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0. Introduction

Subject of this paper is a model of a game with incomplete information
that has already been considered by Mertens and Zamir (1971-72)}. They
concentrated their interest on a finitely repeated game with an average
paycff function, although they already claimed analogous results to hold
for discounted payoffs. Here we shall only consider discounted payoffs
which leads us to completely different arguments. By these methods one can
circumvent the drawbacks appearing in the proof by Mertens and Zanmir
pointed out by Armbruster (1983). The so called "recursive structure" of
the game resp. the recursive formula whose motivation was not very
convincing (but whose validity was essential for the whole result) appears

in this paper as an easy consequence of the main result.



1. The Model

an infinitely repeated discounted two-person zero-sum game with incomplete

information on both sides is based on the following data:

finite sets I and J

(sets of actions for players 1 and 2)

finite sets R and §

(sets of types for player 1 and 2 resp. states of nature)
for every (r,s) € R x 8§ and I x J-matrix ats

(payoff matrices)

two I x J-matrices E and F with entries from alphabets ¢ resp. #
{signalling matrices)

a probability distribution p € 4A(Rx8) (4(RxS) denotes the set of
probabilities on RxS)

a real number A € (0,1)

{discount factor)

The game runs as follows:

At stage 0 (r,s) € RxS is selected according to p. Both players know
p but player 1 is only informed about the choice of r € R and player
2 about the choice of 5 € 8. It is not assumed that p is the product
of its marginal distributions. The knowledge of their own types

enables the players to compute a posteriori probabilities on their

opponent's types.

At each stage t € M both players choose independently parameters
lt € 1 resp. Jt e J.

Afterwards the letters E(it,jt) and F(it,jt) are announced to player

1 and player 2 respectively. They are not told the actual value

ats (it,jt) of the payoff matrix.



- Both players have perfect recall, i.e. they can use all information
they get in the course of the game up to stage t for their decision
at stage t+l.

o0
- Player 1 receives from player 2 the amount (1-a) = At_lhr's

(i_.3.)-
t=1 i o
According to the description above player 1 can make his choice of para-
meters at stage t dependent on his type r, the sequence of letters

(el,...,e ) from the alphabet ¢ he has heard and of course his own

t-1

actions (i ). In order to simplify notation let us assume that

1""'it—1
the sequence of letters already includes the information about his past
actions, i.e. E{i,j) # E{i',j') vi 21" € I; j,3' € J. Then a strategy of
player 1 consists of an infinite sequence o = (ol,az,...) of mappings

St : R x etﬂl -+ A{I) resp. stochastic kernels o, | R x ct_l = I.

With an analogous assumption a strategy of player 2 is given by a sequence

T = (71,72,...) of mappings TG S x ?t_l -+ 4(J) resp. stochastic kernels
Ty |Sx9ft_1-_-§ J.
The sets of strategies are denoted by
o0 00
E=nx Z and Tr=1m T,.
g=1 °© =1 °

Let H =1I x J. In the following the identity h =(i,j) resp. ht = (it,jt)
is always tacitly assumed. Using the strategies o = (01,02,...) and
T = (rl,rz,...) the players generate the probability distribution E?o )

on R x 38 x Hw'(endowed with the topology of rectangular subsets):

P =
Plo,ry (Tr8By--Dy)
T
pl(r,s) tfl ot(r,E(hl),... E(ht_l}:lt)

- 1 (s, F(hy), ... Flhe_ ):3,)



The payoff function (as a function on ¥ x T} is naturally defined as the

expectation of the discounted payoffs with respect to this distribution;

explicitly:
® t-1.,r,s
& lory = 1 Mmooz AT AT () arb .,
RxSxH t=1 !
00
p t-1
= E ((1-a) Z A A)
(a,7) =1 t

(5t denotes a random variable on RxSxH gt(r,s,hl,hz,...) = Ar’s(ht))

Hence, we have a noncooperative two-person zero-sum game in normal form
rA(p) = (Z,T,aﬁ). The strategy sets are compact, the payoff function is

continuous and affine in every component of o and r. Consequently it is

quasiconcave (quasiconvex) in o (r). Thus the min-max theorem guarantees

the existence of a value vh(p).



2. I - Concavity / II - Convexity

Suppose player 1 performs a "type—dependent lottery" represented by a
stochastic kernel q from his set of types R into another finite set which
won't be specified at this point, i.e. he chooses an element u according
to the probability distribution ¢{r;-} where r is his true type. An out-
sider knowing the probability p on R x 8§ and the outcome of the lottery
can compute the following posterior probability:

plr,s) q{r;u

T plrY Qi
r'eRk

Prob(r,s|u) = = cp(r) - pir,s).

