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1. Introduction

In 1979 Myerson [3] defines a general framework to model a bargaining
situation under uncertainty. According to the revelation principle all possible
outcomes are given by the incentive compatible mechanisms.

In this paper I want to analyse a bargaining problem with transferable utility
where the utility of the threatpoint is private knowledge. Myerson and
Satterthwaite [ 5] treated a related problem where the amount of utility that
can be divided is not common knowledge.

I will formulate some conditions which characterize the incentive compatible
mechanisms. In the second part of the paper the assumption that the beliefs
of the agents are common knowledge is dropped and I look at the safe
(Myerson [ 4], or ex post-incentive compatible, Holmstrom & Myerson [1])
mechanisms. These mechanisms will be completely characterized.

In the last part of the paper I analyse the ex—post efficient mechanisms and
show that they form a convex set. The boundary of this set is given too.



2. The Bargaining Problem
In this paper I want to discuss the following problem.

Two subjects, called agent 1 and agent 2, may agree to cooperate and pro-
duce a commodity together. They know the costs and the reward for the
product. The agents bargain about the profit.

But there is a difficulty. Before the production begins, both agents explore
other production alternatives which they can realize without their partner.
(You may think of other external subjects which offer a joint production
t00). The agents have to decide whether to cooperate or to choose an alter-
native.

They want to fix a contract now which determines what should happen later
at the beginning of the production. Shall the joint production start —in view
of the alternatives — and how shall the profit be divided. Therefore the agents
make a contract which determines what to do later, whatever the production
alternatives are.

I want to model this situation in the framework presented by Myerson [ 3] .

At the beginning of the production the agents have decided whether to pro-
duce or not and how to share the profit. We assume that the agents are able
to perform joint lotteries and that they are risk neutral. Then we may
restrict ourselves to three decisions:

d0 — they do not produce together;
d1 — production takes place and agent 1 gets the whole profit;

d2 — production takes place and agent 2 gets the whole profit.

Other divisions of the profit are modelled as lotteries between d1 and d2.
These three decisions form the decision set D. d() is called the disagreement —

(or threat—) point.



The agents are assumed to have a von-Neumann-Morgenstern utility func-
tion. We may define the utility of decision di’ i=1,2, to be 1 for agent i and

0 for the other agent.

The value of decision d() depends on the alternatives the agents have.

The utility level that an agent may reach with the alternatives is called the
type of the agent. If the agent is of type t €R, then the utility of d0 is t.

At last I assume that both agents have beliefs about the utility level the
partner will reach. This belief remains unchanged during the whole process
and is independent of the own type. The belief is a probability distribution
on the typeset of the partner.

Now let me present the formal model.

The agents are characterized by their type sets T, (resp. T2) and their be-
liefs py (resp. p2). We may restrict to type sets which are subsets of [0,1].

According to Myerson [ 3] we get a bargaining problem
I(T17T27p1)p2) : =(D7d07T1)T2)v1:v2:p17p2)

for every T, C[0,1], Ty C [0,1], p; € XT,), p, €AT,).
The components are:

D ={d0,d1,d2} the decision set
Tl’T2 the type sets
P;:Py the beliefs

ViiVs the utility functions on D



where fori=1,2 v, : D x T, —Ris defined by

t ifd=d0
vi(dlt)= 1 %fd=di .
0 1fd=d_i

I used the shortening —i for 3 —i.

All the components of the bargaining problem are common knowledge. The
product T1 x T2 of the type sets is called the state space.

The contract the agent should agree on may be type dependent. After the
agents announced their types the contract determines a lottery over D.

On one hand a lottery between d1 and d2 is needed to model the division of
the profit and on the other hand a lottery including d0 is necessary to model

the possibility of non—cooperation. Such a contract is called a mechanism.

Let T, x T, be a state space. A mechanism 4 (for T, x T,) is a function

p:Dx Ty xTy—[0,],

1

so that

S (d,,)=1.
deD

We write 4(d|a,b) instead of u(d,a,b) for (d,a,b) €D x T; = T,

Let 4 (T, x T,) denote the set of all mechanisms for the state space
T1 x T2.

We often write 4 instead of A (T1 x T2) if no confusion is to be expected.



Agent i, i =1,2, can compute the expected utility ui(,u,l a,b) of the mechanism

4 in the state (a,b) € T; x T,
We define the functions
ug y4 lexT2—vIR and
u ./l{lexT2——-is by
ul(ula,b) - =,u(d1|a,b) +a y(dola,b),

uz(”lawb) : =”’(d2Ia'7b) + b :u’(do | a‘7b)7

V pe A, (a,b)eT1 x Ty,



3. The utility of a mechanism

Let the bargaining problem I(Tl,Tz,pl,pz) be fixed for the rest of this chap-

ter.

After the agents have agreed on a mechanism and have explored their alter-
natives to determine their type, the agents have to announce their type and
then the lottery takes place. The utility level an agent reached with the
alternatives is not known by the other agent and (I assume that it) cannot be
proven to him. Knowing this, the agent may have an incentive to announce
not his true type in order to reach a lottery that is better for him than the
lottery truthtelling will induce.

I also assume that the types are announced simultaneously. Therefore we
have to compute the expected utilities according to the beliefs if we want to
decide whether the agents have an incentive to deviate from truthtelling.

If agent 1 is type a € T1 and agent 2 is type b € T2 and agent 1 announces
type a’ € Tl’ while agent 2 announces his true type, then agent 1 gets the
utility

u’{(u,a’la,b) r=p(d;|a’,b) + a ,u(dOIa’,b).

Therefore we define the function
u{: JﬂXTlelez—f[R by
u{(u,a’la,b) t=gp(d; |a’b) + ap(dy|a’,b)

Vype .ﬂ,a’,aETl,bETz.



Analogously we define the function

u§: M x T xTyxTy—R by
uf(p,b’|a,b) : =;L(d2|a,b’) +b /l(d0|a,b’)

Ve A, bbeETy a€T,.

In the moment agent 1 announces his type he doesn’t know the type of the
other agent. He may compute the expected probabilities of the decisions
implemented by the mechanism if he announces a € T, and agent 2 announ-

ces his true type.
These expected probabilities are given by

A'(d|a):= T  u(d|a,b) py(b) VdeD,a€T,.
beT

2

Analogously we define
B*(d|b):= £ p(d|a,b) py(a) VdED,bET,.
€T

|

The expected probabilities depend on the beliefs. This is not indicated by the
notation.

Agent 1 computes the expected utility of the mechanism p if his type is
a ET1 and he announces a’ € T1 while agent 2 always announces his true

type.
This utility Uj(u,a’|a) is given by the function

x . . x
Ul' M Tl Tl——alR



defined by

_ -1
Ut(pa'|a) : =B1(d, |2) + 2 ' (dg|@).

If agent 1 also tells the truth he will receive the expected utility given by the
function U, : M x Ty — R which is defined by

U,(pla) : =Uj(nala) VaeT,.

In the same way we define U; and U,

When the agents contract a mechanism they surely want the opposite to
announce his true type later. A contract is called incentive compatible if no
agent of any type expects (according to his beliefs) to gain from lying if the
other agent always announces his true type.

Formally:
Definition: ~ Let [{T,T,,p;,D,) be a bargaining problem.

A mechanism p € A (T1 x Tz) is called incentive compatible iff

U¥(us|t) < Us(u|t) VsteT,i=12.

To prevent the agents from retreating from the contract when they know the
alternatives we demand that the expected reward from the contract is not
lower than the profit of the alternative. Those contracts are called individual-
ly rational.

