (i.e. M(j*) = M? or M(j*) = Mi _1 re-

0 0
spectively), then we may by induction assume that

w37 o yds3%)

holds true whenever both terms are defined, i.e. whenever i (and,
consequently j) is not a dummy "in v Clearly (see Definition 3.1.)

3 c !
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and hence

M(-i) = max M(-i’\]*) _i max M(1SJ*) = M(j), q.e‘d.
j* e 1 j* e 1Y

Lemma 3.12, let v = VT and let _i < j be fe11owshjps such that i
is not a dummy 1in v(J). Also, let M(”J) denote the

satellite measure of 1 w.r.t. (M(J), gj) . Then
u(is3) (i)

Proof: For j 3_10 we have necessarily i < io and, by Definition 3.4.:
m(123) ¢ 1ex max m(13%) - u(1)
i* e J

Now let Jj < i_.. Observing that M(]) is defined w.r.t. (M,x) write

o
M(i) = M(i) (M,x) for the moment, such that

M(T’J) = M(1) (M(J), gJ)
and

whenever all measures are defined. Choose j > i, such that

- NE 3»d
M(J) = M(J) (M(Jo)’ g: ) = M( 0)
o
Then _ 1,94
W(53) - ) ), gy o g3
J
(3,) o
Consider (M . gj ); by induction we have
0
1,3,3,)  (1,d,)
M( 0 <M 0
and hence

(1,3,3,) (i,d,4)
M 0<M 0

a(123)

max M(i’j ) = M(i) . q.e.d.
el

[ A
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Theorem 3.13. tet v = VT , 1 < J and assume that i 1is a sum in

V(J). Then 1 is a sum in v,

Proof: By applying (8) in Definition 3.3. to (MUJ), g;) We have

(14) M(iaj) (s(isj)) = M(j) (Si’j) = gi

and hence

p1) 5 () (s(1:3) L y(13) (130 - g

this shows 1 € L.

Corollary 3.14. Let v = T For J #90
(15) p-Vptd) o\ pl
Jjed jez
() (3)
(16) p=duU:0) =00 2
jed jex

(17) T= ({igs...or}= J) W 13 q (U e

JeJ jed
= (Ggseom- Du ) 1 ) 289

Jez jex

Corollary 3.15. For i < Ty 1 g D:

M) - max {M(i’j) | i <j,jez,i¢g D(j)}

Corollary 3.16. Assume M to be reduced. Let v = VT. For any i ¢ D,
v(1) is independent of the representation (M,A) but

depends solely on v.

The details of these statements are left to the reader.
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4, The minimal representation

Within this section we characterize all homogeneous representations
at a homogeneous game V = VT. In particular, we show the existence
of a unique minimal hom representation; the proof rests on an in-
ductive argument based on the satellite games.

Definition 4.1. Let {(M,A), (M',2') e"¥8t" x N such that k = k'.

Assume that M hom x such that v = VT is a

homogeneous game. For i ¢ D = D(M,x), let
¢l . (kp»- kg =) be the carrier of m{1)
(cf. 3.2.) and define a family

we (1) (i ¢ D)
by

the restriction on 0(1) , or, equivalently, the projection on the
first coordinates).

(M',2') is said to be compatible with (M,x) if the following conditions
are satisfied:

(1) g; _:_-_m'(i) +1 i€ T=T(M,))
(2) gy = w1} (s(1)y i€ =z(MA)
(3) o= M (sM)

Theorem 4.8.

1. If (M',2') is compatible with (M,2), then (M',2") 1ds a
homogeneous representation of v, i.e.

oMM
V—VA—V')\'
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2. Any two homogeneous representations are compatible with each other.

3. There is a unique minimal (homogeneous) representation of any
homogeneous v; this is obtained by requiring an equation in any
inequality (1). (and awarding dummies the weight 0).

4. The minimal representation may be computed by starting with the
smallest nondummy and proceeding according to (1), (2), and (3).

5. For the minimal representation types and fellowships coincide.

Proof: Put Mr+1 = M, 9pp1 = and v(r+1) =¥ = VT. Similarly for

the quantities M', A'. r+l 1is formally called a "sum". Suppose 1 is
the first nondummy fellowship; we are going to show by induction from
i to r+l:

(4) “If i€z, then V' = vg.f‘)".
i
Now, for i = i there is nothing to show because i 1is a step.

