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ABSTRACT

The modified Lemke—Howson algorithm is a constructive procedure which enables us to
compute equilibrium points of a bimatrix game. The algorithm as described by one of
the authors (see ROSENMULLER [9]) is based on the original version invented by
LEMKE-HOWSON [5]. However, it differs from this version with respect to several
features. It works directly with the matrices defining the bimatrix game A and B. It has
an easy and very direct geometrical interpretation, hence for small games we can follow
the development of the algorithm geometrically. Finally, instead of being "bilinear", the
algorithm behaves rather like a "piecewise linear program".

This presentation closes a gap: although the algorithm has been described geometrically
(and with a flow diagram) in [ 9], there has been no constructive procedure that can be
implemented on a computer. This is provided by the present paper.

We give all necessary proofs and computations in order to establish the following facts:
There are two tableaus accompanying the proceeding of the algorithm. As the algo-
rithm changes, moving alternatingly in the simplices of mixed strategies, so does the
computational procedure alternatingly dealing with the two different tableaus.

Both tableaus contain six regions depending on the various ways of "transitions" the
procedure has to perform.

While this all is in marked difference to linear programming, there is also consolation:
The well known rectangle rule of linear programming can be modified easily (that is,
there is a family of rectangle rules) such that changing the tableau alternatingly
amounts to applying the appropriate rectangle rule. Thus, there is also close similarity
to the familiar LP—procedure.

Thus, a complete description of the modified LH-algorithm is provided that can imme-
diately be implemented on any computer, in particular we supply an APL-program
that, e.g., can be run on an IBM PC (IBM is a registered trademark of International
Business Machines Cooperation).



SECTION 1
Introduction

Let I = {1,...,m} and J = {1,...,n}. A bimatriz game (in mixed strategies) is a qua-
druple

(1) I=(X,Y,A,B)

such that A = (ai j)iEI, P and B = (bij)iEI,jEJ are m x n matrices and

m
(2) X={xeR" | x=(xp,.. )20, T x, =1}
i€l
Y ER" | 3= (rpeay) 20, B y;= 1)
(3) Y={yeR" | y=(yp¥5) 20, Z y;=1
£ i)

are the (mixed) strategies of player 1 and 2. If player 1 chooses x € X and player 2
chooses y € Y, then payoffs are defined by

xAy=5F E5 & . v.
iel je3 ' M)

for player 1, and x B y for player 2.

A pair (x,y) €X x Y is said to be an equilibrium point if

xAy2xAy (x€X)
and

XBF>XBy (veY)

holds true; thus, in equilibrium, no player has an incentive to deviate for his payoff
cannot be improved upon. If I'is a zero—sum game (i.e., B = —A), then an equilibrium
consists of a pair of optimal strategies and vice versa.

The Lemke—Howson—algorithm as devised in LEMKE-HOWSON [5] is a procedure
that (for "nondegenerate games") yields an equilibrium point within finitely many
steps.

The procedure works by transforming the bimatrix game into a bilinear program;
whereafter the algorithm, starting with an "unbounded edge" proceeds by moving along




a certain system of polyhedral edges of dimension 1 to search for an equilibrium point.
An implementation of this version of the LH—algorithm in the sense that the geometri-
cal behavior of the algorithm is represented by a sequence of tableaus, to be computed
consecutively and leading to a numerical evaluation of an equilibrium point, has been
presented in PARTHASARATHY — RAGHAVAN [6]; however, a formal proof (and
an established computer program) for a neatly working version of the algorithm on a
contemporal computer is lacking.

The Lemke—Howson—algorithm also yields some insight into the structure of equilibria.
It shows that the number of equilibrium points (for nondegenerate games) is odd. It is
also known that not every equilibrium point can necessarily be reached in any case;
even if the initial "unbounded edge" is being changed, there are equilibria not to be
reached by the LH-algorithm (for further literature we refer to AGGARVAL [1],
BASTIAN (2], PARTHASARATHY-RAGHAVAN [6], SHAPLEY [7], TODD |10,
11]).

An alternative version of the algorithm (the modified LH-algorithm) has been presen-
ted in ROSENMULLER [ 9], Chapter I, Section 1. This version works directly with the
matrices with A and B constituting the bimatrix game. The algorithm is not bilinear
but rather "piecewise linear": it works effectively in the simplices X and Y, alternating
performing steps in each of them. There is a flow diagram established in [9] which,
however, requires the computation of solutions of certain linear equations after each
step and, hence, is not in the spirit of traditional linear programming. In practice the
procedure suggested by the flow diagram is rather slow and the capacity of most com-
puters is not sufficient, even for small problems.

As the procedure is not a standard optimization problem it is not clear how to exactly
define a sequence of "tableaus" corresponding to the geometrical movement of the
Lemke—Howson—algorithm as presented in [9]. This is exactly the goal of the present
paper. We suggest the correct parametrization of edges of certain subpolyhedra of the
simplices of mixed strategies X and Y. Using this parametrization, we define a pair of
tableaus (corresponding to the alternating behavior of the modified LH-algorithm) such
that alternating performing the rectangle rule in each of the tableaus actually yields an
equilibrium point. The procedure can thus be implemented on a computer and, for the
sake of completeness, we are adding an APL-version of such a program.



Let Ai- : A-j denote the i~th row and j-th column of the matrix A respectively. Intro-

duce the convex polyhedra

Ki={yeY|A y2A, y(kel)} (i€l)
4
o Li={x€X|xB ;2xB (leJ)} (jeJ)
as well as

KT:Q,Ki TCI, T#0
(5) .

LszERLj RCJ,R#90

E.g. Ki denotes the mixed strategies of player 2 against which the (pure) strategy i €1

(or the mixed strategy ei) of player 1 is "best reply". It is not hard to see that (X, y) is
an equilibrium point of T if and only if

YEK;. = dx€L;. = a1
Y Milx>0) MO E 1T >0)

Thus, in equilibrium, the positive coordinates of x and the polyhedra JKi containing y

correspond to each other (in fact uniquely if nondegeneracy prevails) — this is of course
an analogue to the familiar "optimality condition" of L.P. theory. We are thus motiva-
ted to introduce polyhedra

HT’U=KTI’I{yEY]yj=0(jEU)}

(6) ,
GR,V =LpN{xeX|x, =0(ieV)}.

The game is called nondegenerate if
(7) dim HT,U =n-|T|-|U|, dim GR,V= m- |R| - |V], for HT,U :HHGR,V

(cf. Definition 1.11, SEC.1, CH.1, of [9] ).

We shall assume that the game we are dealing with is nondegenerate.