Formally:
Definition:  Let I(Tl,Tz,pl,pz) be a bargaining problem.

A mechanism p € #(T; T,) is called individually rational iff

U(ult) 2t VieT,i=12



4. Some inequalities
In this chapter I will show some inequalities that will be useful later.

In the following let I(Tl’T2’p1’p2) be a fixed bargaining problem.

Let i €{1,2}, s,t €T, and p€ J((Tl x T2).

The following three inequalities are equivalent.

1) Ulwslt) < Uy(ulo),

2) Uj(lt) ~Uy(uls) > (¢ =s) B (dgs),

3) B(dls) —B(d,|t) < b(E(d, 1) —F(dy5)).
To see the equivalence of 1) and 2) look at the equation

1) UX(uslt) =R(d]s) + t E(dyls)

#(dls) + s B(dgls) + (t=5) B'(dgls)
=U,(uls) + (t —s) B(dgs).

Therefore one gets

U, (ult) —UX(s ) =U;(u]t) = Uypsls) —(t —s) B(dy |s)-

The left side is greater than zero iff 2) holds. This proves the equivalence of
1) and 2).

By definition

Ulst) < Uyult)
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is equivalent to
B(d:]s) + t B'(dg]s) < B(4;]t) + t B (dg]t).

This is equivalent to 3).

If we change the roles of s and t we see that the following three pairs of in-
equalities are equivalent:

L) Ul CUlt) and Uimtls) < Ti(uls)
2)  (1-9) B(dgls) < Uy(ult) —Uy(els) € (t =5) B(dg0),

3)  s(E(dg1t) —B (&g 19) ¢ Bld;18) —B (&51) € t(A (e 1) —F(dg ).

If s < t and 1°) holds, then we may conclude:
U(klt) 2 Uy(uls),

ﬁl(dolt) 2 ﬁl(dols):
i i
E(d|t) < B(dy]s),
A |t) < B(d;]s).

The first inequality follows from 2°) (the left part) and the fact that
ﬁl(dol-) > 0. Comparison of the left and the right side of 2’) leads to the

second inequality. If one uses the second inequality and 3’) one sees that the
third inequality holds.

Finally we see that
A(d_]s) —E(d_]t) =B(dyt) + B(41t) (& (dyls) + £ (d]s))

= P(dglt) —7'(d, Is) —(E(g;15) ~7'(4; 1))
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AV

A, It) —Ai(dyIs) —s(al(d;|5) =3 (¢;I1))

> 0

2 .
because X ﬁl(dkl- ) =1, s < 1 together with the third inequality, and 3’).
k=0

Now we can prove the following
Lemma 1: If i€{1,2}, ty,bo,tg € T, 4 <ty <tg,
Uf(l‘atﬂtz) < Ui(p|t2), U’;(U:tgltl) < Ui(;tltl),

U?(N:tzit:;) < Ui(ﬂ'lt3) and Uf(ﬂ;t3|t2) < Ui(ﬂltz):

then

US(ty|tg) € Uylulty) and Ul(ntglty) € Uy(alty).
Proof: The assumptions imply

B(dylty) € B(dglty) € B(dglty).

We know that

U?(P’:tl l t2) < Ui(ﬂl tg)

is equivalent to
B 1) ~B (4 1tg) € 1ol (dgtg) ~P(dg 1))
Because t5 > t, and ﬂl(doltz) —-ﬂl(doltl) > 0 we conclude

B 167) —F (g ]ty) € g7 (g tg) —H'(d 1))



g 1] e

Rearranging the terms yields

Ul ltg) € U (Btylty).

The right side does not exceed U,(u|ts). This proves the first inequality in

the lemma. The second may be proven in the same manner.

#

This lemma shows that "local incentive compatibility" implies "global incen-
tive compatibility" in the following sense.

Let T1 and T2 be finite sets. If one wants to show that a mechanism is incen-

tive compatible it suffices to prove that no type has an incentive to pretend
to be one of his two neighbour types.

T, =T, = [0,1] and 7 is an open covering of [0,1], then we see that
peE M (T1 x T2) is incentive compatible iff for all V € 7]i=1,2, it holds

Ut |t) <Uult)  Vipev.

This localization property will appear again when we characterize the incen-
tive compatible mechanisms.
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5. Incentive compatible mechanisms

For the rest of this paper we restrict ourselves to the case
'I‘1 =T2 =[0,1] .
Let the beliefs P;:Pqy be fixed in this chapter. Let 4 € 4 be incentive compa-
tible and i € {1,2}.
Because of equation 2’) we get

10616) = i(u1s)| ¢ It max {3 (e |0), 7o)} € 1], Vs

b

Therefore the function Ui(ul-) : [0,1] — R is Lipschitz continuous. This
implies that U,(x|-) is differentiable almost everywhere and the derivation f
is integrable and

U, (k) — U (u]0) =(}) f(s)ds  Vie[o,1].

(see Natanson [ 6], chapter IX, §§1,2.)

The function ﬂi(dol-) : [0,1] — [0,1] is isotone and therefore measurable

and continuous almost everywhere. (see Natanson [ 6] , chapter VIII, §1.)

Equation 2’) implies f; =pi(d0 |- ) almost everywhere.

Lemma 2: Let p€ K.
@ is incentive compatible iff for i =1,2

1) ﬁi(d0 |- ) is isotone and

t .
2) Uj(ult) —U(u]0) = é B(dyls)ds  VteT,



B, § .

Remark: 1) Bpth conditions are local properties. Equation 2) states that
ﬂl(d0|~ ) is the derivation of Uy(x|- ).

2) Equation 2) is equivalent to

. 5 t - .
A(d|t) —7'(d;|0) =] B(dg|s) ds —t B(dg|t)  VEET;.
0

Proof: The only if part was proven above.

Now let p € A fulfill 1) and 2).

Let t €T, ie{1,2}.

1o

We have to prove that

U?(ﬂ:tgltl) < Ui(ﬂltl)-
First case: Let tl < t2.

U (it t) =Us(plty) + (b —to) B _[t,) (see equ. 4) of
i 2°1 i 2 1 72 0!"2 chapter 4)

by :
=U,(1]0) + g) ﬂl(dols) ds —(t,, —t4) ﬁl(doth)

t t
1 . 2 . .
=Uj(ul0) + A(dgls) ds + I A(dgls) ds —(ty —t;) B (dglty)
1
by

CU(H0) + [ P(dgls) ds

=Ui(l"lt1)

because Ai(dy|ty) > B(dgls)  Vse[tyto].
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Second case: Let t2 < tl.

Uf(ﬂ’:tgltl) =Ui(/"|t2) + (tl "tz) ﬂl(doltg)
b

=U;(u10) + [ #(dg1s) ds + (1 ~tg) F(dg1,)

t t
1 . 1 . ’
=U(410) + | (dgls) ds = 7dgls) ds + (1 1) B(dglty)
2

t
1l
U (ul0) + | B(dgls) ds
0
=U,(ulty)

because B(dg[t,) < E(dgls) Vs €[toty].
#

Now let 4 € A4 be incentive compatible and individually rational. Then we
must have

Ui(p]1) 21 fori=1,2.
Obviously we may conclude

U.(u|1) =1 fori=1,2.
By equation 2) of the lemma this is equivalent to

. 1 .
l—‘l(diIO) =Ui(ﬂ|0) =1 —é ﬁl(do‘t) dt.

Lemma 3: If 4 € Ais incentive compatible, then y is individually rational iff

U.(s1) =1 fori=1,2.