Therefore, fix some Jj, i < j < r+l and assume that (4) is true for all
i < j. We shall show that (4) holds true for Jj. We proceed by two steps
assuming that Jj s a sum.

1st Step: Let us check for i < j :
a) If i€ Ej then
v .

= V. _
9; g

by 1f iem then m(d) 41 g,
- Here, M'(i’j) denotes the projection of M' on C(1’J) etc.

Now, as for statement a), we know that iegd and thus ie:
and

(5) M(i) > M(iﬁj)



Moreover, using our induction hypothesis
(6) M sy =g, irr wlls) = g

We want to show
1,' . .
(7) M( J)(s) =g, iff M'(1’J)(s) = 9; >

which is equivalent to

(8) M (s xcld)y =g aer (s A clBd)y = g

in view of (5) and the projection properties of M and M'. Clearly,
(8) follows from ( 6) and a) is checked.

As for statement b), let 1 € ™

If § € T, then

ml(i:j) f.ml(i) ig; -1

in view of (1) of Definition 4.1.

) (1) .
If i€z, then v o= ng by induction hypothesis, thus
i

gi > mij - M(iaj) (C(isj)) = M(i)(c(i’j))
implies
g% - M'(i)(c(iaj)) - ml(isj) .

hence we are through with b).

2nd Step: In view of the first step we may not only assume that

{M‘(1), gi) represents v for i < J , but also that
o . P 1.3
L g;) represents vh’3)=vg_ for i <j whenever
. i
o s
1€LY .
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Therefore we may, as a technicallity, omit the index j (thus arguing
so to speak, our case for r - r+l) and instead of (4 ) show that

. (1)
If v(1)= ng holds true for
(9) !

iexr then v = VT. .

Now, two statements have to be checked, namely

¢} If M(s) =2 then M'(s) =
and

d) If M(s) < A then M'(s) < '

Let us start out with c¢):

If s dis a min win coalition and s = st then, nothing has to be

proved as M'(s) = »' follows from 4.1.

Assume s # s’; let g = {s - s )+ and recall Remark 3.5. An inspection
of ¢ teaches: if sy < ky for some j > i, then W (s) > §755) 94
i.e. $ contains (in view of the Basic Lemma) k S, prof1ls of

M(j)-measure 93 . These are min-win coalitions of V(Jf {j must be a sum!)

and by (9), v (3)15 represented by (M' J), g&). Thus any of the min-win

coalitions of v( 3) mentioned above has M'-measure 93! This way it is
seen that 3 decomposes such that its total M'-measure is

M ()

(c-s; ) af + T
0 o J>1

Consequently

M'(s)

n

0 .
M'(s) + min (Si .C) g% + £
o o j»i

which finishes statement c).
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Finally, statement d) is verified by the same methods as c) - just
that the "decomposition is not a canonical one":

Let M{s) < » and put g = (s—sk)+. Similarly to the procedure in
3.5. we obtain

r
+
(10) ME (s9) < (¢-s; )'gs + = (k:-5.) g, = d. g

0 J 0

IS

(compare 3.5. for the definition of dj (j=10,...,r)).

Now, for j =1_,...,r , if M(J) (3)_3 93> then take profiles sI¥

0’
K=1,...,aj such that M(J) (sJK) = 9 and oy is as large as possible
but not exceeding dj.

Thus we obtain a decomposition

E

g -

7 +s
jk

£

where s¥¥ is min-win for (M(J), gj) and s® is loosing for any

V) (5 € 9) (possibly s© = 0) and a < d; (3€3).

Because of {10), at least one a. is strictly smaller than d

J i

Now, by (9) we conclude that

w3 (s9) = gp L ) (s%) < g

and hence, it is seen that for M' an inequality corresponding to (10)
holds true as well, i.e.

.
(1) M%) < (esg ) gf v T (kysy) 9y

| .
=i +
0 0 o J=i, 1
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Inequality (11), however, is at once converted to

M'(s) < A’

This completes the first statement of Theorem 4.8.