In this case we have the following characterization of equilibrium points:

Let (z,y)€ X x Y and put T = {i z,> 0} Cland
(8) R ={j| §j> 0} C J. Then (z,y) is an equilibrium point
ifand only if | T| = |R| and {(z,y)} = H G
T.R

) ]

For the details, see [ 9], and in particular Corollary 1.13 in SEC.1, CH.1.

The statement formalized in (8) can be interpreted geometrically as follows: the simpli-
ces X and Y of mixed strategies are decomposed by the polyhedra Lj (jeJ) and Ki (i€

I) respectively. Among the subfaces of such polyhedra we distinguish vertices HT,U’
|T| + |U| = n and edges HT,U’ |T] + |U| = n-1 (for some K. CY; the situation is
analogously described in X). A vertex HT,U = {y} has "labels" assigned to by the
polyhedra it is adjacent to (i.e. labels i € T with y € Ki) and by the positive coordinates
of y (i.e., fj > 0 for j€ Uc). If (x,y) is an equilibrium point, then the labels of {X} =

GR,V and {y} = HT,U correspond to each other in a unique way.

Example 1.1:

Consider the matrices
A

5 3 4 -1
6 -3 & 3
-14 7 11

3 4 -9 -19)°

then the following sketch illustrates the decomposition of X into polyhedra LI,L2,L3,L 4

and
B

and the decomposition of Y into polyhedra K K, (cf. Fig.1). An equilibrium point is
given by

3 2
X= [3':3'] ’{ﬂ=G13?0=G13 {1 2}0

=_[9 11 = =
¥ [Tg’ 030> 0] =t s H12,{1:3}c




where the indices ("labels") are matching in the appropriate way: x has positive coordi-
nates 1,2 and y € K, N Ko; analogously y; > 0, y5 > 0 while x€L, NL,.

L, Ly L, L,
e | | ¥
el 1 1 i e?
358 (1)
o
(&.0,0,11)
Hiyoyzay = /e \

Hyy 2y, 2)

Fig. 1




The modified LH-algorithm is explained in detail in SEC.1, CH.1 of ROSENMULLER
[9], see also ROSENMULLER [8] for the n-person game version (WILSON [12]
describes the "multilinear" n-person version of the "original" LH-algorithm). We
would like to assume the reader is slightly familiar with the presentation in [ 9].

For our present purpose we shall describe the modified LH-algorithm with the aid of
Example 1.1 as follows: Use €' to denote the i’th unit vector.

The algorithm starts with a vertex, say
s O
€} =By 129 £¥

inY. As e4 € K2, we move to simplex X and choose

2y _
€} =60, )
as the first vertex in X. Now, e € L2 means that, in Y, we should admit for positive

2nd coordinates, i.e. move "towards" ey, That is, we delete index 2 from the labels
describing {e4} €Y, thus moving along the edge

H :
{2}, {1,3}
The endpoint of which is

1 1 2
Y= (0: 3 0, §)

defining a vertex
{y'}=H
YITEIee 113}
Here the new lablei = 1 appeared, thus in X, we leave e along the edge
G2}, 0
arriving at x! = (i, g-) where

{xl} == G{1,2}, 0




Hence the next edgein Yis H (1,2}, {3} which leads to y2 = (i, 0,0, %), We have
2y _
L he TR TR

The next steps are along the edge G {1}, 0 towards x2 e (%, %); {x2} =G {13}, ¢ and

3 1 1 3
along H{1’2}’ {2 towards y° = (g, 0, 5, 0). Now {y*} = H{1’2}’ {2,4) and all labels

match in the required manner as we have explained above. Thus we have reached the
equilibrium point.

The main purpose of this paper is to develop the computational procedure that accom-
panies the geometrical picture we have just studied. To this end we shall explain what
kind of "movement along an edge" we should adopt for the rigorous mathematical re-
presentation. In other words we shall define the "canonical parametrization" of edges
depending, however, on what kind of movement along an edge we have in mind. For,
(speaking in Y) according to whether we leave a polyhedron K. (i.e. delete a label

i € Hy ;) or whether we leave a subface of Y (i.e. delete an index j € Hy, {;) there are

two ways of departing from a vertex in order to move along an edge. Similarly, there
are two ways of arriving at a vertex after having travelled along an edge. This yields for
different types of a journey and the "canonical parametrization" of this journey along
an edge must be chosen accordingly. The appropriate choice is then reflected by the
"appropriate" definition of the two tableaus corresponding to a pair of edges, each one
located in a simplex X or Y respectively.

The development of our presentation is intended as follows. In Section 1 we will again
mention the four ways of travelling along an edge (the detailed discussion has been
performed already in [8]). We shall then extensively discuss the case which is most
typical for the modified LH—-algorithm. The other three cases will not be treated in
detail. Hence, Section 2 is devoted to developing the "canonical parametrization" for
"case 1a" and for explaining the introductory data of the tableau corresponding to a
vertex. In Section 3 we define the tableau (actually a pair of tableaus) and introduce
the well known rectangle procedure (which — though in structure resembling the one
used in linear programming procedures — is quite different in its detailed appearance).
We then prove that the rectangle rule, applied to the tableaus, accompanies the journey
between two edges; again the proof is being presented in detail for just one particular




case while the other cases are being treated superficially. Section 4 is then intended to
collect the pieces: we present a detailed instruction for using the algorithm. That is,
given the matrices A and B, it is explained how to set up the initial tableaus and
perform the necessary steps in order to reach a final tableau. This eventually yields a
pair of vectors constituting an equilibrium point of the game I'= (X, Y, A, B). Finally,
in Section 5, for the sake of completeness, we add a computer program that actually
performs the necessary computations. The program has been written in APL and was
running on the IBM 6150 RT computer (IBM 6150 is a trademark of International
Business Machines Cooperations). However, it can be implemented on any personal
computer endowed with APL.

Let us finish this section by introducing the necessary notational conventions.

The matrices A and B are fixed throughout our presentation. In order to avoid indices
(coordinates) m+1, n+1, we put

I={1,.,mo}=1IU/{o}

J={1,..n,*}=3U{*}
and similarly for TCI, UCJ

T=TVU{o}, U=0UU {*}.

Next, vectors x € R™ are also repeated as functions x : I — R, thus we denote the restric-
tion of x onto T C I by X this is of course to be identified with the vector

4§ : .
xp = (X;);ep €R™- For convenience we write

X —=X = X

such that for z = (x,....x_,A) € RL we have e.g.
zp:I-T—R
z_p = (Xt -
Frequently singletons {i} CI and their elements are identified, thus

X =X and x_; = o e (xl’""xi—l’xi+1""’xm)

for x € R™. In this context, "+" is used for "U" in case of a disjoint union, e.g.,




~30.~

T+i=TU{i} (fori¢ T CI)
T +o-iy=(TU{d}) - {i;} (forij €T CI)

etc.