Proof:

Corollary:

=16 =

Let i € {1,2}.
Of course the condition Ui(ul 1) =1 is necessary for y to be indivi-

dually rational. If U,(4|1) =1 then
B 11) + B(dg1) =1.
Therefore we get for all t € T, =[0,1]
Ui(ult) 2 UR(Llt)  =B(d]1) + t B(dy|1)

> 14, 1) + B'(dy]1))

=t.
7t

If € A is incentive compatible then 4 is individually rational
iff

: 1 =
B(d]0)=1—] F(dyls)ds  fori=1,2.
0
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6. Some problems with the model

The model proceeds from the viewpoint that all the components of the bar-
gaining problem are common knowledge. If your are careful you take all
possible reservations levels into account and you have to choose
T1=T2=[ 0,1] . Two agents may agree to this consideration if they talk about

their bargaining problem. (The measurement of utility is not a critical point
as long as they agree to be risk neutral because the conceptions are invariant
under linear transformations of scale.) But there is no incentive for the
agents to reveal their true beliefs. If the agents don’t trust the opposite they
cannot define the set of possible ( =incentive compatible) contracts. How
shall the agents find a way out. One way to deal with this difficulty may be
to introduce the universal belief space of Mertens and Zamir [2]. I don’t
believe that two persons (except two mathematicians) will contract a mecha-
nism depending on this big space. Perhaps it is possible to make an approxi-
mation with finite spaces. An easier way out is to deal with safe mechanisms,
which are those mechanisms that are incentive compatible with regard to
every belief. Then it is necessary to claim that the mechanism is ex post
individually rational; that is: the mechanism gives a higher expected utility
than the alternative for every type of every agent no matter what the beliefs
are.

Definition:  Let Tl,T2 be type sets.
A mechanism p € A (T, x T,) is called safe iff
uj(ma’|a,b) < u;(u|a,b) and
u§(u,b’ |a,b) < u2(u| a,b)

forall a, a’€ Tl’ b,b’€ T2.



oo | B =

If the mechanism u is safe then p is incentive compatible with respect to
every belief. On the other hand: If y is incentive compatible with respect to
every belief, then x has to be incentive compatible if agent 1 is sure that
agent 2 is type b € T2 and agent 2 is sure that agent 1 is type a € Tl' This

condition must be true for all a € Tl’ be T2. Therefore p is safe.

A mechanism p is called ex post rational iff 4 is individually rational with
respect to every belief or equivalently.

Definition: A mechanism p € 4 (T, x T,) is called ex post (individually)
rational iff
u;(x|a,b) > a and u,(ka,b) > b for all (a,b) € T, x T,.
The proof of this equivalence proceeds in the same way as above.
Ifpe 4 (T1 x Tz) is ex post rational, then 4 implements dO with probability

1 whenever the agents announce two types with a sum greater than 1:
If p is ex post rational then mdyla,b) =1 for all (a,b) € T, x T, with

a+b>1.

Definition: A mechanism p € A (T, = T,) is called (ex post) feasible iff 4

is safe and ex post rational.

The set of all feasible mechanisms is denoted by ﬂ(Tl x T2).

The considerations above show that it is possible to carry over the results we
got for incentive compatible and individually rational mechanism to safe and
ex post rational mechanisms.

We restrict ourselves to the case T; =T, =[0,1] .



Let p€ A

Fact 1

Fact 11

Fact III

o T s

u is safe iff

1) ll’(dol :b) and u(dola, )
are isotone for all a,b €[0,1],
and

a

2) u;(ula,b) —u,(k|0,b) =J u(dylt,b) dt  Vabe[0,1],
0

and

b
3) u2(ﬂ|a7b) ——ul(;ula':O) =J ”’(dola')t) dt v a‘:b € [031] :
0

The equation 2) is equivalent to

a
2,) :u’(dl I a'rb)——ll'(dl | 02b) =J ﬂ'(do I t)b)dt'_—a’ u’(do | a’7b) v a7b€[ 0’1] )
0

and equation 3) is equivalent to

3’) wdq|a,b)—u(d,|2,0) =(j) Mdyla,t)dt—b p(dy|ab) Va,be[0,1].

If u€ A is safe then it holds for all a,b €[0,1]
a) w(dy|-,b) and idy|a, ) are isotone,
b) w(d;|-,b), mdy|-,b), K(d,|a, ) and #(dq|a, ) are antitone,

c) u;(u|-,b) and uy(k|a, ) are Lipschitz continuous and isotone.

If u€ A is safe then p is ex post rational iff
u;(4|1,b) =1 and uy(p]a,1) =1 foralla,be[0,1],
These two equations are equivalent to

1
p(d1|0,b) =1—{ u(d0|t,b) dt Vbe[o0,1]

0

and
1

Mdyla0) =1 —f udglat) dt  Yae[o1].
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7. Characterization of safe mechanisms

The next two theorems completely characterize the feasible mechanisms. To
shorten the notation we define

S:={(a,b)€[0,]]% | a + b <1},

S:={(ab)€[0,1]% | a+b¢1}.

Lemma 4: If p € A is safe then

u(d|a,b) =p(d|a,0) + p(d|0,b) —pu(d[0,0) V¥ (ab)€S;deD.
Proof: Because 4 is safe fact I implies

wd, |a,b)=p(d, |0,b)+ ( iy |t,b) di—a sy |a,b), ¥ (a,b)e[0,1] 2
0

and
b 2
Hdy|ab)=n(dy|a,0)+ [ Mdglat) di—b w(dy|ab), ¥ (a,b)e [0,1]]
0

1%

Using the equation X p(d|-,-) =1 we get for all (a,b) €[ 0,1
deD
p,(d0|a,b) =1 -—u(dlla,b) —,u(dzla,b)
=1—p(d, |0,b) ~u(dy|a,0) + (a + b) u(dg |a,D)
a b
| //,(dolt,b) dt —J u(dola,t) dt.
0 0
This is equivalent to the equation
a b
(1 —a—b) u(dylab) + [ u(dy|t,b) dt + [ u(d|a,t) dt
0 0

=1 —p(d, |0,0) —pdy]a,0) V¥ (a,b)€[0,1]%.
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Now we restrict the function pL(d0 |-,-) toS.
Let g : S — R be defined by

g(a.b) =n(dy|2,0) + u(dy0,b) —(d,]0,0), ¥ (ab)€s.

To see that this function is a solution of the integral equation we use condi-
tions 2) and 3) of fact I to transform the right side.

#(d; 10,b) =1 —(dy|0,b) —dy|0,b)

b
=1 =44y |0) ~(d]0,0) =] ldg|0.) At + b (e |0,b)
b
=1—p(dy|0,0) — (1 ~b) u(d, | 0,b) = udglog) dt

Analogously we get

#dy2,0) =1 —(d; 0,0) —(1 —a) u(d,2,0) _Z wdy|t,0) dt.

Therefore we write
1 —1(d; |0,b) —p(dy|2,0)

=—1+ p(dy0,0) + pd, |0,0) + (1 —b) (dy |0,b)
b
+ (1 —a) u(d,|a,0) + zp,(dolt,O) dt + (j) #(dy|0,t) dt

=—#(d10,0) + (1 —D) u(dy|0,b) + (1 —a) dya,0)

a b
+ [ wdg]t,0) dt + [ p(d,|0,t) dt.
0 0
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If we insert g into the left side of the integral equation we get for all
(a,b) €S :

(1 —a—b) g(a,b) + Z g(t,b) dt + :J)) g(a,b) dt

=(1—a —b) (4(dy2,0) + 4(d,0,b) —(dy|0,0))

a
+ (]) #{dg1t,0) dt + a u(d;|0,b) —a u(d,|0,0)

b
+ (j) #dg10,t) dt + b u(dj|a,0) —b p(d,[0,0)
==#dy]0,0) + (1 —D) udy|0,b) + (1 —a) u(dg|a,0)

a b
+ J m(dyt,0) dt + | p(d,|0,t) dt.
0 0

This is exactly the right side of the integral equation.
Let f: S — R be defined by
f(a)b) =p(dy|ab) ~g(ab) ¥ (ab)€S.