The conditional probability on R x § is obtained from p by multiplying

with a number independent of s.

On the other hand if p is a convex scombination 2 &(p) py of probabili-
H

ties p“ fulfilling the above property there exists a lottery yielding the

p”'s as posteriors, namely

oo @l pMes) oo ,
g{r;u STE5) qly) cy(r) {independent of s!)

alw pH(rs)

p(r,s) =TT _
Prob(r,s |y = P E's - p' (r,s)
z plr',s') q () ?rfrs:? }
r',s' P '

The set of possible conditional probabilities after a type dependent

lottery of player 1 is denoted by

AI(p) = [p' € 4(Rx8) : 3 € RR : p'r,s) = e(r) plr,s) v s € 5§}

Analogously:

AII(D) = |p' € A(Rx8) : 3 d € RS p'(r,s) = d{s) p{r,s) v r € R}



Both sets are compact and convex. The extreme points are given by those
functions ¢,d which take the value zero for all but one argument r € R

resp. s € S.

It is now convenient to think of player 1 using such a type dependent
lottery in order to select a strategy o” e z which he is going to employ

during the whole ganme.

From the point of view of the ocutsider (or player 2 neglecting his own

type) this strategy effects that with probability &(y) the game FA(pF) is

played where player 1 employs strategy o”. of course it is impossible to
express this conduct in terms of behaviour strategies. Usually the
restriction to behaviour strategies is justified by guoting AUMANN (1964)
who establishes an equivalence between behaviour and mixed strategies in
infinite extensive games with perfect recall. But as the coming arguments
heavily depend on the feasibility of imitating the above strategy by

behaviour strategies the construction will be given explicitly.

Definition 1:
A function f : A{RxS) - R is called (strictly) concave w.r.t. I
(I-concave) iff flAI(p) is {(strictly} concave for all p € 4(RxS).

4 function £ : A{Rx8) o R is called (strictly) convex w.r.t. II

{(II-convex) iff flAI (p) is {strictly) convex for all p € 4A(RxS).
I

cav f is the smallest function g that satisfies
I

- gi{p} » £(p) v p € A{RxS)

- g 1is I-concave

vex f is the largest function ¢ that satisfies
II

-  gfp) ¢ £({p) v p € 4{RxS)}

-~ g 1is II-convex.



Proposition 1:
Let 7 € T be an arbitrary strategy of player 2. The function

f(p) = max aa {(o,7) is I-concave.
oer

Proof:
Let p € A{(Rx5}, pl, p2 € AI(p) such that g p1 + (1-q) p2 =p for some

q € (0,1).
We have to show that
£0p) > q £(p1) + (1-9) £(p?).

This is dome by giving strategy o that achieves exactly the payoff
g £0pY) + (1-D) £(p2).

Let cl, 62 € Z be optimal strategies giving the payoff f(pl) resp. f(pz).
The idea is that player 1 performs a type dependent lottery yielding the
posterior p1 with total probability a, p2 with probability (1-q) and then
makes use of the corresponding optimal strategies. (In order to prove
I-concavity two outcomes of the lottery are enough. The construction of

optimal strategies would need |R| outcomes.)

In terms of behaviour strategies his conduct can be described as follows:

Define o € Z by

oT(r,el,...,eT_l:l) =
T 2 T
- p(r,s) 1 i =, p'(r,s) 2 »
pIT, 8T tfl"t(’f"al'"""t-l'”""t””1 @) p(_r,"s'F_tflct(r'el"'et—-l’l(et”
T, .T-1 2 =1
- p (r.s) 1 . _=y p(r,s) 2 »
q ETFT_T“¥=1°t(r’e1"'et—l'l(et))+(1 q) ﬁT?TET"'tflot(r'el"'et-l’l(et))

Observe first that the condition pl, pz € AI(p) implies that the quotients

pl(r,s) pz(r,s)

ST ET and PTE 5T are independent of s, thus the strategy is well

defined and admissible for player 1. Secondly remember that the letters

announced to the players include their own choice of action. i(et) denotes

the t-th stage parameter of player 1.



Straightforward computation shows that

Consequently o produces the payoff

1 2

1 e+ 10 & hn)

& (a,7)

A

= g £0pY) + (1-) £(p?)
Corollary 2:

vA(p) ig I-concave and II-convex.