The second statement follows from Theorem 3.7, Remark 3,8, Lemma 3.9.,
and Corollary 3.10..

Finally, statements 3, 4, and 5 are now immediate consequences.,



]

Fig. 2:

Satellite measures and substitutes
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5. Substitutions and the nature of min-win coalitiagns

During this section we study the way smaller players may enter min-win
coalitions. This essentially is done by successively entering the lex-
max coalition of a satellite game via the replacement of a sum. This
procedure offers the access to a second existence proof for the minimal
homogeneous representation. Although this proof also rests on the
concept of the satellite games, it is essentially a method in the
spirit of OSTMANN's [5] paper, thus, the present section also clears
the connection between the setup used in [5] and our present one.

Remark 5.1, Let s # sA be a min win profile and et 1 be the
first index such that 54 # 0. Also let { be the
first index larger than 1 s.t. S; < ki' Generically,
s has the shape

(1) s = (0""’0’C’k1+1""’ki-l’ Si» 8 ... 8 )

where ¢ > 0 and $; < ki {of course the 0's and kq's could not appear).
i s called the smallest dropout in s.

Lemma 5.2. ("The substitution lemma"} Llet i be the smallest dropout
of a min win profile s. Then M(1) (s) > g5 In particular,
i is a sum and 5(1) < s,

Proof: Let 2 = (s-s*)* be defined as in 3.5.. Consider the case that

i 10. As s # sA and S; < ki’ it is seen at once that

Mi(g).z g;. The shape of s (consider the coordinates i' < i)
implies the assertion of the Lemma. The case i =1  is
handled analogously.

Therefore it remains to treat- the case 1 < io which is done by
induction. If M(J) (09---9 C, k'|+13---:k-i_,1: S-I:O:---:O) > gJ then
apply the Basic Lemma in order to construct

89 = (0y.eesDyeens €'y K +sKs_1s 5550...0)

q+1’--

which is a min win coalition for V(J), i.e.

mid) (sd) = 95 » 9 >1,
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satisfying sj < s. If, for all sj, we have M(j)(sj) < ¢g., then a
canonical decomposition of 8 (cf. Remark 3.5) ’
5 5
r‘hﬁ/—""\ﬂ
g = (0,...,0,c, KyggoeeeoKiogoSisess)

serves to the same purpose.
Thus it is possible to construct a min win profile sj s.t. i s
the smallest dropout in 59 (and hence sJ # s(J)). By induction, i

is a sum "in v{)" and y(isd) (sj) > 9. Hence

M) (s) = max M3 (o) 5 w(s) () 5 5,

jTed
g.e.d.
Remark 5.3, If 1 1is the smallest dropout of a min win profile s,
then
(2) st=s-sl+¢

is a min-win profile as well. (2) shows that, on the other hand, s is
obtained from s' by inserting 1i's substitutes for one fellow of
fellowship 1i; let us call this procedure a substitution. (cf. Fig. 3)

Since s" is the only profile that has no smallest dropout, we infer

that any min win profile is obtained from s
substitutions.

by finitely many

Lemma 5.4. ("The pseudo-substitution lemma" )
Llet s be a min win coalition and let 1 be the first
coordinate such that sy > 0, i.e.

s

H
—
o
"
w
Q
w
wr
—
-
[
wr
=
St
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(1)
C > (ko""’k]—l’ 0,...,0)

v
—k

and for i

(1) -
) 5 (kysereokygsky=Sys 0snens0).

Proof: Observe that we have necessarily 1 < i, 3 thus, for 1 > 1

and 1 = io the statement of the lemma is obvious. Assume,
therefore, 1 < i, and proceed by induction. Again, i > i
is trivial, thus let i < i

0

0
o "

Consider a canonical decomposition of g {cf. 3.5.), say

g - (05...505 Syse-s555-.. B eee)
\——v—-—-—/\.—..(-——_——J
sjl sj

There is some 9, M03) (sd) - 95 such s1>0 (i, < <r). The first

nonvanishing coordinate of s9, say 1' satisfies 1<1' <i and
s%. >0 .