#(dy|-,+) and g are solutions of the integral equation. Therefore f fulfills the

equation

(1 —a—D>)f(a,b) + Zf(t,b) dt + :j)) f(a,t) dt =0  V (a,b)€S.

The following lemma will prove that f is the zero function.

Of course our {, as defined above, fulfills the assumption of the following
lemma and the lemma implies that f is the zero function therefore. This
shows that g and x(d, |-, ) coincide on S, which proves the lemma for d =d,.




i1 g

To prove the lemma for d = d1 and d =d2 we use equation 2’) resp. 3’) of

fact I and the result for d =d0.

If (a,b) €S then:

e 1) =] MdItb) dt —a peglab) + ey [0.)

a
={ w(dy|t,0) dt + a p(d|0,b) —a 1(d;|0,0)

0

—a (dy|a,0) —a u(d,|0,b) + a p(d|0,0) + p(d; |0,b)

=Z w(dy[t,0) dt —a u(dy]a,0) + u(d; |0,b)

=u(d, |2,0) —p(d; |0,0) + p(d, |0,b).

In the same manner one can prove the lemma for d =d2.

Lemma 5: If the function f : S — R fulfills the inequality

(1—a-—b) |f(a,b)] Z |£(t,b)] dt +z |f(a,t)] dt
for all (a,b) €S, then f =0.
Proof: For r > 0 define
S.:={(a,b) €S | a+bgr}
and

m_: =sup {|f(a,b)| | (a,b) €S}.
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In a first step we will see that m_ =0forallr < %
Let0<r < %— and suppose m_ > 0.
If 0 < ¢ < 1 then there exists (a,b) €5, so that m_—|[f(a,b)| < e.
This implies
1
5 (m —¢€) < (1—a—b) (m —e)

< (1 —a—b) |f(a,b)]

a b
<[ H(t,b)] dt + [ |f(a,t)] dt
0 0

<(a+b)m,

{r- m._.
- I

Now we conclude

€.

DN =

1
(5—r)m_ <

Because ¢ was chosen arbitrary this implies that m  =0.

Letrg:=sup {r20 | m, =0}.

In the first step we saw that Iy 2 %— and in the next step we will see that

I, =1, which is enough to close the proof.

Suppose I, < 1.
1 — I
Then let 6 : = =
By definition |f(a,b)| =0 for all (a,b) €S witha + b < 1.
Therefore

a b
(j) |£(t,b)| dt + ([) f(a,t)] dt <2 6 - mr0+6 for all (a,b) ESI0+§.
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To see this look at the following picture.

4
| \
<

7 \ \

Now let 0 < ¢ < m

o0 then there exists (a,b) € Sro 45 5O that

|£(a,b)| > m. s —€ We get with the heip of the considerations above
0

(11 =0) (m, 5 =€) < (1 =a=) |(ap)

a b
< J l(t,b)] dt + [ [f(a,t)] dt
0 0

$26' mr+6.

This implies
(1—r1,—36) mroJ'r& ¢ (L—19—6) e
Because ¢ was chosen arbitrary and by definition of § we conclude

m =0.
ro+5

This is a contradiction to the definition of Io- Therefore Iy =].
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If we know that p is a safe mechanism and we know the probabilities
‘U’(d0|'")I(Tlx{O})U({O}xTz) then we can compute p(dg|- ,-)IS with the

help of lemma. If in addition p is ex post rational then we know

Wdylab) =1,V (a,b) €[0,1] A\S.

We can also compute p(d;|0,b) for all b €[0,1], and A(dy|a,0) for all
a €[0,1] with the help of fact III.

Because y( |a,b) is a lottery for all (a,b) € [0,1] 2 and because of lemma 4
we know g |a,b) for all (a,b) € [0,1] 2 with the exception of those (a,b)
with a + b =1.

For all (a,b) €[0,1] 2 we have

1y (kla,b) + ug(sla,b)

wd, |2,b) + pdyla,b) + (a + b) wdy|a,b)
= 1-(1-a—b) udylab),

because ¥ g(d|-,-)=1.
deD

Therefore u, (1]a,b) + uy(s]a,b) <1 V(ab)e S.

If 4 is ex post rational we conclude:

uy(ula,l —a)=a, VaeT,,

(k|1 =b,b) =b, VbeT,.
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The utility that a safe and ex post rational mechanism gives to the different
types of the agents is completely determined if 4 is given on

(T, {o}) U ({0} x Ty).
The following lemma sharpens this result.

Lemma 6: If the mechanism g is safe and ex post rational then

wdgla,0) + (dy]0,1 —a) =1 + 1(d;|0,0)
VaeC:={t€(0,1)|u(dy|-,0)is continuous in t}.
Remark:

The complement of the set C is a set with measure zero because u(dol- ,0) is

isotone.

Proof: We compute the utilities for the agent 1.

If (a,b) €S then

ul(ﬂ'l a7b) =l‘l’(d1 l a’7b) +a p’(do I a'7b)

=p(d;|0,b) + Z #(dy|t,b) dt (fact I)
=1—p(dy|0,b) —p(d;|0,b) + zﬂ(dolt,b) dt

b a
=1 —p(d,|0,0) —-(j) #(dy10,t) dt + b u(dg|0,b) + | p(d|t,0) dt
0
+a p(dy|0,b) —a p(d;]0,0) —u(d|0,b) (lemma 4, fact I)

=u(d;0,0) + #(d}10,0) —(1 —a —b) u(dy|0,b) —a s(d|0,0)

a b
+ [ Mdo|t.0) dt = [ u(dg|0,t) dt.
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uy(u|-,b) is a continuous function for every b € [0,1]. Therefore we get for

every a € (0,1] :

u,(u[a,1 —a) =a’£ima u,(pla’,1 —a)

a 1a
=(d; 0,0) + (1 —a) ;dy|0,0) + [ ;dyt,0) dt — [ w(dy|o,t) at
0 0

Because u,(x|a,1 —a) =a we conclude

1= a
[ dl0.) de =p(dy0,0) + (1. =) dg0.0) + [ wd[0,0) dt =,

Vae(0,1].
We get by differentiation

—u(d~]0,1 —a) =—u(d,|0,0) + w(d,|0,a) —1 for almost every a € (0,1] .
0 0 0

 is isotone. Therefore this equation must hold for every a € C.

#

The lemmas above determine some conditions that all safe and ex post ratio-
nal mechanisms suffice. The following corollary shows that these conditions
are sufficient to prove that a mechanism is feasible.

Corollary: A mechanism p € A is feasible iff

1) i(dgyl-,b) and p(d;|a,- ) are isotone for all a,b €[0,1] .
2) w(d|a,b) =(d|a,0) + 1(d]0,b) —u(d]0,0), V(a,b)€S, deD;

3) y(dl |a,0) =,u,(d1|0,0) + Z ;L(dolt,O) dt —a ,u,(d0|a,0), Va€[0,1];

1) p(dy]0,b) =p(dy]0,0) + 2 #(dy10,t) dt —b w(dy|0,b), ¥ be[0,1];
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5) wdyla,0) + wdy|0,1 —a) =1+ #(d(10,0) for almost every a €[ 0,1];

6) 4(d;0,0) =1 -—(}) w(dya,0) da;
7) u,(slab) =3, uy(ulab)=b V¥ (ab)e[0,1]%\.