The disjoint union of subsets of I, say, is accompanied by the formation of a "direct
sum" of functions (vectors) defined on these subsets.

Eg,if ", T"CI, "NT" =0, and 2’ : T — R, 2" : T" — R, then z = 2’ ® 2" denotes
the function on T = T° + T" (= T’ U T") defined by

z: T+ T" =R
z,=2(ieT), z = zf (1€T")
or (less precise in notation) the vector

=0 s")

An analogous notation is employed for matrices. E.g., matrix A can be seen as a
mapping A : I x J =R and for T CI, U CJ we denote by A}I.I the restriction on T x U -

which is represented by the matrix

r = b leesai- -

Similarly

i T( f___:__f \
\

We write A := A%, ; however, the i'~th row of A is A;. and the j~th column is A,

thus
A, = AJ iy = AJ

but Ai is avoided.



o 1 E

Next let e = (1,...,1) (used for e € R™ and e €R"). Write

and

e «mt-0

Thus,a:IxJ—nﬂtandiinETQIgIandUngJ,thenitisseenthat

U J—U U
(K.E . =0y, o =0

is represented by

I asaldl...
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SECTION 2

. The Canonical Parametrization

Let us focus our interest on the motion which the modified LH-algorithm performs in
Y. Basically, there are 4 types of "transitions" that occur when algorithmic procedure
leaves a vertex, moves along an edge and reaches the next vertex — geometrically
speaking. These four transitions can be classified according to whether a subface of Y is
being left (reached) or a polyhedron K, is being left (reached) upon departure (arrival).

Again, the details are explained in [ 9], Ch.1, SEC.1, hence, for our present purpose we
illustrate the four types of transitions for the case that A and B are 3 x 3 matrices by
Figure 2.

Here, Hy 7 = {y} CY denotes the "departure" vertex while the "arrival" vertex varies

accordingly, e.g., in case 1a) we have H’i‘,fJ = {y} = HT_i0 U etc.

Let us first start out with an extensive discussion of case 1a). We shall define a certain
version of a parametrization of the edge Hp; 5 joining y and y, called the "canonical"
i 0!

one. This will suggest (at least partially) the form of the corresponding "tableau" and
the way the tableau changes when the algorithm switches from y to §y.

To this end, let us now fix an extreme point or vertex

YQHT,U={ﬂ
such that |T| > 2and |T| + |U| = n; put
X e A, y (i€T)

and define, for some fixed i) € T

—-U ~U U
Lpy, = =) eV am agl, w=0}.
Then we have
Lemma 2.1:

1. LEEi is a linear subspace of RU « R with dimension 1.
0

2. OV p#0forall p=(yv) €LrD. with7#0.
. § =%




=18 =

la)

< —>
~<>—->i

1b)

TU — T-i+1 oMl (—Y]1={er|yjl=01

2 a)

Y, =ly «Yly, =0) TU — T-l, U+

2b)

T.HU — Tesh -1

N e
T,u_* Tvu-lo+ji

Fig. 2
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Proof:

Follows immediately since the game is nondegenerate.

Definition 2.2:

Forij € T let

i s 1
P‘ro = (’70, VO) ELT_I_J_iO
be defined by the requirement that

i

(1) oV a0 =1

10
holds true.

Let us observe that the quantities of generic types y = (7,v), as considered so far, can
be naturally extended to vectors of R* x R by adding zero coordinates for all i € U. More
precisely
—U
LT40°OU9RH”R

i
is as well a linear subspace of R™ x R with dimension 1 and m 0o OU is a distinctive

element of this subspace.

Accordingly,
&0 + (L‘T‘Ein ®Op)

i
is an affine subspace of R x R with distinctive elements (y,}) and (3,X) + (1 0o Op):

In view of Definition 2.2, we have obviously

0
(2) Op(7.%) = [5 eR’
1
3) OGN+ @000y =|1]i,  enT

r Al
=Or O =O O
J




i =

If we consider the projection of R® x R onto R", then the situation may be viewed by
Fig.3 — assuming that A and B have 3 columns. Also, Fig.3 represents the case in which
y has positive coordinates — hence U = .

Direction of
parametrisation
(i.e., increasing O)

Simplex Y

positive}:"-Orthant

!

i

?‘°=Proiggnﬁio

-U
Pm}iR“ LT—lo

HT,LI

(with U=¢

hence no" @ OU notation”
necessary)

Fig. 3
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Definition 2.3:

The canonical parametrization of (y,)) + (LEH1 ® Oyy) is the mapping

0

0~ GN -0 0 0p)

(4)
R—R"xR.

We write (y A ) (y,A) - 0 (p ® Oyy) for 0 €R. (Actually, an additional index i ig

would be appropriate but will be omitted for the sake of not overburdening our
notation.)

Theorem 2.4:

Let 6 — (ya, ,\9) be the canonical parametrization described in Definition 2.3.

i
1. Thereis @ 0 > 0 such that

H —{9|0<9<'6i0}
T-ig,U = ¥ =2
)
2. 0" is explicitly computed by

i § _i
i AU 0

i 2-A &
ieT .. ">

90=min

1 1
Vo
¥, i
A - jEUC,7j0>0
4
c iO
3. ForiET—anndi’ET +i0,0< § < 0" we have

Ayl =205a, 40

4.y =:yis thesecond vertex (apart from y) adjacent to the edge Hr, v
0!



-

Note that in statement 2 the minimizer decides as to whether case 1a) or case 1b) is
prevailing. Le., if the arg min is some i € T and

i ALY
50 _ 1
1 3
e
11'

then we are dealing with case 1a), etc.

Proof of Theorem 2.4:
In view of our previous construction the affine one-dimensional subspace of

= 2

which is parametrized by
0—y? (9em)

contains the edge HT-iO,U' In particular, for ¢ = 0 we have yo =yE€ HT,U' In view of
Jy o g
the definition property (1) of ¥~ = (& -, v ) we have clearly

i i
=1 o
Aio' (7 e0y)=v"+1

Also, exploring the — sign in the canonical representation, we come up with
g ault
ALY = G-0G"e0y)
_10
=3-0(; . (7" e 0y))

(5) =T 513

=a0_g<nf=n yf
whenever ¢ > 0 and i € T4

0 This implies

y%xio (6> 0)
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Hence, for sufficiently small § > 0 it turns out that y9 € HT—-i U and yg ¢ HT U
0’ ]

By a compactness argument, statements 1., 3., and 4. of our theorem follow at once; it
remains to show 2.