Proof:

vA is a minimum of I-concave functions.

II-convexity follows for duality reasons.



3. The NR-Game

In equilibrium it can be assumed that both players know their opponent's

strategy. In this case they also know the distribution g?o 5y S° that they

are able to compute a posteriori probabilities on their opponent's types
after each stage of the game. Let us now state explicitly, what player 2
can compute after stage 1 if he receives the signal f € ¥ his true type

being s € §.

P
P - (r]s,f}

~-{a,
pi{r.s) z ol(r:i) rl(s:j)
) i,j:F(i,3)=f
Z plr',s) z olTr’:l) TI(S:J1
r' i,j:F{i,j)=f

According to the assumption that player 2's signal f includes his own

choice of action j, there is only one j(f) e J that may lead to signal f.

plr,s) z oltr:i)

_ i:F(i,j(£) )=t

- Z plr',s) z G TE ;1)
r' i:F(i,j(f))=f

If player 1 doesn't want to give away any private information, i.e. if he
doesn't want to enable player 2 to update his posteriors, this expression

must be equal to p{(r|s) for all r e R, which is equivalent to

z o;{r:i) =z plr']s) z oj{r';i) vr eR
1:F(i,j(f))=L r' i:F(i,j(£))=f
<= z ol(r;i) = z ol(r':i) vr, r' €R

i:F{i,j{f) )=t i:F(i, j(f))=£
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Definition 2:
A first stage strategy o € 21 of player 1 is called non-revealing (NR), if

z cl(r;i) = z alr';i) vr,r' eR, viesr
i:F{i,j{f))=f i:F(1,j(f))=f

A first stage strategy 7 € Tl of player 2 is called non-revealing (NR), if

z r(s;3) = = ri{s':3) Vs, s'€8, Ve €¢
i:Ef{e(i},j)=e j:E{e(i),j)=e

The sets of NR first stage strategies are denoted by NR(I) resp. NR(II).

They are always non-enpty.

Define a payoff function on NR(I) x NR(II) by

& (o.7) = z plr.s) z olr;i) ris:j) |

r,s 1,1

(1,3}

which is exactly the first undiscounted stage payoff these strategies
would induce in rA(p). Let u(p} be the value of the game (NR(I), NR(II),

pp) {the NR-game).
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4. The Limiting Behaviour of v,

From the first the existence of a limit function linm v, is not clear. But
Al

we have

Lemma 3:

v, is Lipschitz-continuous with the same constant for all A € (0,1).

Proof:

Let pl’ p2 € 4(RxS) and let (01,71), (oz,rz) be equilibrium strategies in
rA(pl) resp. rA(pz). W.l.o.g. we can assume that vA(pl) > VA(PZ)-
1 2
VA(p ) VA(D )
= Lt - R

< aa(olfrz) ~ da(cl,rz)

- Q0
=zl - PP f w2 aTRmy) eff
r,s H t=1 (o7, 717)
L4 upl - pzn S .|
M= max [a7'5(i,3)| o
i,j.r.s
The set of functions {v}l : A € {0,1)} 1is equicontinucus and uniformly

bounded, so we can assume the existence of a uniformly convergent sub-

sequence. Let (A_) be a sequence with A_ € (0,1) vyn A, - 1 and the
n nelN n n

corresponding seguence (VA ) of value functions may converge to v.

n

ne

, . n
We can also presume the existence of converging sequences G, =0 = 21,

M are v, of optimal first stage strategies in r

1 1 A (P)-

n
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Proposition 4:
If v is strictly I-concave at p, then o is NR.

If v is strictly II-convex at p, then r is NR.

Proof:
It suffices to prove the first statement.
We need a representation of the payoff functions in which the first stage

payoffs are treated separately:

aﬁ (o, 1)
_ D _ @ t-1
= E(o,r} {({1-a) tfla )
= P ((1-A)A,) + EP (1-n =P a)
{c, 1) =1 {o,71) re2 =t
- _ P _ ® t~1
= (1) Alay,r) +EL (0 Mtif\ A, | b))
P("h } o0
_ _ o) 1 _ t
= 1-a) fPlopry) +EY (E("(hl’-”hl” ((1-a) o a))
p(-|h,)
- _ jel 1
= (10 Floy) + ,\;: Prg, 7y By @, (alhy), 7(h;))
1
with
_ P ,
p(-|b) = PR, (|bp)

conditional probability on R x § given hl

O(hlit =0 (-,E(hl),--.)

t+1

H

T(hl)t Tt+1 (‘rF(hl}rO--)

i.e. o(hl) is obtained from o by imnserting E(hl) as first stage signal and

then shifting the stages.
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vh(p)

= min max aa (o, 71)
r€Y o€l

= min max min max aﬁ {o, 1)
1 9 (rz,r3,-..) (02,03,...)