Remark:

Because ¥ p(d|-,r) =1 we only need two of the equations under 2).
deD

Of course there exists an equivalent characterization of the ex post rational
mechanisms if you change the roles of agent 1 and 2 in condition 5) and 6).

Condition 7) implies 4(d,|a,b) =1 for (a,b) € [0,1] 2 witha + b > 1.

Proof: I want to use fact I to prove that the 7 conditions are sufficient to
show that the mechanism is feasible.
The conditions 2) and 3) yield

a a
=/ ﬂ(dolt;o) dt —a ﬂ(dolaao) =/ /-‘(dolt,b) dt —a ﬂ(dolaab)
0 0
Y (a,b) €S.
Therefore condition 2) of fact I is fulfilled for (a,b) €.

In the same way one can prove that condition 3) of fact I is fulfilled for
(a,b) €S. This shows that x is safe on S.

Now we will see that u is individually rational on S. If b € [0,1] then we get
with condition 4:
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(%) uy(ulo,b) =u(d,|0,b)
b
=1—(1—b) u(d;|0,b) —i{d,|0,0) —(j) #(dy|0,t) dt.
Let B be the set of all b €[0,1], so that
#dyl0,b) =1 + #(dy10,0) —m(dyl1 —b,0).

We get for all b€ B

uy(#l0,b) =1 —(1 =b) (1 + (d|0,0) —(dy |1 —b,0))
b
—(dy]0,0) —(j) (1 + p(dy0,0) —p(dyl1 —t,0)) dt

=b —(1 —b) #(dy|0,0) + (1 —b) #(dy|1 —b,0)

1
—d,[0,0) =b —b w(dq]0,0) + 1£b w(dyt,0) dt
=—p(d[0,0) —p(d5]0,0) + (1—b) #dy|1—D,0)
1
+ 1&) (dy|t,0) dt

=—1+ p(d;]0,0) + (1 —b) p(dy|1 —b,0) + w(dy1t,0) dt

é_u-.»—a

1

w(dy4,0) dt

=_} (dy[t,0) dt + (1 —b) u(dg|1—D,0) + }

1-b
= i(dy 14,0) dt + (1=b) a(dy|1 —b,0).
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In the second but last equation condition 6) is used.
The first equation of the proof yields for all (a,b) €SN ([0,1] = B)
a
u,(u|a,b) =u (4|0,b) + [ u(dy|t,b) dt
1 1 0 0

1-b
=(1 —b) pdy|1-1b,0) - (j) w(d,|t,0) dt

a
+ [ Mg |60 dt —a (dy|0,6) —2 4(dy|0,0)
0

1-b
=(1—a—b) ﬂ(dgll_b:o) = | U(dolt>0) dt
a

+ a(u(dy |1 ~b,0) + (dy0,b) —(dy0,0))

2 a.

In the inequality we used condition 1) and 5).

We will now prove that ul(pla,- ) is antitone because this is enough to show

that
uy(u|a,b) 2 a for (a,b) €S, b ¢ B.

Let (a,b), (a,b’) €S, b < b’. Then we get with (*) and (**):

uy (4l ,b) —uy(ua,b)

a a
=uy (#10,b) + { (dglt,b) dt —uy (u]0,b7) —f w(dlt,b)
0 0

b

== (1) g 0) + (1) udg|Op) + [ wldgl00) o

a
+ (I) #(dy1t,0) dt + a p(dy|0,b) —a u(d;|0,0)
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a
— [ Mdy1,0) dt —a u(dy|0,1) + 2 w(dy|0,0)
0

——(1—a—b) idy|0,b) + (1 —a —b?) sdy|0,D)

b;
~(1-ab) idg|O0b) + (1-2-5") wdg|O) + [ 1(dg0.1) e

b)
= (1" =b) wdg|00) + [ wdgl0) at

+ (1 —a=b) (u(dy|0,b’) —(dy|0,b))

>0

because x(d|0,- ) is isotone.

In the same way one can prove that p is individually rational for agent 2
on S. Obviously this implies that {im ul(u|a,b) =1—-b Vbe[0,1].
a/ 1-b
If (a,b) ¢ S we conclude with condition 7)
uy(u|a,b) —u (4]|0,b) =a —1,(x[0,b)

=a—(1 —=b) + (1 —b) —u;(»[0,b)

=a—(1-b)+ {im  uy(p|a’b) —u,(x|0,b)
a’/ 1-b

1-b
=a—(1—b) + (J) #(dgt,b) dt
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a 1-b
= J 1dt+ | sp(dylt,b)dt
1-b 0

a
=/ w(dylt,b) dt
0
because of condition 7) (see remark).

In the same way one can prove that condition 3) of fact I is fulfilled. There-
fore p is safe.

We have already seen that p is individual rational.
#

With the help of this corollary we will see that there exists almost a bijection
between a simple set of functions and the set of feasible mechanisms.

Lemma 7: If f : [0,1] — [0,1] is an isotone function, then there exists a feasi-
ble mechanism p € 4, so that

iy |- 0) =L
L is uniquely defined up to the set of states
([0,1] = E)U {(a,b)€[0,1]2 | a + b=1},
where C ={t €(0,1) | fis continuous in 1 —t},

which is a set of measure zero.

Proof:  Letf:[0,1] —[0,1] be isotone.

We will now define a function x: D x [0,1] = [0,1] — R according
to the corollary. Define

wdyl-,0) :=f and
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mdy | 0,b) according to condition 5) in the previous corollary for all
be(0,1].
We define (d, |0,0) according to 6) and p(d,|0,0) by

idg|0,0) =1 —p(dy|0,0) —4(d, |0,0).

Condition 3) and 4) determine p(d,|-,0) and #(dy|0,+). The equation
Y p(d]|:, ) =1 defines p,(d1|0,-) and ,u.(d2|-,0). Condition 2) defines p
deD

on S.

Finally we define
ﬂ(do I '

)’ )l[O,l] 2\S=1 and

wdl- )| =0 for d € {d,,d,}.

[0,1]%\8

It is easy to see that all conditions of the corollary are fulfilled, but it re-
mains to show that (- |a,b) is a lottery for all (a,b) €[0,1] 2

The condition ¥ u(d|-, ) =1is fulfilled by definition of the function 4.
deD

Of course we have y(d|- ,- 20, VdeD, and (d,|-, ) 2 0 because
0

[0,11\8
w(dy - ,0) is isotone.

Obviously u,(d0|- ,0) < 1 and because p(dg |- ,0) is isotone also p(d |0, ) < 1.

It suffices to show that for all a € [0,1) u(dyla,1 — a) < 1 to prove that
wdglr) < lon S because p(d |- ,- ) is isotone.
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Condition 2) and 5) imply for all a €[0,1)

wdyla,1—a) =p(d, [2,0) + wdy10,1 —a) —p(d,[0,0) =1.
We get for all a €[0,1]

a
:u'(d]_ Ia')o) =ﬂ(d1l0,0) + J ﬂ(dolt,O) dt —a iu’(dola')o)
0
1 a
=1—{ #dy|t,0) dt + [ p(d;|t,0) dt —a p(d;|2,0)
0 0

1
=1 — u(dy|t,0) dt —a p(da,0)
a

>1—(1—-a)—a=0

because p(dy|-,0) < 1.

In the same manner one can prove 4(dy[0,-) 2 0.

