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Abstract

We consider a repeated price setting game with firms facing increasing marginal costs
and positive fixed costs. Besides setting prices, firms may decide to be not active,
which is different from selling nothing in this model. Since it is well known that
there is no Nash-equilibrium in pure strategies in the stage game, we look for pure
strategy equilibria in the repeated game and give a full characterization of all stationary

symmetric equilibrium outcomes, sustained by optimal penal codes (in pure strategies).
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1 Introduction

Bertrand~Edgeworth Competition has attracted much attention during the last
decades, this is above all due to the nonexistence of equilibria in pure strategies, apart
from special examples. Much work has been done on proving existence of and char-
acterizing equilibria in mixed strategies. For this issue see above all the works of
LEVITHAN-SHUBIK [12], BECKMAN [5], ALLEN-HELLWIG [4,3], DASGUPTA-MASKIN
[7,8] and MASKIN [13] and Dixon [9].

In this paper, we investigate the repeated price game with firms facing a very commonly
used cost function. We assume the firms to have positive fixed costs and increasing
marginal costs. We apply ABREU’s pathbreaking developments on repeated games with
discounting, that is, we look for equilibria in pure strategies, which exhibit optimal
penal codes in pure strategies, also, if a firm happened to deviate from the original
path. LAMBSON [11] developed optimal penal codes for price setting supergames with
firms facing constant marginal costs and capacity constraints, but no fixed costs, for a
broad class of rationing rules. We simplify on the demand side in this paper, assuming
identical consumers with unit demand. By having fixed costs a firm may earn negative
profits if it faces no demand. Hence we let the firms not only to choose among prices but
also allow them to be not active, which always guarantees them a profit of zero. For cach
oligopoly size and for an arbitrary discount factor we give a complete characterization
of all stationary symmertic equilibrium outcomes in pure strategies, that is, also during
the punishment phase firms choose prices rather than distributions on prices. Since
we assume that firms produce to order, the value a firm can be held down to depends
heavily on the oligopoly size. Let m be the efficient number of firms, that is, that
number a social planner would choose in order to minimize average costs. We will see
that for n > m a firm can always be held down to zero, whereas for n < m it can
guarantee itself a positive profit which 1s the higher, the smaller is the number of firms
in the oligopoly. We will see further that the equilibrium conditions imply upper and
lower bounds for stationary equilibrium prices. The lower bound is strictly greater
than the avarage cost, that is, if an equilibriumn exists, firms earn positive profits. The
upper bound, on the other hand, may be strictly smaller than the monopoly price if
the number of firms is high. This stands in contrast to repeated Bertrand games with
constant marginal costs with and without capacity constraints.

The paper is organized as follows. In section 2 we set up the model with a brief
consideration of the one shot game. Section 3 deals with the repeated game. In section 4
we apply our results to quadratic cost functions. In this case we can calculate the upper
and lower bounds for stationary equilibrium prices. In section 5 we briefly discuss



asymmetric stationary and nonstationary equilibrium outcomes. Most of the proofs
are given in the appendix. We close with some concluding remarks in section 6.

2 The Static Game

2.1 The Model

We consider a market for a homogeneous commodity supplied by n > 1 identical firms
and demanded by a continuum of identical consumers represented by the closed interval
[0,1]. The technology of a typical firm is given by the (total) cost function

e(q) = F + v(q) (2.1)

with v(0) = 0,v' > 0,%” > 0, where ¢ > 0 denotes the quantity produced, and F' > 0
is the fixed cost, v > 0 is the variable cost function, which exhibits increasing marginal

cost.

The preferences of a typical consumer are given by her demand function

d(p) = { 1 forp<L (2.2)

0 otherwise

where p > 0 denotes the price to be paid for the commodity, and L > 0 the consumer’s

reservalion price.

The market game is played as follows: each firm { announces a price pi at which it is
willing to sell a certain quantity. In this case its profit is given by

pigi — c(g;) = pigi —v(q;) - F (2.3)

where ¢; is the quantity sold by firm : (which will be determined precisely below).
Clearly, it will not be profitable to charge a price above the reservation price L, so that
we need only consider prices in the closed interval [0, L] ¢ IR. If a firm’s price is too
high it may happen that its demand is zero and it will produce nothing. In this case
its profit equals —F, Hence, each firm has the option to be not active (n.a.), which
yields it a profit of zero. A typical firm’s strategy space can thus be written as

Si:={0,L}U{na.},

where s; = p; € [0, L] means tha,t firm 7 is active and charges price p;, and s; = n.a.

means that firm ¢ is not active. The joint strategy space is written S := [, S:.



Notice that if there are no positive fixed costs, producing nothing would yield zero
profits. So the difference between activity and non—activity vanishes in that case, and
the extension of the strategy space by the element "n.a.” would not be necessary.