< min max min max ai {o, 1)
T, 9 (12,r3,...) (02,03,...)

< max min aﬁ (o, 1)
e} T

= v, (p)

Due to the nin-max theorem both inequalities can be replaced by

equalities.

Define a first stage strategy 7 for player 2 by

NR
ey 1 o . . .
TNR(S,J) = TJT v s;]. MR € NR{II! regardless of the signalling matrix

of player 1.

Let us now consider the coverging subsequence v, together with the opti-

n
mal first stage strategies at resp. e

v, (p

n
= min max min max aﬁ {o, 1)

L9 (72,73,...) (02,03,...)
= :in max ({1-A ) ﬁp (01,71) +

1“1
P pl-}h,)

e ey M Flegy) REUR tothy) b))

prTarese prOgrees 1
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p(:|h,}
(1) <« min max Ay Z 2?0 , (hl) o | 1 (a(hl),r(hl))
(72,r3,...) (02,03,...) h1 1’ "NR) n
+ (l—An) M
p(-|n,)
{2) ¢ min AL Z Ep {h,) max a (o, 7(h,)) + (1-A_) M
(r,.7 ) P b () U er ™ 1 n
2737777 1 ""NR
{3) <« min A, z PP (f) max dp(-|f) {g,7(h.)) + (1-a_)} M
{(r,. 7 y Mo (&) cez n 1 n
23" ""NR
(4) = A Z gpn {f) min max ast'lf) (o.7) + (1-A ) ¥
f (o Ty ) T o n
R
= A oz PP () v, (p(-]f)) + (1-a) M
f (o .rNR) n

Inequality (2) is valid because in the preceding term player 1's strategy
from stage 2 on can only depend on the value of his signalling matrix

E(hl) while the second expression implies that he can refer directly to
the first stage history hl’ thus enlarging the set of strategies he is

maximizing above.

Inequality (3) follows from proposition 1 and the fact that

Ep n {+|f) is a convex combination of the probabilities
(o, Tyg!
P (+]n} : F(h) = £]  and
{o ,TNR)
pP (-|h) ea (° (-|£)) vh:F(h) =f
" ) “I T(S®, ) ' -
""NR ""NR

The explanation of equality (4) is similar to the argument given for
inequality (2). But in this case the strategic potentiality of player 2

remains the same.
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Letting A, 90 to 1 we have

vip) ¢ z PP (£) vip(-(£})

£ (o, 71

NR)

Ty, 1S non-revealing, that implies p(-|f) e AI(D) vfievy.

NR
Since v is assumed to be strictly I-concave at p no posteriors different
from p can occur with positive probability. Player 2 chooses each of his
actions with positive probability, comnsequently player 1's strategy has to
be NR. 1]

Lemna 5:
If o is NR, then v(p) ul(p}.
1f r is NR, themn v(p) > uip}.

[P

Proof:

Again we prove the first statement. Let r_, € NR(II) be an optimal

NR
strategy for player 2 in the NR-ganme.

v, {p)
n
¢ 1ma) Patrg) va TP (£) v, (p(-(£})
f (o 'TNR) n
n

<Ay £ lo ) A v"n (p)

(because p(-|f) € ZI(p) and I -concavity of v, )

n
]

= v’\n(p) < Plo )
= v(p) spp(o,rNR) < u(p) o

Proposition 4 and Lemma 5 together yield

Lemma 6:

~

v strictly I-concave at p =—» v(p) u{p)

v strictly II-convex at p = vip) > ulp).
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Lemma 7:

v(p}) = cav min {u(p), vip}}
I

vi(p) = vex max f{u{p}), v(p)]
II

Proof:
We prove the first statement.
Obviously we have

vi(p) > cav min {u(p), vi{p)i}
I

Let us now assume that for some p € A{Rx8) the inequality is strict. Let

the maximal difference be equal to e.

