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1. Introducticn

The investigation of two-person zero-sum repeated games started with a
series of papers by R.AUMANN and M.MASCHLER in 1966. Since then those games
attracted a lot of interest, in particular because it was felt that the way
of cellecting information as described in those games is a central aspect

of using information strategically.

The common core of the class of games to be investigated ("repesated games")
here is characterized by the presupposition of a finits set of "statzes of
nature" together with a probability distribution given theresupon. Once been
chosen the state is assumed to be fixed along the duration of a play - an
assumption which contrasts e.¢g. to the model of stochastic games. The
general model of repeated games allows for - and enforces - the treatment
of a series of specific cases. However, the yet available ({positive)
results are mainly related to the two-person zero-sum cass. This case mpay
further be classified according to the amount of information the players
may acquire in the course of a play. In this exposition we shall confine
ourselves to the assumption of lack of information (on the state) on both
sides and of knowledge acquisition by the observation of thes opponent's
actions in the past. Finally we shall assume the game to be of infinite

duration.

The class of games to be considersd in the sequel has been dealt with
before e.g. by R.AUMANN, WM.MASCHLER, and R.STEARNS [67], J.F.MERTENS and
S.ZAMIR [77] and, within a survey, by S.SORIN [79]. In those papers
formulae for the maxmin and the minmax of the attainable payoff were given,
and, using those formulae, the existence of games without a value was

shown.

The reasons for re-investigation of the models are twofold.



Firstly the author estimates the available proofs toc be not CORVInCing even
though the later versions are by part elaborate versions of earlier
attempts. The main gap seems to be related to the separation thecrem, which
provides a further game with an (hopefully) existing and identical value.
This two-step game may be thereafter used iteratively to give a basis for
elaborating a single-stage formula for the payoff achievable in the

repsated game.

Secondly, the author proposes a new method of proving cne-stage formulac

for both, maxmin and minmax. Its tools are provided by information-theory.

The main observation is that, given any pair of stratsgies, the seguence of
the Jjoint conditional probabilities on the states, given "historiss" of
increasing length, becomes statiorary. This frees the analysis from paying
attention to the dynamics contained in the optimal stratsgiss of the

repeated game, at least from some stage on.

2. The Model
Let us formally describe the games to be investigated.
Assumé to be given finite sets of states of nature % and #., Let ¥ and w
denote the finite sets of actions available to the players and assupe
the payoff to depend on the actions and the states via

u: (& x 7} x (4 x ¥ — R,

w {r,s; x,y) is the amount given to player 1 and to be paid by player 2.

Let R and S denote random variables with values in % and ¥, their joint

distribution is given by w € 4 (& x ¥).



We shall later assume R and S to be independent, which means

A plr,s) = pl(r) . yz(s)
r,s

fer some Hy € 4a{®}, py € Aa(#).

Having provided the paramesters of the game we may now define the rules

according to which the game is plaved.

(1) At stage 0 a pair (r,s} is chosen according to u.

(2) The strategies of the players are represented as infinite
sequences of conditional probabilities (Xt)tzl and (Yt)tzl’
respectively. Using the notation U | ®" = ¥ for a conditional

probability on ¥, given m € 1, we denote the strategy ssts as

o= X)) /

R A

X141

and

# x {1 x ‘?.J}t = U}.

i(Yt)tzl

Verbally: at each stage t+1 the players may use all the actions

z /

2 Vsl

xt and yt chosen previously and the knowiedge on the states of
nature r (player 1) and s (player 2) to find the action to be

used at stage t+1.

For convenience we prefer to use random variables instead of their
(conditional) distributions. Observe that the random-mechanism p and the
strategies of the players give rise to the definition of random
variables on the set infinite sequences on actions (7 x W)m. By a slight

abuse of notation we may alternatively describe the strategies by means



of random variables (Xt)tzl and (Yt)tzl satisfying the markov-chain
conditicn
A (S,Y. ) = (R,X5, YY) o x
"Tr+l T t+1
t el
{3)
A(RX ) o (5,x57Y ey
r t+1 ! ? t+1f
teN

respectively.