The quantity sold by firm 7 is determined as follows. The firms announce a price and
produce to order. That is, they produce as much as they can sell. At price p they are
not willing to produce more than v'~!(p), since otherwise marginal cost exceeds the
price. Thus v'~!(p) can be considered as the self imposed capacity constraint at price
p. All the customers are perfectly informed about the prices charged by the various
firms and try to buy from the cheapest firm(s). If there are several cheapest firms they
split up equally among these. First all customers place their orders with the cheapest
firm(s). These orders are fullfilled, until the cheapest firm(s)’ capacity is exhausted.
The remaining (unserved) customers now place their orders with the next cheapest
firm(s) (again splitting up equally, if there are several). This procedure is repeated until
either all the customers are served or all firms are exhausted. The rationing scheme!
induced by this mechanism is formalised as follows: Assume (w.l.o.g. by symmetry)
that the firms ¢ = 1,..., N are active (0 < N < n) charging prices p,,..., pn, and the
remaining firms N + 1,...,n are not active. We write the strategy n-tupel with N

active firms as
. =N
8= (581,...,8p) = (P15..., PNy NA.,...,0.2.) =: ]
n-N
Then the residual demand faced by firm 7 is?

ma'x{l - Zj:pj(pe v’_l(pj)a 0}

D; = - . 2.4
P = G et M m=p) (24
The quantity actually sold by firm 7 is
A=2NY _ o fzN -1

¢ (FV) = min{D; (F") ,v (m)}- (2.5)
For an action vector 8 = (s1,...,$.) the profit of firm 7 is given by

Lo feNY — A NYY .

B P
0 for s; = n.a.

This defines an n-player game G with strategy spaces S; = [0,L] U {n.a.} and
payoft functions #; given by (2.6). If we wish to single out player i, we write
s = (8i,8-4) where S_i = (S1y+-+48i~1,8i+1,-.-,5s). The defintion of a Nash

equilibrium is obvious:

1By the simple demand structure this rationing scheme coincides with efficient rationing as well as

with proportional ratioming.
24 A is the cardinality of the set A,



Definition 2.1 s* = (s},...,s}) is called ¢ Nash equilibrium of G if Vi = 1,...,n,
Vs;€[0,L]U{n.a.}:

7i(s™) = mi(si, 82
Let AC(q) = 1(‘1);—"? be the average cost of producing ¢ units of the commodity. Since
v > 0, AC has a unique minimum and we can define the ”competitive price” by

P = mqinAC(q) , (2.7)
(i.e. minimum average cost). The competitive output is defined by
g := AC7(p.).
Define m := _-. For technical simplicity we make

Assumption 1 m € 7.

Assumption 2
L!l—u(l) ~F>0

n n

This assumption claims that the number of firms is small enough such that the firms
can all profitably operate in the market at some price, possibly the monopoly price,
which is equal to the reservation price in our model. We do not require the number of
firms to be equal to m, the efficient number of firms, a social planner would install in

order to minimize total costs.

It is sometimes argued that m would be the natural number of firms if free entry is
admitted. This reasoning is actually flawed (see also Section 2.2 on the Salop-Stiglitz—
model). In [14] we convert Assumption 2, that is, we try to endogenize the number
of active firms in a suitable supergame, whereas here we take the number of firms as
exogenously given.

Note that Assumption 2 implies L > p..

For simplicity we further assume
Assumption 3 v"Y(L) < 1.

Assumption 3 claims that the market is large enough such that a single firm’s self

imposed capacity constaint at the monopoly price is not greater than the whole market.?

Unless explicitly stated otherwise, Assumptions 1 — 3 will be maintained throughout

this paper.

*This is not a serious restriction but avoids tedious distinctions of several cases in the repeated

game.



Proposition 2.1 If n-v'"'(L) < 1, the oligopoly game G has a unique equilibrium
p*=(L,...,L).

Proof: Obvious. Since each firm produces at its capacity bound, charging a lower
price than L yields a lower profit. Q.E.D.

Proposition 2.2 Ifn-v'""}(L) > 1, the oligopoly game G’ has no equilibrium (in pure
strategies).

Proof: The proof is simple and well known. There can be no symmetric equilibrium.
For, suppose that all the firms face excess capacity, it will pay for any firm to undercut
its competitors. If all the firms exhaust their self imposed capacity constraints, a
possible equilibrium price must be smaller than L by presupposition. Hence it will pay
to charge a higher price, say L.

At an asymmetric price configuration, there must be at least one firm which exhausts
its capacity by Assumption 3. Such a firm can always increase its profit by raising its
price slightly. Q.E.D.

2.2 The Bertrand-Edgeworth—Problem in a Model with Im-
perfect Information (the Salop—Stiglitz—Model)

It is not difficult to extend the arguments of Proposition 2.2 to the Salop-Stiglitz-model
[16] (see also [6,17]). In their model the customers are not automatically informed about
the price-seller—correspondence. All they know is the distribution of the prices. There
are two types of customers each of them having differently high cost to purchase the
price-seller—correspondence. SALOP and STIGLITZ and also WILDE [17] get four cases,
dependent on the ratio of “high-cost” and “low-cost—customers”: no equilibrium at all,
a single price equilibrium at the monopoly price and two kinds of two-price—equilibria.
One of the two price equilibria is of the form: g percent of the firms charge p. and
(1 — B) percent of the firms charge L. In this case, the “high-cost-customers’ ”
c, is greater than (1 — 8)(L — pc)-