#(d;|-,0) is antitone because u(dol- ,0) is isotone . Therefore

dy|-,b) =p(d;]-,0) + p(dy [0,b) —p(d, |0,0)

is antitone on S. It suffices to prove #{d;|a,1 —a) 2 0 for all a €[0,1) to show
that p(d,|-,) 2 0.

We compute for b € (0,1]

b
pda10b) =p(dy0,0) + [ 4 (¢910,1) dt =b uldg0.b)

b
=p(dy[0,0) + [ 1+ p(dy0,0) —(dy|1 —1,0) dt
. 0



- 36 -

—b(1 + #(dy]0,0) —(dy 1 ~b,0)

b
=1(dy]0,0) —(j) #dg|1—4,0) dt + b p(dg |1 ~b,0),

and further

=1-1—pdy]0,0) + (dy] 1-b,0)

b
—1(dy]0,0) + [ p(dy]1 ~t,0) dt —b p(dy|1—b,0)
0

1
=(d1]0,0) =1+ (1-b) Wdg|1=b,0) + | u(dy[e0)

Then we get

=u(d,]0,0) + Z #(dy14,0) dt —a p(dy|2,0)

1
+ 54y 10,0) =1+ & dg|a,0) + | wdg|,0) dt —u(d|0,0)
a

1
=u(d;]0,0) + | u(dy|t,0) dt —1
0

=0,

because of condition 6).

In an analogous manner one can prove that s(d,|-,-) > 0. This will close the

proof.

#
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8. Efficient mechanisms

Let T, x T2 be a state space. We call a feasible mechanism efficient iff there

1
is no feasible mechanism that gives every type of every agent at least the
same utility and at least one type of one agent a higher utility that the first
mechanism.

Formally:

Let #(T; x T,) denote the set of feasible mechanisms.

Definition: ~ A feasible mechanism p € B (T, x T,) is called (ex post) effi-
cient iff the following implication holds:

Iffe B(T, x Ty) and ug(k|-,) 2 uy (|- ,+) for i =1,2 then
gl +) =uy (4l ) for i =1,2.

We will now restrict ourselves to the case T; =T, =[0,1] again and drop the
argument T, = T, where no confusion is to be expected. The following

lemma characterizes the efficient mechanisms for T, =T, =[0,1].

Lemma 8: Let 4 be a feasible mechanism.
 is efficient iff

1) l"’(dOIO)O) =07
2) 1(dy|a,0) =sup {mdylt,0) [0 <t < a} Yae(0,1),

3) u(dy]0,b) =sup {u(dyl0,t) | 0<t < b} Vbe(0,1).

Proof: Let u€ 2.

We define the functions
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6:[0,1] —[0,1] and v:[0,1] —[0,1] by

0 , a=0

b(a) = ;
{y,(dola,O)—sup {u(dolt,o) |0<t<a},0<agl
0 b=20

1(b) ={ ’ .
#d,|0,b) — sup {s(d,|0,t) | 0<t<b},0<b<1

because p(dol- , ) is isotone and therefore continuous almost everywhere we
get

1 1

| 6(a) da=[ y(b) db=0.

0 0

We now define a second mechanism [ by

idyla,b) —pdy|0,0) —8(a) —1(b) for (a,b) €[0,3]°

Bdy|a,b) =1 wdyla,b) —8(a) —2(b)  for (a,b) €5\[0,5)°
Wdglab)=1  for (a,b) € [0,1]%\3

[ d; |a,b)+54(dy|0,0)+a 6(a)+(1-b) (b) for(a,b)e0,5)°
id, |ab) =] ud,lab) +a 8(a) + (1-b) 7(b) for (a,b) €§\[0,3]°
[ d;]ab) =0 for (a,b) €[0,1]%\§

[ dy|a,b)+3 #(dy]0,0)+(1-8) 6(a)+by(b) for(a,b)e0,5] >
B(dolab) ={ mdylab) + (1-a) 8(a) + b (b) for(a,b) €5\[0,3]”
| dylab) =0 for (a,b) €[0,1]%\§

Obviously £ (- |a,b) defines a lottery for all (a,b) €[0,1] “
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We use fact I to prove that [ is safe. Obviously the definition of § and 7
guarantees that fi(d,|-,-) is isotone in both variables, because mdgl- ) is

isotone.

We will only prove equation 2’) of fact I. Equation 3’) may be proven in the
same manner.

The proof is divided into four cases.

Case 1: Let (a,b) € [0,%] 2

Because p fulfills equation 2°) of fact I and because § vanishes almost every-
where we get

B(d, |a,b) —(d, |0,b)
=p(d; |a,b) + 5 #(d[0,0) + a §(a) + (1 —D) 7(b)

—d, [0,b) =5 #d}10,0) —(1 —b) 1(b)

=] Wdy[tb)dt —a s(dy|a,b) + 2 6(a)
0

=Z dy |5 —(dy|0,0) —5(t) —(b)dt
—a(udg ) —(dy|0,0) —6(2) —(b))
a
= [ Bdgtb) dt = Hdg ab)
Case 2: Let (a,b)eS, b > %

The proof proceeds in the same way as in case 1. One only leaves out the
term 4(d, |0,0).
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Case 3: Let (a,b)€S,a> %—, b < %

Using case 1 we get
p’(dl | a‘:b) _p'(dl i Oab)
- - 1 & 1 ~
=p(d;|a,b) +aé(a) + (1 —b) 1(b)

—id, |3,5) =% #(dy]0,0) =5 6(z) —(1 —b) 2(b)
1
2 1., 11

=u(dy|a,b) —u(d, |0,b)

—id, |3b) + p(d,|0,b) + a 6(a) —5 6(3)
1

2
1 " 1.0 1
—35 #(dy10,0) + (J) fdg|t,b) dt —5 A{dg|5,b)

a

1 1
Wdg ) dt + 5 u(dg5:b)

O D] =

+ 2 6(a) —3 8(3) —5 #(dy0,0)

- 1. 1
+ | Hdgt,b) dt —3 A(dy |5.b)

O DI =

#dqt,b) —6(t) —(b) dt —a(u(d;|a,b) —é(a) —(b))

D] — &
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+ %(ﬂ(dd%,b) —(d]0,0) —5(%) ~2(b))
1
2 1., 1

+ (j) f(dy|t,b) dt —5 By |5:b)

a
=/ i{dy|t,b) dt —a [i(d,|a,b).
0

Case 4:  Let (a,b) €[0,1] 2\§.
Using the upper cases we get if b #-%—

ﬁ(dl |a,b) "‘ﬁ(dﬂo;b)

=u(d, |2,b) —p(d, |1 —b,b) —(1 —b) 5(1 —b)

1-b
—(1-b) v(b) + (j) fi{dy|t,b) dt

—(1—b) (i(dy|1 —b,b) —6(1 —Db) —(b))

= | Mdg[tb) dt —a u(dy|ab) + (1 —b) 4(dy|1 —byb)
12b

1-b
+ (]) id,|t,b) dt —(1 —b) s(dy|1 —b,b)

a
=(]) Ji(dyt,b) dt —a fi(d|a,b).

In the last equation we used the fact that 4 and Ji coincide on [ 0,1] 2\§.