Now i 1is no dummy in JJ) and by induction hypothesis we conclude that

(in case 1' < i, say; the other cases are treated analogously). Hence
¢ = max ¢(123) 5 (k... kq-sq, 0,...,0)
. =~ 171
Jjed
This settles the proof of the lemma. Note that C(i) = s(i) if

i is a step. Thus, if i 1is a step, it follows that

s(i) 3_(ko,...,k]-s1) .

-
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Remark 6.5, The term "maximal loosing profile" is supposed to be
se]lf explaining. Let s be maximal loosing and let
i be the first coordinate such that $; < ki' Then
s has generically the shape

s = (ko""’ki-l’ Si» B ... B )
Clearly
{k

o2 eroKi_qs S5l ¥ .. B )

is winning, so by the Basic Lemma, wé find
t = (O,.-.,O, C, k'i+1,-.-’k_i_1, Si+1’ g ... B )
(typically), a min win coalition. Let
s = (ko,.o-,k'l_l’k1"'Cg 0---0) ]
by the pseudo substitution Temma 5.4., applied to t we have
s(1) >3

We have thus
(3) s=t+§-e1,§'5s(1)

That is, the maximal loosing coalition s 1is obtained from a min-win
coalition t by replacing a step by a subcoalition which is at least
as weak as the coalition of pseudo substitutes.

Now, alternatively let i be a sum (it cannot be a dummy!). Then
obviously s > s(i). Throw out the substitutes and put in player i1 .
The profile

st =5 - s(i) v e
has the same weight as s, thus it is loosing and its first coordinate
1 such that s; < k1 is smalier then 1.

We may repeat this procedure until we find the first coordinate which

is smaller than k, to be a step - and then repeat the procedure in-
dicated above.
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It follows that there is a subset I of sums such that

(4) s = I (s(i) - ei) +t+5s - ek
i€l

where t is minimal winning, k s a step and s f_s(k) .

Thus, any maximal loosing coalition s is obtained from a minimal

winning coalition t in the following way: replace a finite number
of sums by their substitutes and replace a step by a coalition which
is at least as weak as its pseudo substitutes.

Remark 5.6.  (2nd proof of Theorem 4.8.)
Minimal winning and maximal loosing coalitions in a
homogeneous game are obtained by a very similar procedure,
This opens the path to an alternative proof for Theorem 4.8.

Proof:

1st Step: If M(s) = x then M'(s} = A.
Clearly, M'(sk) = A" by 3 of section 4.
If s 4is min-win then, by Lemma 5.2. and Remark 5.3.

s= 5 sti)-el+s
iel

whre [ c . Using (2) of section 4 we find

sy = £ sy - gy s mst) = st =
el |

2nd Step: If M(s) <A then M'(s) <a'.
As s is maximal loosing. Pick I,k,t, and § as in Remark5.5,

formula (4), i € 1 is sum, k is step, t -is min win and S < s(k).
By the 2st Step M'(t) = A'. Using (1) and (2) of section 4 we find:

wis) = = sty - ey « ) + M E) - oy
iel
=2+ M (5) - g
ihl + Ml(s(k)) - gIk < h'
. oM
This proves that v = v, .

The second, third, and fourth part of our Theorem follow as previousiy. q.e.d.



SM\\(_.\ .
[— . . -. #

Y |

Fig. 3 : A substitution
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6. Computing the minimal representation

Given any homogeneous representation (M,)) of v, we want to compute
the minimal homogeneous representation (M,1). We intend to construct
an algorithm which does not refer to the game v (i.e., the incidence
matrix of the minimal winning coalitions), thus proceeding directly
from (M,2) to (M,x).

Lemma 5.1. Llet 1 ¢ D. Then either s? > 0 or there is J € & such that

1. i¢0ld)
s (i) o (is3)

3. s_(lj) > 0

Proof: Trivial for i > i,; assume 1 < i,. By 3.15. we know that

Ji=min (3 | i <3, 3¢z i¢0l), mT3) oyl

is well defined; we have

(1) M(i) = M(i!j)’ j €I, i ¢ D(j)_

We are going to show that sga) > 0. Assume that, on the contrary,
ng) = 0. Now, s(J) has generically the shape

(3) . ' '
S - (0,--.,0’ C 3 kp+1,q--,kq_1, d ] 0,..-,0)

and if sgj) =0, then i <p and theredis j,p<Jj,<q<7
such that

(2) i ez, e
and )
(3) M
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As G, € }:(3),)we have 3§, € E. Similarly, it follows from D
(3
that i ¢ D ° (compare 3.14.).