cost

The other two-price—equilibrium has the form: # percent of the firms charge p. and
(1 — ) percent of the firms charge a price p, < L. In the latter case, the “high—cost-
customers’ " cost ¢ is equal to (1 — #)(L — p.). They are now indifferent between
purchasing the price-seller—correspondence or selecting randomly. It is assumed that
they will do the latter. In equilibrium SALOP & STIGLITZ and also WILDE require
that all the firms make zero profits (neglecting integer problems). Due to the U-shaped



average cost curve, at the competitive price, each firm produces a unique amount of
output, the competitive output. But this means that each firm has monopolistic power
on the customers it serves. Thus, any of the firms which charge the competitive price
has an incentive to deviate by charging a higher price, exploiting also the perfectly
informed customers who will not be served by the remaining firms at price p.. In the
first type of two—price—equilibrium, the deviating firm can charge L — ¢, in the second
type, it can charge ps — €, still capturing all of the unserved informed customers plis
an equal share of the uninformed ones (ar equal share with respect to the remaining
firms which are not sold out). So, the equilibria SALOP & STIGLITZ claim to get, are
not really Nash—equilibria.

3 The Repeated Market Game

Since there is no pure strategy equilibrium in the one shot game apart from special ex-
amples, we are now interested in the question whether there is a stationary equilibrium

in pure strategies in the repeated game with an infinite time horizon.

3.1 The Model

All the assumptions about firms and consumers hold in each period: each customer
demands exactly one unit of the homogenous commodity in every period up to the
reservation price L. The commodity is not durable. The customers are always perfectly
informed about the prices in each period, they try to place their orders always with the
cheapest firms and split up equally if there are several and they do not become biased

towards certain firms.

We denote by s(t) the action vector of period ¢, If s* = {s(t)}2, € ? := §° is an
action path, the whole payoff of firm 7 over all infinitely many periods is given by

oo
vi(s®) =D 6'mi(s (b)) - (3.1)
t=1
Some more notations are needed: if p* is a price, we write p* = (p%,...,p") and

(pﬁp‘—i) = (P*v e 1ptapi,P.s e ’P‘)-
11 n—¢

The highest profit that can be earned at price p (that is, at which price equals marginal
cost) is denoted by

w(p) =p- v (p) —v(v"(p) - F .



Note that under Assumption 3

sup 7(p;, p=;) = 7*(p) ,
pi<p*

this is the upper bound for profits a firm can earn by undercutting a symmetric price
outcome p*.

The following lemmata and definitions are needed.

Lemma 3.1 #*(p) is strictly increasing in p and %—g—(p) = v""(p).

d?
Lemma 3.2 &5:(p) = W’ll(ﬁi > 0.

Lemma 3.3 Let S] = [0, L] Vi € I (there is no option to be inactive for a moment).
IfL > (%) (which is satisfied under Assumption 3),

i) there is a unique p° € S! such that

7 (L,7%) = sup m; (pi, % (3.2)
pi<p®
i)

max 7; (‘p;, p_'i,-) exists
PiES]

1 1
=1 (1L 0 -1
v (n) sp<v (n—l)

)

Proofs: See the appendix.

Lemma 3.3 claims that there is a price p° such that the best response against %, is to
charge the monopoly price. Actually player ¢ is (almost) indifferent between charging

the monopoly price and undercutting p° slightly.

Definition 3.1 Define the punishment action p™" by the solution of (8.2) in p°.

Lemma 3.4 Forall p_; € 5., = [0, L]*"! we have

sup #; (pg,@) < sup 1 (Pi,P—s’)
Pi€S! Pi€S]

Lemma 3.4 claims that a firm cannot be held down lower than sup,, . S:(p;,ﬁ) by any

other (n — 1)-vector of prices p_;.



Definition 3.2 A symmetric vector 5 = (p,...,p) is called a (symmetric) stationary

equilibrium outcome (st.e.0.) if each firm charges p in every period of the game, and
there is a subgame perfect equilibrium strategy o supporting this outcome.

We can now give a characterization of the set of all stationary symmetric equilibrium

outcomes for the nontrivial case L > p.. Notice that in this case uT,l(-L—) < m.

Theorem 3.1 Assume L > p..
a) Ifn>m, P is asteo. iff

. 1
™ (p) < w(P) (3-3)
1-6
b) va,_}-ﬁ<n<_1m,ﬁisast.e.o. iff
=" (p) + : ™ () < — (B) 3.4
¢) If n < 1—, there is a unique st.e.o. 5=(L,...,L).

v'=1(L)’

We will sketch the proof below. A formal proof is given in the appendix.

The theorem gives us a full characterization for all stationary equilibrium prices which
can be supported by a subgame perfect equilibrium in pure strategies for an arbitrary
discount factor 0 < § < 1. In case c), the trivial case, we have a kind of monopolistic
oligopoly without tacit collusion. The monopolistic outcome is merely due to the self
imposed capacity constraints, thus there is no difference to the one shot game (cf.
Prop. 2.1).