Ifb =% then one has to insert the term % #(dy0,0) which will change

nothing.
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Therefore [i is a safe mechanism. It is easy to compute the utilities for f:
If (a,b) € [0,%] 2 then
u,(%|a,b) =f(d,|a,b) +a ﬁ(dola,b)
=u(d,|a,b) + a #(dy|a,b)
+ (5 —2) mdy|0,0) + (1 —a—b) 1(b)
=uy(kla,b) + (5 —a)u(dy|0,0) + (1 —a —b) 7(b)

2 ul(ﬂl a,b),

and analogously
ug(Ela,b) =uy(ulab) + (5 —b) Wdy|0,0) + (1 —a —b) 6(a)

2 ug(ﬂ'la:b)'

If (a,b) € 5\[ 0,3 * then

uy(Blab) =u;(slab) + (1 =2 —b) 1(b) 2 u; (ula,b)
and
uy(E|a,b) =u,(k|a,b) + (1 —a —b) &(a) 2 uy(a,b).

If (a,b) €[ 0,1] °\S then

u]_(.nl a’)b) =111(/l,l a"b)
and
uz(m a‘)b) =u2(lu'l a”b)

Therefore /i is individually rational and 4 is efficient only if 4(d;|0,0) =0 and
wresf =i,
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Now let 4 be a feasible mechanism that fulfills the assumptions of the lemma.
Let & be a feasible mechanism so that

ui(ﬂl' )2 ui(/'l‘l' ) fori=1,2.

We conclude

*) ﬁ(d0|a,b) < u(d0|a,b) for (a,b) €S,

because for (a,b) €S
u,(£]a,b) + ug(p|a,b)
=u(d, |a,b) + u(dyla,b) + (a + b) u(dy|a,b)
=1—(1—a—b) u(d,|a,b)
<uy(plab) + vy(Alab)
=1—(1—a—b) u(dy|a,b).

We know that

i(dy10,0) =(dy10,0) =0
and that for i =1,2

This implies
(- 10,0) =x(- |0,0)

because ¥ p(d|0,0)= X 7(d]0,0) =1.
deD deD
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With the help of the inequality

a
ul(ula,o) =/ I.L(doit,O) dt _ul(ﬁ"IOaO)
0

a
< ul(plaao) =I p’(doltao) dt —ul(ﬁl070);
0

we get the result

a a
{ B(dy|1,0) dt 2 [ w(dglt,0) dt Vae[o,1].
0 0

With (*) we conclude
(dy|a,0) =u(d0|a,0) for almost every a €[0,1].
Analogously we get

7(dy]0,b) =4(d|0,b) for almost every b € L]

#dgl+,0) and ﬂ(dol- ,0) are isotone. Therefore assumption 2) of the lemma

guarantees that

P’(dol‘ ,0) < /_"(dol' ,0).

Analogously we get

Hdg10,) < dgl0;-).
Inequality (*) yields

wdy |- ,0) =a(dy|-,0)
and p,(dolO,- ) =ﬁ(d0|0,- )

Lemma 4 implies

Wl )]s =Pl )]s
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Equation 2’) and 3’) of fact I yield
wd]- ,‘)|S=l_‘(d|' ,')IS VdeD.

Therefore u, (4] - )IS =u(zl- - )|S for § =1.2.

Obviously the utilities of & and % coincide elsewhere because p and o are
individually rational.
#

If we have two mechanisms that fulfill the assumptions of the lemma, then
every convex combination of these mechanisms does fulfill the assumptions
too. Therefore we have the

Corollary: The set @ 5 of the efficient mechanisms is convex.

If we look at lemma 7 we see that if f is an isotone function, so that
sup {f(t) | t < a} =f(a) Vae€(0,1] and £(0) =0,

then we can construct a mechanism g so that p is efficient and p(dO |-,0) =f£.

The efficiency—condition of the previous lemma determines 4 up to the set

§={(ab)€[0,]]%|a+b=1}.

Therefore we get another

Corollary:  Iff:[0,1] —[0,1] is an isotone function, so that
f(0) =0 and f(a) =sup {f(t) | t <a} Vae(0,1]

then there exists an efficient mechanism g, so that u(d0 |-,0) =f.

L is uniquely defined up to the set S.
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Now we define a class of mechanisms that span the set of all efficient mecha-
nisms. For r €[0,1] define the mechanism x . by

(@ [ab) 0 ifa<r,b<1l-—r
X (dgla,b) = 5
0 1 else

(@ [ab) r ifa<r,b<l-r
X d a.,b= )
1 0 else

l1—r ifadr,b<1—r

x (dy|a,b) =
2 0 else

It is easy to see that all these mechanisms are feasible and efficient.

A mechanism is called simple iff it is a finite convex combination of the
mechanisms above.

Lemma 9: Let x be an efficient feasible mechanism. Then there exists a
sequence {un}IIEJN of simple mechanisms so that

fim g |ab) =u(- [ab) ¥ (ab)€[0,1]2\5.

n-o

This implies

tim u(4"|a,b) =u(ulab) V(z,b)€[0,1]%i=12.

n- o

Proof: First we construct the simple mechanisms.
For n €N, k =0,...,2" define ai: c=k. 20

For n €N define the mechanism

2"
x"= % (/‘(dolalﬁ_*_l’o) —l"(dolai;())) X n
k=0 o

+ (1 —p(dy|1,0)) x ;-
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All coefficients are non-negative because p(dol- ,0) is isotone and

the sum is 1 because p is efficient and therefore ;L(do |0,0) =0.

Let a €(0,1].

The definition of the x 5 and the fact that u is efficient, lead
a
k+1

to

glat)= B (dglef; 0) —mldglaf0)
k:ak+1<a

=y 1, (2),0) —H(dy0,0)

=p.(d0|IIn(a),0),

where II (a) : =mix {aﬁlalﬁ <a}, YneNl

Obviously we have

timIl (a) =a.
n-o

This shows that

tim x™(dg|a,0) =tim u(dy|I (2),0)

n- o n- o

= Sup p,(dola’,O)
a’< a

=u(d,|a,0).

Because the mechanism y n, n € N and 4 are feasible and efficient
the corollary shows that {x n}nem converges against 4 on [ 0,1] 2\3.

#
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It is possible to replace the approximating sequence of simple functions by an
integral-representation in the following sense: '

If 1 is an efficient feasible mechanism then
ud, |+ ,0) is isotone,

continuous from the left,
p(dOIO,O) =0 and u(d0|1,0) <1.

Therefore u(dol- ,0) can be regarded as a distribution function of a measure
¢ ,on [0,1] (with the Borel o—algebra); that is
8,(10.2)) =uldgl20) Vaelo,].

Then it holds:
Wdlab)= f x (d|ab)¢ (dr), VdeD, V(ab)€[0,1]\3
(0,1 7 H

and

u(ulab) = wlx lab)o,(dn), V(ap)e[01]?i=12.
[0,1] g

)

Because of lemmas 5,6 and 8 it will suffice to prove

mdgla,0)= | x(dgla,0)¢,(dr) Vae[o,l),
[0,1]
to prove the first equation.

This is easy to see. If a €[ 0,1) then

oy Xells0) ()

=[ 0{1] 1[ 0,a)(r) ¢u(dr)

=0,(10))

=/b(d0 ‘ a,O),
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where 1[ 0,2) denotes the indicator function of the interval [ 0,a).

)

The second equation follows from

[0{ N u;(x pl2,b) ¢,(dr)

oy Olab)  x(dls)) 4,00

X4y a0) a0 +2 S X (Gglab) (a0

[0{1] [

=u1(u|a,b)

and an analogous equation for i =2.

We say that a feasible mechanism 4, is better for agent 1 than a feasible
mechanism p, iff u (uy]- ) 2 uy(sg]- ,») and there exists (a,b) € [0,1] 2 50

that u; (s [2,b) > u; (ke |a;b).
If r,r’ €(0,1] then there exist (a,b), (a’,b’) €[0,1] 2, so that
uy(x ,1a,0) > uy(x .|a,b) and u, (x |2,b’) <uy(x ,|a”b%).