Moreover, we have (compare 3.12.)
M(1,JO,J) ) M(1.JO) JE)

(4)

‘ (i) (1:3,)
which together with (1) and (3) implies M = M . Thus the
existence of jo contradicts the minimality of 3, g.e.d.

Corollary 6.3. mii)

ma x {M(i’j) b i<j§, jex, 1 ¢ D(j), ng) > 0}

max {M(i’j) | i <3, s(j) is definedand sgj) > 01

Clearly, if i <j, J€z, 1€ D(j) and s(j) has the shape

(3) - = '
s = {0,...,0, C", kp+1,...,kq_1, d', 0,...0)

then

(K senesKo 13 Ggo-evaly.1)
RUTCH I B P!

(ko""’kp-l’ kp—c : go,...,gp)
according to whether 1 =p or is>p.

This suggests the following algorithm. (Assume (M,)) to be reduced,
so that characters are marked correctly.)

0. Define functions I CO, MI, SA on ¥ x N by

09
1,(M2) = ig, Co(Mad) = ¢
Sa(M,A) = s*

0
0
MI(M,2) = My
0
",
MC
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A

Given a fixed (M,x), compute io, C, $, M(i) (i > 0) by using

;
the functions of the first step. Also, compute m(i) (i 3.10).

For 1> 1., let

| 1 nl) > g,
CR(1) = .
(1) ) () ‘.
and
(1) -
). c CH(i) = 2
sa{t) g0y cH(i) = 1

Let i = 10-1 and define
V(i) = (5> i 1 sE) s 0

If INTV(i) = @, then CH{(i') =0 for 0 < i' < i . Proceed
with STEP 6.

If INTV(i) # @ proceed with STEP 4.
For j e INTV(i), put m(i»d) .o MI(M(j),gj) [i] (i'th row of the
matrix defined via the function of STEP 1). Let

(1) - e y(i23)

Repeat steps 3 and 4 for the present 1, thus defining CH(i) and
(1)
st

Replace i by i -1 and return to 3.

Characters, satellite measures, substitutes and pseudosubstitutes
are now defined for all i. It remains to compute the minimal
representation.
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To this end, put g = 0 and g; =0 as long as CH(i) = 0. If

T =min {i | CH(i) > 0}

1.

then let 51

7. For any i > 1 assume that the vector g is defined for all

coordinates ' < i. Put

il
—

g, = <), g5 CH(1)

1}
™~

s & + 1 ()

and proceed until 1 = r.

8. Reduce g , if necessary, by grouping fellowships of equal weight
together.

Remark 6.4. A language like APL which handles vectors and matrices
easily is capable of dealing with the function MI directly. However,
is should be noted that M(1) s essentially described by the four
quantities p, q, ¢, d if e.q.

¢ - (0,....d, k k 15 d, 0,....0)

p1***2Kg12

and thus, MAa can be viewed as a function which labels every (M,1)
accordingly.

Example:

Let M= (2,5,9,28,56,252; 2,3,2,2,4,2).
The "matrix of homogeneity" (see [9 ]) is

100000
110000

c . 12=000
12100
122110
12=111
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Therefore X =672 =3 56 +2 252 1is a homogeneity level for

M (as Cg.i 3) and (M,A) represents a homogeneous Vv =V

are no dummies in this game, the character vector is
(2,2,1,1,1,2) .

N There

The satellite measures M(1) are given by the rows of the matrix

000 00000000
200 00200000
250 00210000
2
2
2

MI

o o o O

59 00232000
5928 00232200
5928560232210

and the substitutes and pseudo-substitutes are the rows of the matrix

000000
200000
210000
022000
000200
232210

Thus, the minimal representation is

=1
\

= (1,3,5,16,32,86; 2,3,2,2,4,2)
268

>1
n

The game v is described by the min-win profiles which are listed
as rows of the matrix

000032
000222
022122
231122.
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