For the other cases we would like to get an upper and a lower bound for symmetric
stationary equilibrium prices (st.e.p.’s). By the non-linearity of the equations (3.3)
and (3.4) in p, however, we cannot in general solve for p. Indeed, (3.3) and (3.4) each
do yield an upper and a lower bound for the equilibrium prices, or there is no solution
at all. To see this, observe that =* is convex in p by Lemma 3.2, whereas the R.H.S.’s
of (3.3) and (3.4) are linear in p. The second term on the L.H.S. of (3.4) is independent
of p. Moreover, the derivative of #* is not bounded. This implies that there must be an
upper bound for the st.e.p.’s, if there is a price p satisfying (3.3) or (3.4}, respectively.
On the other hand 7*(p.) = 0, and =* (p**) > 0 for n £ m by Lemma 3.3 iii). But
7(P;) < 0. This implies a lower bound for st.e.p.’s which is not less than p,.

Unequality (3.3) states simply that the profit earned by undercutting once must be
smaller than the sum of profits earned when never deviating from p. In particular,
this means that after deviating a firm can be always held down to zero by a subgame

8



perfect equilibrium strategy. But this is only so if n is greater than mm. For in this
case, n— 1 firms have enough capacity to serve the whole market even at prices slightly

below the minimum average cost p..

For n € m, this is different. Here a firm can only be held down to 7* (p**°) > 0 rather
than to zero. Hence, on the L.H.S. of (3.4), we have the profit earned by undercutting
p, the equilibrium price, plus the discounted sum of profits by undercutting p*" forever
(more precisely we have suprema of those profits).

It follows from Theorem 3.1 that for all equilibrium prices p, p 2 AC (%) must hold,
otherwise a firm could leave the market, which guarantees it a profit of zero. Indeed,
to show p > AC (%) is part of the proof.

We will write for short:

wi(p) := x{(p) := miL,P=3)

= L-max{0, 1 — (n =)o (p)} — v (max{0, 1 = (n = o' *(p)}) — F

That is, 7%(p) is the profit earned by exploiting the residual demand, if there is any,
not being satisfied by the n — 1 firms which charge p. Theorem 3.1 also implies that

for any stationary equilibrium price p we have:

w(p) < 7*(p) (3.5)

This implies that, if undercutting does not pay, charging a higher price does not pay,

either. This is a consequence of the following Lemma:
Lemma 3.5 Prices not greater than p™® cannot be stationary equilibrium prices.
Proof: See the appendix.
Corollary 3.1 For any st.e.p. we have
L *
= (p) <="(p) -

Proof: If p is a st.e.p., it follows from Lemma 3.5 that p > p™*. By definition of
" we have % (po*") = #* (p"). By its definition wL is not increasing in p, whereas
7* is increasing in p by Lemma 3.1. Hence, nl(p) < x%(p™") = =* (p>) < 7*(p).
Q.E.D.

The following result guarantees nonnegative profits for prices satisfying (3.3).

Lemma 3.6 Let n > m. If p satisfies (3.3), then p > AC (%)



0 v~ (L)
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oligopoly libria outcomes

Figure 1: Etristence of equilibria depending on oligopoly size.

Proof: Assume p < AC (i) This is the same as 7(p) < 0. Case a) p > p., then

7*(p) > 0 > n(p) > {Lz7(P), contradicting (3.3). Case b) p = p,, = x*(p) = 0. But

< 0, contradicting (3.3). Case c) p < p., = =*(p) > =(p) >
——

<0

since n > m, #(p;)
= 7(P), a contradiction. Q.E.D.
Lemma 3.7 Let n < m. If p satisfies (3.4), then p > AC (;1;)

Proof: By Lemma 3.5, p > p™". By Lemma 3.3 iii), p>~ > v’(%). But for n < m,
v (1) > AC (1). Hence p > AC (1). Q.E.D.

As we saw, the equilibrium conditions (3.3) and (3.4) give upper and lower bounds
for the st.e.p.’s. The motivation to establish the theory of supergames mainly was to
explain cooperative outcomes, better called tacit collusion, as equilibrium outcomes of
noncooperative games. Hence, we should above all be interested in the upper bounds
for st.e.p.’s, that is, the outcomes of tacit collusion. These upper bounds are given by

min {L, max {p | m*(p) < q iéw(ﬁ)}} forn >m

and

min {L, max {p Fr*(p) < I —1—6 [(p) — 67r'(p"““)]}} forn<m.

But also the lower bounds for the st.e.p.’s are of some interest. If we take the lower

bound as a function of n (neglecting that n is an integer, for a moment), its intersection
with the upper bound for st.e.p.’s determines the region of the oligopoly size n for which
proper collusive stationary equilibrium outcomes are possible. This is illustrated in

Figure 1) and in the example below (see also figures 2 and 3).

Notice that there may be even a gap for oligopoly sizes having a st.e.p.. This gap may
arize between the monopolistic oligopoly size and the collusive size, since a st.e.p. p
has to be strictly greater than v’ (%)
To prove Theorem 3.1 we employ simple optimal penal codes developed by ABREU [1,2]
and extended to price setting games with (constant) capacity constraints by LAMBSON

10



(11]. The idea is to charge the punishment price p*** (defined in Def. 3.1) during a
number of periods at the beginning of the penal code. The penal code "ends” by
returning to the highest possible equilibrium price p* forever. An intermediate price
p', with p™ < p! < p*, will be charged for exactly one period after charging p**, and
before returning to p* in order to exactly achieve the level a player can be held down

to.