Now, clearly ya €Hy s for all 4 that satisfy
_]0,

] N
(6) y 20,A, y <X, (i€T9),
i
and 09 is the smallest 6 that violates one of conditions (6), i.e., the smallest @ violating
either

e _ig
c —iO
for some j with jEU™, 'yj > 0, or
— g
(8) A, (y-0(7r" +0y)) <A-0v

i.e.

i i
=0_,-U=0 =
I e
for some i€ 'I‘-i0 withv = < Ai B
Obviously, the @ we are looking for is the one given by 2., q.e.d.

So far our presentation has just been dealing with the "departure vertex", which, in
cases 1a) and 1b) is obtained by sacrificing a condition "y € KiO", i.e., by leaving Ki[]‘

Now, let us turn to the "arrival", that is, as we want to treat case 1a), the entrance

into some new Ki .
1

In other words, let us consider the situation in which there is i1 eT® satisfying

i Ay & (7))
(9) Ve — =
l—}O_Ai-I]..I;}-’O a;lll #0
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This means that the vertex adjacent to Hrp_ (apart from y) is
—10,U
i
0
0
" Y=Ho. .
T g+, U
)
Let us write y := y

Suppose now that, for i{J € T—-i0 + il, we want to perform the same procedure as pre-

viously, yielding the "canonical parametrization" of HT——i U This way we

e
obtain the vector

1

~0 . =U

it EL WE
T10-+-11 10’

which, given y, is defined by a requirement analogously to (1), i.e., by

i
(10) a£30=1.

Define a quantity
i i
(11) e0.=—aV 0.

| 5!

Then it turns out that this quantity may be used to establish a direct relation between

1 1
m 0 and i 0 25 follows:
Corollary 2.5:
i
Let i) € T satisfy (9) and suppose that fi 0¢ I‘-'I'-Eio i1 is given via (10). Then

(using (11)) we have

o

i i
(12) ﬁ°=§°__.1_ﬁ°forf0¢il

el

and
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i o
(13) pr=-f.
0
G
1
Proof:

i
By definition of 1 0 we have

i 0] .. Ted
T, = R 2
0 b |
hence
0 0
i ' ' %
U 2N 0 e 0 k|
(14) S EWTRE G o €R :
o= u —1i -C. —i
11 ] 11 1
0 0
0 0
. 'Oq
1 ; g
a8 B o
Ted $i. 1. 10
07 L w0 :
ci 1 i—ll
1 0
0]

3 ,
L:jct;r j— Ei— satisfies the defining properties of /i 1 _ which proves (13).
=0
l1

Similarly, consider now the case i o ti;- We have

G0 f 8
i : : T-ig+i,—i
U -0 0 0 B W
(15) Oy Mt BB R =y £h

0 oc¥ 70 = .

1 1

0 0

0 G




i .

Next, the canonical parametrization at y with respect to i 0 (which is an element of T!)

i
yields the quantity u 0, which is uniquely defined by the requirement that it satisfies

o)
i 2
(16) o’ & 0 ERY .
1 1—i0
0
0]
Thus
0 0
¥ : : 2 T, +1,-1
(17) 0@ 0: 0 i _ (]‘ R 010
—i i, -1 1 1
01 0 a—U—O : -0 ;
= i —i -C. —i
11 1 11 1
0 0
0 0

Multiplying (15) with the appropriate factor and subtracting the result from (17), we
come up with

|
<y

10 1
(18) a‘;—loﬂ

i 0

EO) =0€R

el

s
r—nor—lc

Moreover, using (16) and Definition 2.2, we find

1
U -0 C‘O
oG - ( ——v—#)
0 co
1
1
Eio 1
=0 ‘o
!




A o

i

-0
Iy 4y ds
Concluding, we realize that (18) and (19) show u Ui —— & to satisfy the conditions
=0
C.
'
iy
defining i1 ~ uniquely; this indeed verifies (12), q.e.d.

Corollary 2.6:

For i1 € TC let

(20) 8 =-0 (yN)=-A y+7X.
1 1

|

Then, for j, € U°

q i
. i 1 =
(21) A

and
-
(22) X=X-—70.
Oy
1
Proof:

Indeed, since

i . c_i
20— - ptaml A 50
1

we can use (9) and (4) in order to obtain

-

is 3 i

- —0 -

7=7-9G UOU)=Y—";—“(’YO°OU)-
=

Let us pause for some reflection.
The development as presented so far describes the transition from the vertex y to the
adjacent vertex y (assuming we consider case la, that is (T, U) — (T-iy+iy, U)). For-
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mulae (12) and (13), with some good will, may be interpreted as an analogue to the well
known "rectangle rule" of linear programming.

Indeed, in order to compute § by means of y we need certain quantities 7, ¢ , © .

Moreover, in order to compute the next adjacent vertex, we have to start with y and
use the corresponding quantities, say 7 , ¢, and © . Hence, we have to find a computa-

tional rule for the transition of these quantities. To this end, we focus on corollary 2.5
which indeed presents a version of the rectangle rule for a transformation of 4 to ji. This
transformation in turn depends on the quantities c: as indicated by the result of Corol-
lary 2.5. This means that we have to establish the rectangle rule for the quantities ¢
and © as well. It seems advisable to combine all necessary quantities in what is usually
called the "tableau" assigned to the vertex y. This tableau should at least contain quan-
tities y, v, ¢, ©.

There is, however, a further obstacle: So far we have only discussed case (1a). There are
four other cases which conceivably would yield additional quantities to be represented
in our tableau to be constructed. At this instant, therefore, we prefer to present the
tableau without further motivation. Rather, the quantities that will appear shall be
justified by further computation and transformational arguments following in the next
sections.
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SECTION 3
The Tableau

The peculiar pattern of the LH-algorithm as presented in SECTION 1 asks for a slight-
ly more complicated version of the tableau attached to a certain vertex {y} = Hp - It

should be noted that we still are discussing the situation in Y only. There is obviously a
similar tableau attached to any vertex in the corresponding simplex X.

The tableau to be presented below, contains 6 different regions, four of them correspon-
ding to the defining subsets T and U and their complements respectively. According to
what kind of transition (corresponding to the cases 1a) to 2b)) is necessary, the "rect-
angle rule" will switch the coefficients depending on the positions in the various regions
of the tableau. Ideally, in order to compute the transition formula (that is to verify the
"rectangle rule"), we would have to consider the behavior of each of the coefficients in
the 6 regions depending on four possible cases of transition; that is, we would have to
perform 24 computational procedures. To proceed with this task explicitly would put
some strain on the reader and is not actually necessary in all instances. We will hence
concentrate on a few dominant computational procedures and leave the remaining ones

to the reader.