X  is better for agent 1 than x 0 forall r > 0.

This may be generalized to arbitrary efficient mechanism. If x is an efficient
mechanism then x may be represented as

#=[ X p $,(dr).

o
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We will see that if ¢ #({0}) =0 then there exists no feasible mechanism that is
better for agent 1 than . The condition ¢ u({O}) =0 is equivalent to the
condition

inf p(d,|a,0) =0
a>0

because u(d0 |-,0) is the distribution function of the c—additive measure ¢,u'

Let u be an efficient mechanism with
inf ,u(dola,,O) =0,
a>0
and let [i be a mechanism that is better for agent 1 than p.

If there exists such a mechanism [ then we may assume that f is efficient.

Fact III implies that

‘11(/1'|070) =/"(d1|0>0)

=1 —(Jl) w(dy 1,0 dt

1
<1—{ Bdylt,0) b
0

=u1(ﬁ|070)

Therefore

1 1
[ (dy]t,0) dt 2 [ A(dy|t,0) dt.
0 0

I is different from g and both mechanisms are efficient. This implies that
there exist 6 > 0 and a set R, which has positive Lebesgue—measure, so that

wdy14,0) —dy[,0) 2 6 ViER.
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We compute u,(x[0,b) for b€ [0,1].

Because
u1(/‘|a,b) + uz(/"la:b) =1—(1—a—b) /“(dolayb) ¥ (a,b) €[0,1] .
we get

uy(10,5) =1 = (1 =b) pdg0,b) —ug(|0,b)

=g (4]0,1) —u(4]0,b) — (1 —b) u(dg[0,)

=i #(d0,t) db—(1 —b) u(d;|0,b).

Lemma 6 implies that there exists a set N1 C[0,1] of Lebesgue—measure zero,

so that for all b€ [0,1] \N;

1
uy(410,6) =J (1 =(dy |1 =40)) dt ~(1 =) (1 ~u(dg 1 ~b.0))

1-b
=(1-b) udol1 —b,0) — [ dg]t.0) dt.

Analogously there exists a set N, C[0,1] of measure zero, so that

1-b
w(B100) =(1. =) fdg |1 —5.0) = [ Hdg|10)

for all b €[0,1] \N,,.
it is better for agent 1 than p. Therefore there exists a set N : =N, U N, of

measure zero, so that

1-b
0< (1 =b) (B |1 ~b,0) ~aldg| 1 ~b0) = [ (Hdq110) ~(dy|1,0)) e

YV be[0,1]\N.
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It is necessary for this inequality to hold that the difference
is not decreasing on [0,1] \N.

We know that
ﬁ(dolt,o) —-p(dolt,o) <—§ forallteR.

Therefore there exists ¢ > 0, so that

Adgl2,0) —(d,)2,0) < —6 for all t €[0,] \N.

But this is impossible if inf u(dj|a,0) =0, because i(dy|-,0) 2 0.
a>0

We have proven the following

Lemmal0:If the feasible mechanism y is efficient, inf u(dola,O) =0 and [ is
a>0

another feasible mechanism,

then ul(ﬂ‘l S ) < ul(ﬂl N )

implies  u(p]-, ) =uy(E]-, ).
An analogous statement holds for agent 2.

We started from the point that we have a bargaining problem with trans-
ferable utility. The lemma shows that this transfer between the agents is
restricted if we look at efficient mechanisms. If we change from one mecha-
nism to another then the utility is increasing for some types and decreasing
for other types of the same agent.

But this is not a utility transfer only between the types of one agent. If

inf p(d;|a,0) =0 then it is not possible for agent 2 to transfer utility
a>0

between his types without harming some types of agent 1.
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Some remarks

1. The model which is discussed in this paper may be used to describe
another bargaining situation which appears frequently in daily business.

Suppose two agents (firms) may produce something together. They know
the reward they may receive, but every agent knows only his own produc-
tion costs and it is impossible or very costly to prove the costs to the
other agent. Like the old bargaining problem we may model this situation
in the framework given by Myerson [ 3] .

There are three possible decisions:

ao . the agents don’t produce;

al :  the production takes place and agent 1 gets the whole reward;

&2 :  the production takes place and agent 2 gets the whole reward.

The type of an agent is determined by her/his costs. If the costs are t

then we say that the type is t. We assume that the agents are risk neutral
and define the utilities of the decisions by the following schedule

v,(- |a,b) 0 l1—-a -—a
7o(- lasb) | 0 b 1=b

Obviously this bargaining problem can be transformed into our old bar-
gaining problem by a linear utility transformation. Therefore all results of
this paper do hold for this new bargaining problem too.
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2. In this paper the feasible efficient mechanisms are characterized. The
agents have to agree on one of these mechanisms and stick to it when
they have revealed their types. But which is the mechanism they may
agree on? When they discuss this problem both players have private
beliefs about the probability distribution over T, x T2' According to this

beliefs each agent may compute the mechanism that is optimal for
her/him. Suppose that ul(resp. ”2) is an optimal feasible mechanism

(which may be supposed to be efficient) for agent 1 (resp. 2). Then the
mechanism 4 =% (,u1 + ,u.2) is efficient because the set of efficient mecha-

nisms is convex. This mechanism g may be the mechanism the agents
agree on.

3. Following the second interpretation of the formal bargaining problem I
want to make a proposal which feasible, efficient mechanism will give a
fair division of the profit. The best we can demand is that the profit is
divided equally for each combination of costs. This means we demand
that our solution g has to fulfill

i, (kla,b) =Ty(slab), ¥ (a,b)€[0,1]%

We can transform this condition into our primary model:
uy(klab) —a =uy(k|a,b) b, ¥ (a,b)€[0,1]%
At once we conclude
1
If we restrict ourselves to the case b =0 we get the condition
#(d;10,0) + a p(d;,|0,0) —a
=u,(p|a,0) —a =u,(u|a,0) =4(d,|a,0)

=1—u(d,|a,0) —p(d, |2,0),
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or equivalently

2(u(d; |2,0) —3) =a —(1 + a) #(dy|3,0).

Fact I implies

2 z wdy|t,0) dt + (1 —a) ydyla0)=a, Va €[0,1].

This integral equation has a unique solution
dyl-,0): [0,1) =R

To see this, suppose that the equation has two solutions. Then the differ-
ence f: [0,1) — R will fulfill the equation

2 I £(t) dt + (1 —a) f(a) =0, Va€[0,1).

But this equation has only one solution, namely the zero function, which
can be seen in the same way as in the proof of lemma 5.

It is easy to see that the solution of the inhomogeneous equation is given
by
Mdyla0)=a, Vae [0,1).

This defines p completely, according to lemma 7.
We will now compute g and will see that u fulfills our fairness condition.
We get for all a,b €[0,1):

#dy0,b) =1 —p(dy| 1 —b,0) =b,

|9’
Nl DN

bl

a
_ 2 1.1
My [30) =] 1 dt =a” + 5=

2
1 b
Mdy|0,b) =5 —=5,
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1

At last we see that

u,(ula,b) —a =u(d, |a,b) + au(d,|ab) —a

=3 (1 —a—b)?

=u,(u|a,b) —b, V(ab)eS.
If we define
wdylab) =1, V(ab)e[0,1]2\S

then the condition is fulfilled everywhere.

This fair division mechanism is uniquely defined up to the set

§={(a,b) €[0,1]%]a + b=1},

and the utility is uniquely defined on [ 0,1] a4
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