The symbol "+" is meant to indicate markov-chain property:
A =B eC
is defined to express that A i1s independent of C given B, or
Pr {A=a |B=b, C=c| = Pr {A=a |B=b}.
Observe that upper subscripts denote sequences, where lower subscripts
denote their components, e.q.
xt = (xl,...,xt).

It should be noted that the restriction on beshavior strategies as given

above causes no less of generality since Kuhn's theorem appliss.

Continuing the description of the game we shall now provide the playsrs'

incentives to act in sowe way or other,

{4) Assuming states r and s been chosen and actions x and y being

selected at some stage, the payoff ulr,s; x.y) results.

Observe that this pavoff is not known to the players, compare (2).



The players are assumed to be rational in as much as they are interested
in the maximization of their payoff. Due to the infinite duration of the
game one has to be careful about the definition of the players' aims.
Observe first that the aggregate payoffs are quite generally not
defined. Also the near at hand approach of average payoffs up to stages

c.. 7, 7l,.... is not available since its limit
_1 T
lim » " E [ £ uw(R,S; X_,Y.)]
t't
T t=1
does not exist in general. But the following definition may be used:
Definition

Flayer 1 can guarantse u, if

.
AV v A A Elr 1 z u(R,S;xt.Yt)] > U-e.

e (X)) T =T {Y) t=1

t t
Player 2 can guarantee u, if

..1T
AV v A A E[r =z u(R,S;Xt,Yt)] < ute

e (Yt) T T (Xt) t=1

*x
Let u, (u ) denote the maximum (minimum) player 1 (2) can guarantee.

S

Quite cbviously u, ¢ u .

*

The game is said to have a valug, 1if wu, = u .

For easier reference and for obvious reasons u is called the "maxmin"

*x
x

whereas u is denotes as "minmax".

The payoff function wu(:) and the probability distribution ux give rise

te a normal form game r{w) via definition of the payoff

ulx,y) = I ulr,s) ulr,s; x,y).
Y,s

The value of this game ({val{r{u)}), as well as the value of our repeatad
gare both heavily rely on the probability distribution p; - but more

than this i1s trus. It comes out that a characterization of the




functional dependency between the initial distribution g and the value
of the repeated game can be given in terms of the value-functicn for the
one-shot games given above.
In fact, the following thecorem may be proved:
Theorem
For a repeated game with initial distribution u = Ky * Ho, of
product form the identities

max min = (cav vex val r(ﬁl,ﬁz)) (pty < iy

o H
and
min max = (vex cav val r(yl,pz)) (pl,pz)
Hy H
hold.

Already in 1967 R.Aumann and M.Maschler gave an example for which
cav vex val and vex cav val did not coincide. Thereby they showed the
existence of a repeated game without a value. For thigs and other

examples the article of S.Sorin may be consulted.

The above result suggests that the players can make only limited use cof
their infermation concerning the true state of nature. It serves only as
far as concavification and convexification is concerned. The heuristics

behind this phenomenon may be given as follows:

Making use of private information, i.e. using a strategy depending on
the true state to the ignorant player. In fact, using the knowledge on
the actions chosen by the oppeonent makes posterior probabilities on the

space of unknown states accessible. The more one player uses his



information, the more information is revealed and thereby acquired by
the opponent. The theorem shows that the use of information in some way
or ancther changes the game to one in which no player makes use of his
private information, since the formula apparently suggests computation

of the value as an averaged cne-shot game.

3. A Fundamental Result

As indicated in the previous section we. shall now prove that in the
course of time the repeated game 1s converted in such a way that neither
player uses his private information any more. In fact, ws shall prove
that, given any pair of strategies (X,Y) the whole private information

gver used by the players is revealed prior to some stage T(X,Y).