4 An Example (Quadratic Cost Functions)

Let
a
Clg) = qu - F

F.o.c.’s yield
2F
v p) = P . hence p.=V2Fa, ¢ =1 —
a a

2
"(p) = 2= B) = pr — % _
T)=55-F, mP=p —g7-F

Consider first the case n > m. Substituting these expressions in (3.3) yields

PS g |+ VA= (0= 8)(@n)]

and

o T ;
> —|1 = —{1 - 2
The argument of the square root is not negative iff

1 1
< -
P46 Jioo

The smallest upper bound for the oligopoly size which still has an equilibrium depends

additionally on L. This bound is given by

i al aq.\? 1
< 1+ 61— ( ) , .
n_mm{L2(1—6)+6a2q§[ +\] [ L ]J \/l—ém}
The first term in brackets is achieved by the intersection of p(n) =
S [1 - \/6 l-(1- 5)(qcn)2]] and p = L. Notice that for § — 1, \/%sm goes
to infinity, whereas the first term in brackets converges to # [1 +/1 - %7 ] But

n < ELF [1 +4/1—- 2—5—}] is equivalent to L > AC (;’1—) Similarly, the lower bound

for p converges to AC (%) In other words, all ”strictly” individually rational prices

11



(p > AC (%)) of a symmetric outcome are stationary equilibrium prices, if § is suf-
ficiently close to one, which is consistent with the folk theorem (cf. FUDENBERG,
MASKIN:86 [10]).

Next let n < m. For the punishment price we get:

P = (1 (n—1)2 4 1)- [(a ~ L)(n—1) +/I%(n — 1) + a(2L — a)]

Observe that for large values of L

pun,-u____l___,a_ o e _ aln-1) - 1
P “(n—1)2+1[( Ln—-1)+L-(n 1)]"(n—l)?+1"“‘n—1‘”(n—l)‘

(3.4) yields

P j&)n 6[1_(1_6) (n;;)?]

T _"6)” \5[1—(1*5) (n 'f"")jd

Since p™* > v’ (%) we have p" > £, Hence the lower bond for prices is greater than

. [1 - El-a-o (et} ]| - 2 = v (3).

Figures 2 and 3 show several shapes of the sets of st.e.p.’s depending on the oligopoly

fu—y
+
"

and

p>

size.

5 Asymmetric and Nonstationary Equilibrium

Outcomes

There are also asymmetric stationary equilibria. But there is no stationary equilibrium
with some firms being inactive as the following proposition shows,

Proposition 5.1 If s = (s1,...,8,) is a st.e.o., then Vi € I s5; # n.a..

Proof: Suppose s = (s1,...,3,) is a st.e.o. with s; = n.a. for some z.

Case a) s; = p. or s; = n.a. Vj # i. This means, that no firm makes positive profits.
Since firms have to make nonnegative profits in equilibrium #{i | s; # n.a.} = m. But
then it pays for any firm & with s; # n.a. to raise the price for at least one period and
to leave the market afterwards. This yields positive profits, a contradiction.

12



Figure 2: The vertical lines represent the equilibrium region for a qudratic cost function.
In this ezample, where relatively high marginal costs are taken, the upper bound for

prices is given by the reservation price.

D

T (p) + 57" () = 1L 7(P)
/ ) 1-4 1-46 .

NN | )70 =15
|
S LT ey
Pe
m ﬂfo {3

Figure 3: The equilibrium region for lower marginal costs. In this case, the upper bound

for prices decreascs in n from ng on.
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Case b) There is exactly one firm j with s; = p; > p.. If this firms makes positive
profits, it will pay for firm ¢ to undercut p; and to leave the market thereafter (hit-and-
run). If firm j makes zero profit, some other firms must be active by Assumption 3.
For one of these it pays to raise the price up to p; — ¢ for one period. Keeping its own
market share and getting at least some of j’s demand it makes a positive profit for at
least one period. Leaving the market after this period, firm j cannot get punished, a

contradiction,

Case c) There are at least two firms j, k with p;, px > p.. If Pi = Dk, it pays for firm ¢
to enter the market and to undercut p; = pi. If, say p; < pi, firm j must exhaust its
capacity, if firm k does not make losses. But then it pays for firm i to hit-and-run by
undercutting p;, a contradiction again. Q.E.D.

The intuition behind this proposition is simply that collusive outcomes are jeopardized
by hit-and-run of inactive forms. Competitive outcomes, on the other hand, cannot
last since some firms may exploit their monopoly power on a market share which cannot
be served by the remaining firms. Notice also that for stationary outcomes with some
firms being inactive the most important qualifier of FUDENBERG and MASKIN’s folk
theorem {10] on repeated games with discounting is violated: this outcome is not in

the interior of the set of individually rational outcomes.