Definition 3.1:

Let Hp iy = {y} CY be a vertex in Y. The tableau corresponding to y is the mapping
T-: (T°U U x(TUTU {*}) =R

defined by Tl-r(s,r) =T, (s €T x U, 1 €T x U x {*}) where T is the m x(n+1)-

matrix
1 U {¥)
o Jo "
T |
C | |
T | |
ge o Lo SR R adge s s aeg L ] S, —
g Tlt .‘—‘:h 9,
| |
| |
[ |
C | |
U I |
T TR LN o el e o 0 Ly -
h /% 8y, Yy
| |




R

The entries of the matrix are defined as follows.
The last column contains

(2) O=-0_1(yX) =A_py+2xe_g
(see Corollary 2.6) and the vector }"_U (i.e. the positive coordinates of y). Next, 7: is

i i

1
obtained via % = (7°, 7 %) e’V (i

i) € T) and the requirement that

(cf. Lemma 2.1 and Definition 2.2).
Similarly, c: is obtained by inspecting (11) in SEC.2, that is

i i
(4) e?=-opulert™

Finally, the quantities d: and §: have not been motivated as yet, the formal definition is
given as follows.

o _J- B o z
For j, € U vectors EJO eR U and p Vo (FJO, 00) eR*V are defined by the require-
ment that

j g

ad
holds true. By non—degeneracy, p 0 is indeed well defined (this is in fact the normal
paradigm of changing the base in the L.P.—case). Accordingly, we define for Jo €U, the

vector E[JO e T by

o i
(6) Ay g
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Remark 3.2:
There is no harm in visualizing T? by T — however, with respect to a matrix the order

ing of rows and columns sometimes is important — thus, in a rigorous representation,
TS’— is actually an equivalence class of matrices — to be obtained by permuting rows and

columns of T (including the "row and column indices").

Given the definition of "the tableau" for Hp U= {7}, let us turn to the rectangle rule,

which is a mapping of transforming general tableaus.

FixUCJand T CI.
Let T be a mapping (the "(T,U)-tableau")

T:(T°UU% % (TUU)—R

and let 1. €7, 1, Eb=T

0-"71
Let

and let T denote a mapping ((T,U)-tableau)

T:(T°UU%« (PUU)—R.

The "rectangle rule" (for (ig, il)) is a mapping that sends (T,U)-tableaus into (T,U)-

tableaus, say

{1} = {1}
0'1

%

as indicated by the familiar figure -
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T U *
iy
1
c e
? ‘1--.“j_.r__ﬁ______
I y
T L ;
B= :
=1
UC :’r: ............. 6
bl
T :
T U *
1
: |
i o N e
S 28 g
& 9
ﬁi,i o = :
0'1 e E
= :QZ
¢ 2L . .
M |l'al 0 a
=
[ 1

Of course, application of this kind of rectangle rule will correspond to a transfer in case
la)
H

— H H:

T,U " T +iy,U = “T,U
If we have to deal with a transfer
Heu—Bes uip =0

(corresponding to case 1b)), then there is a corresponding & . . Here, % . T=Tis
U 01

a mapping as indicated via
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¥ | U
io ¥
i [ |
T (|
:7: .............. 5
R
| | 3
g S v
__'i.....J__.......:_._-__..
v e g ]
P
i _[.:TA
i e
c EZE 6 By
) T S i R =
TC :a: L 5 1
B :
_______ SRS G W A
10 11 E
'1C 1 &} o
¢ L Fl-~daa JeL -2 grine
1=+

The ordering of rows and columns is, of course, arbitrary — which is why a "tableau"
perhaps is better thought of as a "mapping". The fact that we have four kinds of tran-
sitions — and hence four kind of tableaus — must be taken care of extensively while
implementing the algorithm.

Theorem 3.3:

Let HT,U = {y} CY be a vertex in Y and let iy €T, | T| > 2. Suppose, ¥ is the vertex
adjacent to HT—iO,U other than y and assume that {y} = HT_i0 H,U Then the corre-

sponding tableaus satisfy

(7) TYizz R o T=
Y Iol1 ¥

Proof:

We have to compute the transition for 6 types of entries in 'I‘? and T§ :
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Let us first concentrate on "the block U® x T" of ‘I‘;, the transitions should be

7—o—g forjl,io

F—6-81  forj, 14,

The entries of ’I‘; are

i i

_ =0 _=0
Y a=g
i i
=0 -0
B=¢. §=1u.
1 5|

i
Ei"
g:-—-—l
(s} 1
EiU
1
2o
g g 1y
6-—-@1:‘_}. —_.—l—
2 i “h.lp
&
1

As for row ip consult Corollary 2.5. Clearly, (13) in SEC.2 tells us that — g is indeed

the (j;,i;) entry of Tj‘r while (12), SEC.2 indicates that § - gl is the (j;,i) entry of T)}

(in "the block U® x U").

The remaining computations, though sometimes tedious, are a mere formalism. By
virtue of our considerations in SEC.2 we know that the tableau entries of T-}; determine

y. Now, as the entries of some T are defined formally by (1)...(6), we just have to

verify the rectangle rule via the definitions (1)...(6).



o 3

To this end, fix i, € P, il € T Also, denote the entries of T? witha °, e.g., i, p,... etc.

the same notation has been employed in SEC.2.

First of all, let us take the block U® x U, i.e., consider p = (6, o).

j .
As p° (for j, € U = 1) is defined via

u.do_ Jo
(8) Og" b~ =04
we compute _
j

U o dig g

(9) 0" (p ~ 3 L)
Y
1

the coordinates i € T of (9) are given by

N 4
orU-jo+i1jo iy P i
j T o j
o= w
£
[ ; B s —OITUEj'O
o, Wo 1 ¢
o." + . -0 1'01'1#11
i G('U_lo ‘
AT
1
1
B —CJ(.'UEJO ;
5 1 1 1
A (PR o RS SR, L fori=i
i, 0 a_U_lo 1 1
B
1
1
e azjo

that is, the coordinates are those of the right hand side of (8). Thus, the term in paren-

thesis of (9) must be the left hand side of (8) — this takes care of the :—entries in the
block U® x U.

i i L e i S it ey e b L b B T i ik e




.

Next, the y_—entries, i.e. the block U® x {*}, are obviously taken care of by Corollary

2.6, i.e., by formula (20) of SEC.2.