4 = (p € d4(Rx8) :

vip) - cav min {u(p), v(p)} = e}
I

Let P, be an extreme point of CO(Ae)' From

v(po) > c?v min iu(po), v(po)!

vV > u -

Lemma 6 implies that v is not strictly I-concave at P, - If P, is no ex-
treme point of A(RxS) there is a line segment [pl,pz] = Co{pl,p2} with
Py:Py € AI(p) containing P, in its relative interior on which v is affine.

Consequently

v - cav min {u,v} is convex on {pl,pz]

I
v - cav min {u,v} < e

1
{v - cav min {u,vl) (p) = ¢

o
I
so that

v - cav min {u,v} = e on [pl,pzl.

I



_1'7_

At least one of the points Py Py is situated outside of Co(Ae). Thus P,
has to be an extreme point of A(RxS). But in this case v(po} = u(po) is

trivially satisfied. Contradiction! 0

Theorem 8:

v1.= lim v  exists.
A=l -

It is uniquely determined by the functional equations

(1} wv(p) = cav min {u{p}, v{p}!}
I

(2) vi{p) = vex max {u(p), vi(p)i.
I

Proof:

Since the limit of every convergent subsequence vA satisfies these func-
n

tional equations we must show that their simultanecus solution is unique.

Now let v be any II-convex solution of (1) and v any I-concave solution of
(2). We show that v ¢ V.

(The other inequality follows analogously)

Assume that

max vip) - vip} = 0
pea{RxS)}

and let P, be an extreme point of

Co {p € 4(RxS) - vip} - v{p) = &l

Consequently at least one of the functions vy, v is not equal to u at P,-
Let us consider the case g(po) # ulp ). (If G(po) # ulp ) similar argu-

ments can be applied.)
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It follows that g(po) > u(po) and that v cannot be strictly I-concave at
Po- Again there exists a line segment [pl,p2] with pl,p2 € A(po) con-
taining P, in its relative interior on which v is affine. Like in the

proof of Lemma 7 we have

v - v is convex on [P, .2,]

v-v

I~

€
v(p) - vip) = e

s0 that

v-%

€ on [p1!p2]'

Again a contradiction follows. 0

Remarks on the interpretation of the foregoing results:

It is evident from theorem 8 that vl is I-concave and II-convex. Lemma 6

already shows that strict I-concavity and strict IT-convexity at some
point p together imply the identity of the limiting value of FA(p) and the

value u(p} of the corresponding NR-Game. Indeed the functional equations

show that for all p € A(RxS) where vy and u don't coincide vy is either

locally affine on AI(p) or locally affine on Ail(p)' Strict I-concavity

(IT-convexity) stands for the necessity to conceal one's private informa-
tion from the opponent (Proposition 4), while affine pieces of the value
function indicate the opportunity of using the private information in

order to improve the payoff in comparison with the NR-game. vl(p) > ulp)
implies local affinity on AI(p) while vl(p) ¢ u{p) implies local affinity
on AII(p). Mostly only one of the players is allowed to make use of his

private information. In order to understand the reason for this phenomenon
let us briefly mention the results for infinitely repeated games with

limiting average payoff function, cf. Mertens-Zamir {1980). The payoff one

has in mind is 1lim % z Ar's(ht) but in order to avoid convergence
T oo t=1
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problems one could define a payoff function (and thus a two-person zero-
sum game in normal form) by means of a Banach Limit. These games generally
have no value. The formal reason is the impossibility to fulfil the
requirements of the minmax theorem. Choosing a topology for the strategy
spaces one has to give up either compactness or continuity of the payoff
function. An intuitive reason why minmax and maxmin don't coincide may be
explained in the following way:

Suppose we are in minmax situation, player 1 knows player 2' strategy and
is able to compute posteriors on player 2's types. If player 2's strategy
involves the use of private information he reveals it to player 1. Player
1 may wait an arbitrary number of steps in order to exhaust a maximal
amount of information because this does not affect the average payoff of
an infinite number of stages. After he has learned everything there is to
Jjearn he decides how he is going to apply his own private information. Of
course the maxmin strategies provide a reversed order of information
release. If in the discounted game the discount factor A is large, i.e. if
the total weight of the first stages is small and the equilibrium strate-
gies of both players comprise the use of private information, both players
could deviate from equilibrium by switching to something close to minmax
resp. maxmin strategies of the undiscounted game. If only one of the
players is supposed to make use of his private information, this problen

does not occur.
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5. Standard Signalling Case