There are asymmetric stationary equilibria with all the firms being active. If § =
(P1,---,Ps), with (w.lo.g) pr < ... < p, and p; < piyy for some i < n, is a st.e.o.,
only the firms with the highest profits can have excess capacity. Such an equilibrium
outcome is Pareto optimal (with respect to the firms) if and only if the highest price
Pn equals L and there are no unserved consumers left. For, raising the price of firm :
with p; < p, lowers demand and profits for firm n.

Pareto optimal stationary equilibrium outcomes may not be Pareto optimal among all
equilibrium outcomes if n > m. In this case it would be optimal to let exactly m firms
to be active in each period. To avoid hit-and-run, however, each firm has to become

active infinitely often.

We call (p,m) a quasi-symmetric, quasi-stationary equilibrium outcome if and only if
in each period exactly m firms are active and charge the same price p.

Proposition 5.2 Letn = k-m, k € N, k > 2, and assume there is a price p, satisfying
(8.8). Then (L,m) is a quasi-symmetric, quasi-stationary equilibrium outcome only if
5k—1

(L) £

<77 611'(L) (5.6)

Proof: If in each period exactly m firms are active, at least one firm has to wait for at
least k£ —1 period until it is its turn to become active. If a firm deviates, the same penal
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code as used in the proof of Theorem 3.1 will be employed. This means in particular,

all the firms will become active after any deviation. Q.E.D.
If there is no integer k¥ with n = k - m, the factor i:_;; has to be substituted by

a more complicated one requiring some combinatorial considerations. Since one can
doubt the empirical relevance of this kind of collusive paths, where firms become active
periodically, we think it is not worth to elaborate this point further.

6 Concluding Remarks

We analysed a repeated price game with firms facing a U-shaped average cost curve,
and gave a complete characterization of all stationary equilibrium outcomes in pure
strategies. It is well known that in many games players can be held down to a lower
level when mixed strategies are allowed. Few has been done to construct optimal penal
codes in mixed strategies. Also ABREU [1,2] and LAMBSON [11] only employ pure
strategies. A good reason for not considering optimal penal codes in mixed strategies
is that one had to assume that not only outcomes but also the distribution functions
of mixed strategies can be perfectly monitored by the other players, which seems to
be not very plausible. Notice, however, that in our model for n > m, mixed strategies
cannot help to punish a player more severely, since a firm can guarantee itself zero
by leaving the maket forever, regardless of what the other players do. For the case
n < m an optimal penal code in mixed strategies could possibly yield a lower payoff
than $7*(p*") after deviation.

Since our attention was mainly directed on the issue of increasing marginal costs and
since we use the same demand structure a companion paper [14] we assumned "box-
demand” for simplicity in this paper. Price supergames with increasing marginal costs
and a more general demand function and differnt rationing rules also deserve attention.

Although we charactrized the equilibrium region for different numbers of firms, we took
this number as exogenously given in the current paper. In [14] we relax Assumption 2
and assume the contrary. That is, we assume that therc are always some firms which
threaten to enter the market, making the market contestable. Assuming this, unfor-
tunately there will no stationary equilibrium in pure strategies in the purely repeated
game. If we introduce an entry cost, however, we get stationary equilibria. This makes
the game a time dependent supergame rather than a purly repeated game. In such a
game penal codes turn out to be more complicated and dependent on the history, in
the sense that for the same player different penal codes my be started depending on
what kind of deviation has happened.

4
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A further assumption that can be called into question is that firms produce to order
after prices have been set. Relaxing this assumption one had to enlarge the strategy
space by also introducing quantities as a further dimension. This has been done for
instance by MASKIN [13] when he investigated mixed strategies in the one shot game.
Doing this also in a repeated game raises similar conceptual problems as when allowing
for mixed strategies. To get optimal penal codes firms had to produce something in
excess on a punishment path in order to prevent a firm to deviate to a higher price.
However, there is a temptation to deviate by producing not in excess since excess
production will not be sold if no one deviates during the punishment. To assume
perfect monitoring of stocks does not seem to be very plausible here. We have to
relegate these problems to further research.

A Appendix

In the following we often write 7 instead of =; if statements hold for all 2.

A.1 Proofs of the Lemmata

Proof of Lemma 3.1: Since #°(p) = p- v""}{p) — v (v'"'(p}) — F, we get
dd";' (7)) = v +p- o7 B = () @) 7] )
= v (p)+p- [v"‘]'(p) ~p- [v"']' (»)
= v p) >0 since v’ > 0. Q.E.D.

Proof of Lemma 3.2:
]' N

4 ey _ . _1
(dp)z(P) = (U ) (p) = __U”(v’—‘(p)) >0 sincev >0, v >0 Q.E.D.

Proof of Lemma 3.3: Observe that sup,,, 7:(p},p=) = 7i(L,55) = 7L(p). On the
other hand sup,, ., mi(pl, p=) = 7*(p). Now

1
wlp)=-F Vp2o (—),

n —
since in this case n — 1 firms can serve the whole market and there is no residual
demand. On the other hand:

mt(p) > =(p) vp<v'(}),
(p) = =(p) vp<o' (L),
and ™(p) = =(p)>-F Vp> o' (2



It follows that

S <G
w w@®) @) e

Since 7’ and 7* are continuous and strictly decreasing and strictly increasing, respec-
tively, on [v’ (%) , v (;‘_—-1-)], there is a unique price p® with 7%(p%) = #*(p"). This proves

1). Since max, <, 7;(p}, P—;) does not exist, arg max, s m;(p!, p°;) = L, proving ii). iii
pl<p i aXples! i g

follows from (A.7) and (A.8). Q.E.D.