We proceed with the c:—entries in the T® x T block, using the fact that the rectangle
rule has already been established for y vs. .. Hence, using the definition as provided in
(4), we proceed as follows: First, for all iO #ig

i i
ed= -4 by (4)
1 1
1 1
i
2 c.0
1 1 1
(10) = -G @ -9
=1
%
1

=i
1, M, o
¢ —T1-6 for i, #i, (by (4))
1 =971
4
1
cio
'1 s
[ T for i, =i, (by (3))
c.O
B
Similarly, for io =i,
i i
éil _ _ai—U s 1
1 1



w0 e

(11) _
ci0
i o
—:—i-a fOI‘ll#lO
C.
11
1 o
§ :i—o— for i, =i,
i
1

Obviously, (10) and (11) establish the rectangle rule for the T®

in block T x U; we have by (6)

) = Tlo
-0 g "1
d.” = a,. =0 " (p "-—pu)
| o'y 4% -510
1
S
3 cigﬂio
(12) - glo Tl
1 =4
o
1
3o
d;
ke for i, =i
1 1770
&
1

using (6), (4), (3), and (5).

by (4)

by (3)

x T block. As for the d:

f0r11¢i0

Finally, the ® in blocks T® x {*} are transformed by using (2), thus, for i, #ig:
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0. =-0. (3,2
| o
8
_ U 1-0
(13) =8 +0C b (by Corollary 2.6)
1 1" o
¢
1
i
8z
=8, -1 (by (4))
1 2o
|
and for il = iO:
e{ =-0 L (i}’ i)
1
v IT111 U o
:_U(j i (.Y: I) +Ta; y ¥
0 U
 BESEESR LY 51
(14) 0 (by Corollary 2.6)
¢}
1o
= (by (3)) g.e.d.
-0
4
1

The further development is rather straight forward. There are four kinds of possible
transitions HT L H'i‘ il when passing from one vertex to an adjacent one via some

edge. To each of these transitions, there corresponds a rectangle rule — we have explicit-
ly indicated two of them. Now we have

Theorem 3.4:

Let HT,U = {y} and H’i‘,ﬁ = {§} be adjacent vertices. Suppose, T§ is the tableau

corresponding to y. Then Tj} is obtained by the rectangle rule (i.e., the one correspon-

ding to HT,U — HT,U)
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Proof:

We should discuss briefly all four cases 1a) — 2b). Now, 1a) has already been dealt with.
As for 1b) we return to the presentation exhibited in 2.4 and 2.5; here we have to re-
place formula (9) in SEC.2 by

7
1
(15) 70 = it

thus assuming that a transition

Hpy— HT—iO,U+jl

i
0
takes place. Again we compute y = y

In doing so, we realize that the quantities of the tableau 'ri,— are sufficient in order to

perform all necessary computations. Hence, it suffices to again check the rectangle rule
(.% , that is) for case 1b). This amounts to joggling around the quantities specified

by formulae (2) — (6). As the details are to be perceived by walking the way parallel to
the one that led to the treatment of 1a), we shall not offer a further discussion.

As to cases 2), we abbreviate the discussion — in principle we have to introduce another
canonical parametrization. Consider the vertex

{y} =1

and let X = A, y (i€T). Pick jo € U; it follows from nondegeneracy that

(16) L%O it {p =(6,0) h o, | a;(U“j")

(6,0) = 0}

is a linear subspace of RV R of dimension 1.

Again in view of nondegeneracy it is clear that equation (16), i.e

O‘T l,]L}U —-‘0
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_J
defines the vector p 0 uniquely and the mapping

I
(17) 0= FN-0(" 8 0y_;)
0

R—R" xR

defines the canonical parametrization of the affine subspace
— ] O—U
A+ Ly e OU_jO)-

Of course, the projection
— '0
0—y 2}"0@) 9OU_jO)

also parametrizes an affine subspace of R"; this latter one contains Hp U (and

~io
Hp U)' Thus, the analogue of Theorem 2.4 is given by:

(18) There is _010 > 0 such that

0 Jo
HT,U-—j0= {y 10co¢07},

(19) PJO is explicitly computed by

From this vantage point the reader now views the scene that has so extensively been
discribed in case 1. We will leave him there to his own efforts — if necessary.

q.e.d.
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As to this section, our final task is to shortly consider the initial tableau. This turns out
to be of a nice and simple shape.

Theorem 3.5: _

o
Let jy€Jandy=¢ ' = (0,..,0,1,0,...,0) €Y.
Suppose iO €I is such that

4. . = Immnmaxa.. .
o iel Y1

J
Then {e 1} = Hp y with T = {ig} and U = J - {j, } is a vertex in Y and the corre-

sponding tableau is given by T i which is indicated by the following matrix
e _

T U
i0 j *
-1
i —1 e ai e, .« nrivn o 3. [}
(20) b :‘ ’
4 g
U ; '
i 01 cleesl |1
Here
21 - T R
and _
J - = 2 5 1
(22) d; = % aij1 + ainl a’ioj (ieT, jeU)
Proof:

]
Clearly, {e 1} = Hr {5 is a vertex. Note that

holds true. All we have to do is verifying the entries of the matrix using formulae (2) -

(6)-
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In view of (2) we have .
h

E’l = -A_. =3a. . —3a..

L =%-A, e 33031 a.l_]1

which shows (21). Next, exploit (5) in order to obtain

Po= gy o

-1
3 . =1 % s
_| 'oh ] [ ‘01]
i 1
0 1 a
L[
-1 gy 1
=l 8:c——8 -
(’a‘oll a‘ol)

The first coordinate of Ej is 3':% , which equals 1.

Next, (6) leads to
3 oV 5l
i ij =3

and thus (22).

The remaining computations, easy as they are, will not be carried out explicitly.
q.e.d.
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SECTION 4
Implementing the Algorithm

Suppose that, starting out from some vertex {y} = Hrp yy; we have "left K, " (i0 €T),
: 0

hence a transition takes places along the edge Hp, U and case 1a) or 1b) will prevail.
0)

From Theorem 4 of SEC.2 and the following presentation we know, that this depends

1
essentially on the minimizing argument that yields @ o in 2.4.2. Clearly, the quantities
competing for this minimizer are basically available in the tableau T; . For, in solving

the definition presented by formulae (2) and (4) of SEC.4 into 2.4.2 it turns out that we
have to look for the minimizer that yields the expression

¢} i v. i
min[ —;—|ieT°,EiO>oJ /\ min1 —;‘—ljeUc,ﬁj0>0}
= -0

Ci ’)'j

Verbally, this means that we take the quotients of column * and column i0 of T= "co-

ordinatewise" and look for the minimizing row. According to whether this yields some
i, € T or some j, € UC, we end up with 1a) or 1b) respectively. Note that the quotient
i 1

minimizing row is unique by non—degeneracy.
It is not hard to prove the generalization of this.