We obtain the standard signalling case from the preceding model by
defining E(i,j) = F(i,3) = (i,j). The players are informed about their
opponent's choice of action. Both players have the same information on the
past moves. Note that this effect cannot be produced by simply g¢giving both
players equal information matrices. We could no longer assume that the
signalling matrix contains the player's choice of action. Comprising them
in the same matrix would indeed mean standard signalling. ©On the other
hand if the plaver's actions are not reproduced by the information matrix
even the same signal will lead the players to different conclusions if
they combine it with the knowledge of their own action. The common history

both players can refer to is crucial for the following theorem:

Theorem 9: {Recursive Formula)

vh(p) = min max ({1-a) pp(o,r) + A Z gp (hl) vA(p(-|h1)))

{a,7)
reTl dezl h1

Proof:
We need a second look at the proof of proposition 4:
Inequality (1) is omitted, we don't estimate the first stage payoff and

don't instert r Inequality {2) becomes an equality like (4) (due to

NR™
standard signalling) and inequality (3) becomes unnecessary. Remark that

the NR-property of r_. is only used in (3).

KR

Theorem 9 can be interpreted as follows:

The value of the game rA(p) remains the same if the rules are modified

like this: After stage one the game is cut off and the players begin a new
discounted game whose payoffs are weighted by A. In the new game the
players don't refer to what happened at stage 1, i.e., they forget both
choices of actions but instead they learn the a-posteriori-probability on
RxS they could compute if they knew both first stage strategies. (In fact
the value wouldn't change either if the players could further remember the

first stage history, see (2) and (4) in the proof of proposition 4.}
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It is crucial for the validity of theorem 9 that in the standard
signalling case both ©players can compute the same a-posteriori-
probability. The above property is usually referred to as the recursive

structure of repeated games with incomplete information.

Define a mapping ¢, : € (4(RxS),R) - ¢*(4(RxS) ,R) by

- - P .
¢, v(p) = min max ((1-3) Flo,) + A Z B () v, (p(- W)
reYy, o€ h
1 1
Lemma 10:
¢A is contracting: It ¢ﬁ v - 45 Wl<ANyY —wll
Proof:

Let (oo,ro) and (ol,rl) be first stage strategies achieving the minmax for
vV resp. W.
V.l.c.g. let ¢a vip) > qa w(p).

¢, vip) - ¢, wip)

- _ o o ) .
= (1-2) A% 0%,7°%) + a z P, () vip (-]h))

- (-2 A (ot + a2 BR () vipg (b))

h
1

= (1-2) P (2,7 + A z BP (h) v(p (- [n))

~ (1-a) pp (a°,71) + A i gzl(h) v(pol(-|h))
< A»ZPP () nv-w
= -0l

h

= ALy -w u

Corollary 11:
v, is determined uniguely by the recursion formula.
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In the case of incomplete information on one side, i.e. |§|=1, v, has a

special property:

Proposition 12:

Va Y, if A ¢ p <.

Proof:
First of all we have to show a preliminary statement: The undiscoundted

first stage equilibrium payoff is not smaller than the value.

Let be optimal first stage strategies in rh(p),

0'1, Tl
Sh{i) the total probability action i,

EA(i) = ;‘: plr) o,(r;i)

v, ()
= (1-0) A (o,,7,) A z o, (i) v, (p,(-]i))
< - (0,,7,) + A V,(p)

= v, < B (o, 7,)

= £ lo,,7,) gizZ:A(i) v, (p, (-]i))
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Let us now assume that max (vk(p) -v(p)) =e>0
pe4(R) H

v’\(p) - vp(p)

(1-2) /° (o,,7,) + A z a, (i) v,(p (-]i))

- (1- , - o (i . 14
(1-p) p° (cp Ty) 17 f GP(I) vy(pp( [i))

< (1-10 (0,:7) + 1 f o, (i) v, (p (- ]i))
- e P (o) (A f o, (i) v, (p, (- [i)
~ (1~ A (a,:7,) = H z o, (1) v (b, (- i)
< H f o, ti) (v, (p, (- ]i) - v, P, )
g H e v p € 4(R) ]

which vields a contradiction.

The proof of proposition 12 shows that the (undiscounted) equilibrium
payoff decreases from stage to stage. The formal reason is the concavity
of the value function, intuitively one could argue that the amount of
information the uninformed player gathers can only increase in the course
of the game and thus his capability of reducing player 1's payoffs in-
creases as well. Consequently the value of the game becomes smaller as the

welight of the initial stages decreases.
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