Proof of Lemma 3.4: Since 7’ and 7* are continuous and strictly decreasing and
strictly increasing, respectively, on [v’ (%) v (n’Tl)], there is obviously no symmetric

pPun

punishment vector 5=7 which is worse for player ¢ than p*, if player : plays the best

response.

It remains to show that a player cannot be held down to a lower level by using
asymmetric punishment tupels. W.l.o.g. assume player N is the deviator. Sup-
pose p; = (p1,..-,Pn-1) With p1 < po £ ... £ pyo1 and p; < piyy for some

i € {1,..., N — 2} is a more severe punishment than p™. Let d¥ Y (p1,...,pN-1) be
the demand of firm i =1,...,N —1, ifonly N — 1 firms are in the market and charge
prices py,...,pn—1. And let ¢V (py,...,pn-1) = min{o"" (@), d¥ (pr,...,pn-1)}-
Let k := max{j | ¢; = v"~!(p;)} be the greatest index of a firm that produces at full
capacity. Further let g := max{j € {1,...,N =1} | &Y (p1,...,pn-1) > 0}, be the
greatest index of a firm that has still positive demand.

Case a): k = g, p, < p**. Then ¢R(L,p-;) = qx(L,p%7), and hence, mi(L,5-;) >

7i(L, pfY'), a contradiction.

Case b): k =g, p, > p*. Then #*(p,) > #*(p*") and firm N can get almost 7*(p,)

by untercutting firm g, a contradiction.

Case c): k < g, p; £ p*". Then

g N-1 L
1= Z%N-I(Pl,---,PN-l) <> q;'-v“(pf’_“i“) =(N-1)- v Yp™) <1
i=1

=1
by Lemma 3.3.iii), which is not possible.

Case d): k < g, pr > p™". Undercutting py would yield 7*(p¢) > 7*(p**"), a contra-

diction.

Case e): k < g, px < pP* < p,. In this case we get

Yo dV M p, . pvar) <O,

j=PJ=Pg
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otherwise firm N could earn a higher profit than #*(p**") by undercutting p, slightly.
But this leads to

k k

L= 0" )+ 30 di7 ey apnar) < 207 + 0

i= ipy=pg i=1

< (N -1 (™) <1
a contradiction.

Proof of Lemma 3.5: For n > m we have p™*° < v'~! (;—‘_—1-) <ol (%) = p.. Hence
for all p < p**" we get 7(p) < #(P) < 0. Therefore, exit is more "profitable” than

charging p forever.

For n < m we show that

1
=7 (7P™) > =7 (p)

w(p
For p < p™ we know that 7%(p) > wL(p‘““’) = 7*(p**"). Hence, for p < p™*

1
1-6

wHp)+ ) 2 ) > T (P 2 T () -

Q.E.D.

A.2 Proof of Theorem 3.1

We call a strategy generated by n + 1 paths ¢°,q!,...,q" with ¢* € = 5% a simple
strategy profile if ¢° is the initial path and ¢' is the path that will be started if player
has deviated singly in the last period of some path ¢/, 7 € {0,1,...,n}4 7 : S > R
is the single period payoff function for player i and if ¢ = {c(‘r)},,_o € 1 we write

v(c,t) = E(ST‘H‘, (t+ 7))

r=0

vi{c) = wvi(c,0)

ABREU demonstrated in [2] that a simple strategy profile is subgame perfect if and

only if
viel VYje{0,1,...,n} Vr=>20 Vs € S\{g(r)}

i, .i(7)) + Suilg’) < wild, ) (A9)

In words, a single deviation from any path at any period must not pay.

4If the reader is not familiar with strategies defined by simple penal codes, she/he is relegated to
Abreu:86,88 or Requate’d0a,b.
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Sufficiency

Before constructing an optimal penal code some preparations are needed. For each
n > m for which there is p’ which satisfies (3.3) we define

p* = p*(n) = min{L , max{p | p satisfies (3.3)}} (A.10)
For each n < m for which there is p” which satisfies (3.4) we define
p* = p"(n) = min{L , max{p | p satisfies (3.4)}} (A.11)

Claim1: If n >m,V0< é§ <1 3 T3 € N such that

Ty-1 0
Yo &r(F)+ Y &x(p) <0 , (A.12)
t=0 t=T6

Notice that p™" and p* depend on n. If we want to emphasize this, we will write p**=(n)
and p*(n).
Proof: Forn > m wehaven—1>m = 1 o Hence——— <q. = v ( ) < v'(q.) = pe.-

By Lemma 3.3.iii) p*** < v ( ) < p. leading to x(p*™) < 0. Since the second term
of (A.12) becomes arbitrarily small for T sufficiently large, the claim obviously holds.