Theorem 4.1:

Let {y} = HT,U be a vertex in Y with tableau 'I‘S;. Denote the last column of T; by
T 4 (= (6, ?_U)). Let HT’,U’ be an adjacent edge (so T’ = T—p, or U’ = U—p) and let
Tei be the p’th column of T? Next, let o be a row of T§ (i.e. o € T or o € U°) such
that

T % T %
(1) al i {_z__
T 1

7, #0, 0’ € {rows of T=}
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Then the following holds true:
1. o is uniquely determined
2, {7y} = H‘i‘,fJ with T=T"+0¢
or U = U’ + o (chosen appropriately) is the vertex other than y that is
adjacent to HT’,U”
3. To= %, T

Proof:

Obvious.

Finally, we have to ponder about the terminating condition. To this end, consider the
version of the LH-Algorithm discussed in [9], CH.1, SEC.1, Theorem 1.14, which is
based on the set

o ={xeX [ x>0 yeK (i€l)

yj>0 xGLj(jEJ-n)}

Geometrically, this means that the starting vertex in Y is e™ and that the first Hyp s

some H, . Now, obviously the process terminates once either n is added to the

O,J—n
indices in U as to constitute HT U with n € U or n is removed from R such that GR v

b b
satisfies n £ R.

In any case, the algorithm terminates once index n appears afresh the first time. If we
complete the rectangle rule, then the equilibrium coordinates can be simply read from
the tableau as they are listed in the last row. Concluding, the implementing procedure
for the modified LH-algorithm is described as follows:

Given Matrices A and B, perform the following steps

STEP INITIALIZE:
1. Choose n, € J arbitrarily.
2. Choose iD €1 such that
(2) o 7 Wl ke

o i Mo
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3. Choose i0 € J such that

(3) b, . =maxb,

Tolo o

iy
If j, = ny, then STOP. (e U, e 0) is a (pure) equilibrium point. Otherwise, set up

STEP INITIAL TABLEAUS

The initial tableau arising from matrix A is uniquely described by formulae (20), (22),
(23).

s O
This defines T—)-; withy=e ".
The initial tableau arising from matrix B is obtained by exchanging BT and A,Jand ],
n and m etc. That is, we have

I,
jg ] u|
4) I 55 i ®.
() JJO 1 - ‘J 5
sl
iy 0 |1 S CRRES | 1
Here
= T i
. =bt. — bt
(5) & g Yo
mhy ok
Todo 1o
and
=i T T T i i
4 =h . =% ey e
(6) J le Jlo+ b.lolo .]01
R I T L G
ij 7 Vigh T Pigig Yo

Having thus established the initial tableaus, CONTINUE with the algorithm.




L

STEP CONTINUE
Having obtained the information j[] from the B-tableau, determine i (or jl) as to be
the minimizer of the (well defined) quotients of column * and column jo in the A

tableau, i.e.,

Tk T_o%
min < £
O-'.l

o io T 7y

Traditionally, o is called the "pivot". Apply the rectangle rule, say ‘%j ;. to the
01

A-tableau. CONTINUFE with the B-side.

Generally, the information contained in an index p ("the pivot") from the previous side
determines a column in the tableau of the present side. The minimizer o of the
quotients of the last column and column p is the next pivot. It determines the rectangle
rule ‘%pa to be applied to the present tableau. Also, the pivot o is the information to be

used at the next step with the tableau of the other side.

As far as the pivot satisfies o # ng €J, CONTINUE with this step; otherwise move to
TERMINATE.

STEP TERMINATE

If the pivot satisfies ¢ = n, €J, the algorithm STOPS (after the last '%pl'l has been
0

performed).

The A-tableau as depicted in (1) of SEC.3 contains the positive coordinates j € U of ,

i.e., the vector -;’:-U =Y_, in "the block U® x {*}". Correspondingly, the B tableau
U

contains some Xx ¢ in the corresponding block. Augmenting these quantities by an
A%
appropriate string of zero’s yields an equilibrium point (x,y).



Program LH :

Choose
Vertex

Strategies

Inittab

Switch TAB1

Switch TAB2
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START

INPUT
A, B, NO

Determine initial
Strategy Y using
NO, X as best reply
to Y and Y as best
reply to X. This
yields 10,J0.

NO=J0 ?

N

Construct
Initial Tableaus
TAB1 TAB2

JOf;;;\?\\—N

; 4

get new JO

J0eRWY 2 DN

Y

[ CHANGE TAB 1
get new JO

+{D
\

Get X,Y

END

Compute X,Y

X, Y

STOP




Subprogram Inittab :

START

H&T ID Jo, ///

Tranpose MAT

F ¥
T
1

-1 ¢ SEC 3,(20)
* SEC 4, (4) J-HAT.jo

TAB = | -
0|1 ------------ 1| 1
1 t
R={10};V={M+1, .. M+N}\{M+J0} T={I0+N};U={1,...,N}\{00}
compute RC and V¢ compute T¢ and UC
ROW=RclUVc ; COL=RUV ROW=Tcuc ; COL=TUU

0 COL 0

O TAB

RETURN
TAB

STOP



e, . K.

Subprogram Switchtab :

The Subprogram is divided into two subprograms:

1. for given column (COL) compute the row for the pivot element.
2. change the Tableau.

START

, IMLUT
Next row: / Forg i /
|

= Comment: T is the tableau
<? s TAB) without 1. row and
1. column
MIN = I,H/Tl,col
I =2; ROW =1
\}_g
(R - TI,M/TI,COL) [T=TT]
MIN > R? !
Find pivot element
and its index in T N <F = MIN; ROW = I)
J

Rectangle:

(I = ROW; a = TI,COL)

substitute in T: Comment : Apply Rectangle Rule
P R W e e ~
ﬂ“arﬁ"’af?_a T = 6 ? 6

o e 7 7

is4 - ) 10

(“Bul,l . TABl,COLH)

1
AB:[ 0 TAB,
™. 1
[

RETURN TAB,J0O

T
STOP




il

o R-A LH B;M;N;C;NO;X;Y;I0;LAY;JO;LAX;TAB1;TAB2;R0W;COL;ZEA;ZEB

[1] M-(pA)[1] R Get dimension of A.

[2]  Ne(ph)[2]

[3] CHOOSEVERTEX: A Select a start strategy for player 1 or 2.
(4] Select a column for player 2 out of 1,...,",3N

[5] or for player 1 out of ° ($N+1), youny oOM+N

[6] NO-0 o C-0 A lead input to NO.C:O means player 2.

[7]  -+("NOe1N+M)/CHOOSEVERTEX A Is input correct ?

[8] +(NOKN) /STRATEGIES A Is player 1 selected ?

[9] TRANSPOSE:A Then change roles of player 1 and 2,

[10] C-BA o A-EB o B~C A transpose matrices and

[11] C-N o N-K o M-C A exchange N and N.

[12] NO-NO-M o C-1 A (=1 means player 1 was selected.