Claim 2: If n <m, V0 <6 <137T; € N such that

T -1
3 62+ 3 8167) < 57 () (A.13)

t=T}

Proof: Since v’ ( ) < p*"(n) we get v'"(p™™) >
rest is obvious.

S=

. Hence n(p*™) < 7*(p*™"). The

Next define for each n
To := min{Ty | T, satisfies (A.12) if n > mor (A.13)if n <m }. (A.14)

By Lemma 3.6 and 3.7, p* > AC (%) holds for all n for which p* exists. Moreover
7 (p*) > «*(p*™") since p* is an equilibrium price. Hence Ty > 1. Further define the
”last” punishment action (price) p' = p'(n) by

To-2

3 s + 8% (F) + 3. ' (%) < max{0, ) (A5
=0 =T

Since 7(7F) is continuous and increasing in p, there exists a price p'(n) with p***(n) <

p(n) < p*(n) satifying (A.14).
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We can now define the strategy, that is, the initial path and the penal code.
The initial path is defined by

¢(ry=(p....p) Vr20 (A.16)

For all 1 € I, we define

P for 0<r<Ty-1
g(r)=3p for r=T, (A.17)
p* for T2To+1
where p®, Ty and p' are define by (A.10), (A.11), (A.14) and (A.15).
The values of the paths are Vi € | Vr:

vi(¢g°, 1) = ; _1. 6#(;‘)) >0 by Lemmata 3.6, 3.7 ,

and additionally ¥j € {1,...,n}:

0 f n>m
ﬁr‘(p"““) if n<m

v, ) 2 vi(g’) = {

The inequality is due to the fact that the actions (prices) of the punishment paths are

nondecreasing.

To show that the strategy defined by (A.16) and (A.17) is a subgame perfect equilib-
rium, we have to check that (A.9) holds for all {,,7. To see that it does not pay to
deviate from the initial path is easy. {A.9) takes the form of (3.3) and (3.4) for under-
cutting. That it does not pay to deviate to a higher price follows from Corollary 3.1.

It remains to show that (A.9) also holds for the punishment paths:

case a) n > m.

subcase i): 0 < 7 < Ty : In this case we have ¢*(7) = p™ and (A.9) takes the form
Ti(si, p77) < vilg',7)  Vsi€S (A.18)

Since for n > m we have p™" < p., we get 7}(p*™") < 0. Hence the best response
against p™; is s; = n.a. which yields a profit of zero. On the other hand, the RHS of

(A.18) is not smaller than zero by construction.
subcase ii): 7 > Ty : In this case, (A.9) holds if

7)< g ) (A19)
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which holds by definition of p* and (3.3).
subcase iii}): 7 = T : Then (A.9) holds if

n () < m(F) + ) (A20)

To show this observe first that for p = p* = p*(n) we get by (A.19):

() - WG < g ()

Hence it suffices to show that

@) - m(@) < M) - W (A:21)

g

Now set ¢(p) := x7(p) — mi(P)- Then ¢'(p) = v'~'(p) — L. The derivative is not negative
ff v lpp2tep> (;1;) Now p'(n) > p***(n) > v/ (%) for n > m. Hence ¢ is
strictly increasing for p > p' and we get ¢(p') < ¢(p"), which establishes (A.21).

case b) n < m.

subcase i): 0 < 7 < Tp : In this case we have ¢*(r) = pP. Since #*(p™") > 0 for
n < m, (A.9) holds if

R () + g () S

Tof.s'n.- ) + &'n(F) + f §%0~1x; (%) (A.22)
t=v i=To

The LHS of (A.22) is equal to and the RHS is not smaller than llfsw‘(p”“") by con-

struction.

subcase ii): 7 > Tp : In this case we have ¢'(7) = p*. By Lemma 3.5, we know

that p* > pP**, Therefore the best response against (pZ;) is undercutting. Hence (A.9)
takes the form

é 1 —
" u .* un < s ) , ‘2
70 + T () < T ) (A2)
But this holds by (3.4) and the definition of p*.

subcase iii): 7 = T, : In this case we have ¢'(7) = p'. But then (A.9) holds if

R () + —emi) < 7 (7) + 1 ) (A21)

This holds by the same arguments as in subcase iii) of case a).
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Necessity

For n > m a firm can clearly not be held down to lower value than zero, since a firm
can guarantee itself always zero by leaving the market.

For n < m, by the Lemmata 3.3 and 3.4, a firm cannot be held down to a lower
value than #*(p™") (which is greater than zero for n < m) in each period. Hence, if
7*(p) + 157" (P"") > {A;7(P) it always pays for any firm to undercut p once and to
undercut p™* afterwards forever, that is, to put up with reimposement of punishment
in each period. Q.E.D.

Remark A.1 Notice that the penal code employed in the proof of Theorem 3.1 is in
general not unique. For n > m any price not greater than p. could be charged in the
first period of punishment. What matters is that the value of the punishment paths
equals zero and the profit of the punishment path is not greater than zero if the deviator
plays the best response. For n < m, at least the punishment action in the first period
15 unique. Afterwards any continuation path with value equal to [1/(1 — &)}z*(pr*") —
7 (P™) would do the job.
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