[13] STRATEGIES: n NO, I0, JO are the indices of 1 in strategies
[14] X+-Mp0 o Y-Np0 A Y ,X,Y .Find 10, JO, such that

[15] I0~A[;NO]LAY~r/A[;NO] A X is best reply to Y

(16] X[IO0O]~Y[NO]+-1 A and Y ist best reply to X.

[17]  JO-B[I0;]1LAX-I/B[I0;] R If JO=NO, meaning Y=Y then (X,Y)

[18] -+(JO=NO)/END R is an EqP with payoff (LAX,LAY).Then STOP.
[19] INITTABLEAUS:A Else construct the initial tableaus for

[20] TAB1-A INITTAB IO,NO,LAY,0 R player 1

[21] TAB2-B INITTAB JO,IO0,LAX,1 A and player 2 (1 means transpose B).

[22] SWITCHTAB1: A JO was the number of the last used row.

[23]  +(N<COL~—1+TAB1[1;]1J0)/GETXY A If there is a corresponding column in TAB1
[24] ROVW-TAB1 NEXTROV COL A then find the row index of the pivot element
[25] TAB1~(ROVW,COL)RECTANGLE TAB1 A in TAB1 to change TAB1. RECTANGLE claculates the
[26] SWITCHTAB2: A new JO (global in CHANGE) for TAB2. If there
[27]  -+(M<COL-—1+TAB2[1;]1J0)/GETXY R is no corresponding column to JO, an EqP
[28]  ROW-TAB2 NEXTROW COL A has been reached.

[29]  TAB2~(ROV,COL)RECTANGLE TAB2 A If TAB2 was changed correctly

[30] -SWITCHTAB1 A then concider TAB1 again.

[31] GETXY: R Calculate strategies X and Y from

[32] X+Mp0 nm the last columns of TAB1 and TAB2.

(33]  X[((ZEB>N)/ZEB)-N]~((ZEB-14TAB2[;1])>N)/1.TAB2[; ¥+2]

[34]  YeNpO

[35]  Y[((0<ZEA)AZEACN)/ZEA]+((0<ZEA)~(ZEA-1LTAB1[;1])<N) /11 TABL [;N+2]

[36] END: n If player 1 was selected, Y,X is the

[37] +(C=0)/ANSWER o C-X o X+Y o Y-C A result, else X,Y.

[38] ANSVER "BEquilibrium point found with strategles : ',(%X)," for player 1°
[39] ', (8Y)," for player 2°

[40] ReX,Y

-

o ROV-TAB NEXTROW COL;TA;R;MIN;N

[1] ¥+ (pTAB) [2] o ROW-0 A If no pivot element can be found return 0.
[2]  +(0=v/TA-OCT<1lTAB[;COL+1])/END A  Eleminate zeros in COL column,

(3]  R~(TA/11TAB[;M])+TA/1iTAB[;COL+1] A divide M+l column by COL column and

[4] -((L/08)=MIN-L/(R>0) /R)/END A find the smallest value, if it exists,

[5] ROW-(TA\R)MIN A and its index.

[6] END: A Return pivot row.
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< R-MAT INITTAB PARAM;I0;JO0;LAMBDA;VW;DELTA;GAMMA;C;D;TETA;Y;ROW;COL;V;U;N; M
[1] 10-PARAM[1] o JO~PARAM[2] o LAMBDA-PARAM[3] o W-PARAM[4] o -+(W=0)/M1
[2] A PARAM contains I0, JO, the no. of pos. coordinates in strategies of players 1 and 2,
[3] A resp, the payoff for this strategy from matrix MAT and boolean variable W that
[4] A indicates, whether the matrix MAT has to be transposed (W=1).
(5] MAT-EHAT
[6] M1:M-(pMAT)[1] o N~(pMAT)[2] RMAT is an M~N matrix.

[7]  VeMpl o V[I0]+0 A Take the invers strategies to reduce the matrix.

[8]  U-Npl o U[J0]-0

[9] C-((M-1),1)p 1A Now calculate the components of the tableau :-------
[10]  D-NAT[I0;J0]+(U/V/MAT)-(Q((N-1),M-1)pV/MAT[;J0])+( (M-1),N-1)pU/MAT[IO;] A |
[11] TETA-LAMBDA-V/MAT[;J0] A  ( « d teta) |
[12] GAMMA-0 A (gamma  delta y) |
[13] DELTA~(1,N-1)pl A }
[14] Y-l n |
[15] R~(C,D,TETA),[1]GAMMA,DELTA,YRand order them to the tableau -----c-cccccceacaaoo
[16] -+(W=0)/M2 A Calculate the column and row vectors for player 1 or 2:
[17]  ROW-((x(10-1)),10L1M),J0+X A RC={1,..,M}\{I0} VC={J0+N}

[18]  COL-I0,M+(1(J0-1)),J0L1N A R ={I0} V ={M+1,.. MNP\ {JO+H}

[19] M3

[20] N2:ROW-(N+(1(10-1)),I041K),JORTC={N+1,.. ,N+U}\{N+I0} UC={J0}

[21]  COL-(N+I0), (1(J0-1)),J04N A T ={N+I0} U ={1,..,N})\{J0}

[22] M3:R-(0,C0L,0),[1]ROV,R

b4

o NTAB-PIVOT RECTANGLE TAB;M;N;ROV;COL;RO;CO;PI;J1
[1] M-"1+(pTAB) [1] o N-"1+(pTAB)[2] A Get the dimension of the tableau
[2] ROW-PIVOT[1] o COL-PIVOT[2] A and the index of the pivot element.

[3] NTAB-1 1lTAB n Tableau without row and column vector.
[4] RO-Mp1 o RO[ROV]+0 R Take all rows, exept the pivot row,
[5] C0-Np1 o CO[COL]+~0 A all columns, exept the pivot column.

[6]  NTAB-RO\CO\ (NTAB-CO/RO/NTAB)- ( (RO/NTAB[; ,COL])+.=(CO/NTAB[ ,ROW;]))+PI-NTAB [ROV;COL]
[7] NTAB[;COL]~-1iTAB[;C0L+1]<PI R  Calculate the outer elements (see line 6),

[8] NTAB[ROV;]+~11TAB[ROW+1;]+PI A the pivot column (see line 7) and pivot row.

[9] NTAB[ROV;COL]~1+PI A Replace the pivot element.

[10]  J1+-TAB[1;COL+1] o JO~TAB[ROV+1;1]ATake row and column (global JO),

[11]  NTAB-TAB[1;],[1] (1iTAB[;1]),NTABA copy old row and column vectors to new

[12]  NTAB[ROW+1;1]+J1 A tableau and exchange row and column.

[13]  NTAB[1;C0L+1]+J0 R JO will be used by LH.
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