First we give some basic definitions and information-theoretical results
needad in the sequel.
For random variables U,V and W we list:

(1) H(U) denotes the entropy of U, defined as

H{U) = - = Pr{U=uj log Priu=ui
uey
(2) H{V|U) denotes the conditional entropy of V given U, defined as
H(V|U} = - Zz Prig=u}] I Pri{vV=v|U=u} log Pr{V=v |U=su}
uel ver

{3) I{UAV) denotes the mutual information of U and V, defined by

I{UAV) = H(V) - H(V]U).

{4) I(UAV|W) denotes the conditional mutual information of U and V,

given W, defined as

T(UAV [W) = H(UIW) - H(U|V,W).



As bhasic properties we mention:

H{U)

(1 0 ¢ H(U V)
I{UAV)
I(UAY [W)

(2)  HUP,W < (U IV)
H{U |W)

(3)  HU, VW)

R4

H{U W)

H{V W}

(4} I(UAV,¥) = IT{(UAV) + I(UAW|V}
{Kolmogorov-identity)

(5) U are V independent, if and only if KUV} = H(U) and,
aquivalently if and only if I{U~V) = 0.

{6) U and V are conditional independent given W, if and only if
I(UAVIW} = 0, We may equivalently use the notation: U,W and V for
a markev-chain and denote this fact by UsWev.

{7) The {conditional) mutual information and the entropy are
continuous real-valued functicns with respect to the probability
distributions involved. Ne difficulties may occur since the sets
#,8 1 and ® will all be assumed to be finite.

3.1. Definition

A sequencs (yt(-|zt)) of conditional probabilities 1is

t=1.,2,...
said to become (¢T}-stable, if

t

T T
AV A e, {lz /npt(-jz )—pT(-|z Y8} e,

e, 50T 7 7

where zT = proj T(zt) denotes the projection of the sequence zt

on its first T components.

3.2. Proposition

Given any pair of strategies (£,Y) the sequances
(p(-,-lxt,yt)tzl 2 of conditional probabilities on =& x =#
becomes stable with respect to the marginal distributions on

Tt X wt induced by w € 4Al® x ¥} and (X,Y).
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Prootf
Observing the conditional entropy H(R,S|Xt,Yt) to be antitonic in
t and bounded from below (by zero} the sequence converges. As a
Cauchy-sequence, given any po > O there exists T € M such that for
all 7 > T the inequality
p > HR,S|K,Y) - BR,S|X7,¥7)
= I(R,S A (XT+1,YT+1,...XT,TT)|XT,YT)
holds,

Due to the continuity of the conditional mutual information and

because of (6) vwe get the desired result. ¥

Fronm our assumption on the strategies available to the players we nray

easily infer a central identity:

, t ,t
Since A I(Xt+1 A S’Yt+1 | .Y, R)
t el
=0
= 1Y, . AR .. | X5,¥58),

t+1 e+l

for any pair of strategies (X.Y) and concluding by antitonicity,
_ t ot
0= I(Y . AR[Xx,¥,S)
we infer the central
3.3 Identity

A I RAY,. .S |x5y5

X :
+
tel t+l

t+1’

t _t
I(R A Yt+l' S | XY

IR A5 | x5v5.

We may now investigate properties of the conditional probabilities on
the set of states induced in the course of a play. Those conditional
probabilities are shown to be of product-type if the initial probability
U e A(® x ¥) 1s a product of Hy € 4{®) and Ho € A{F) .

Assume from now on R and $ to be independant.
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3.4 Lenma
Let (X,Y) denote any pair of strategies. Then for all 7 = N the
conditional probability on ® x + under the condition (XT,YT), is
of product-type.
Proof
It is sufficient to show
IR as |X,¥) =0,
However, by recursive reasoning and using the central identity we
find
0 = I(R ~ 8)

= I{R. X, A S, Yl)

1
> T(R A S{&;,Y,)

= I(R,X, A S, Y, [%,,¥

2
> TR ~ §[x%,v%)

1

_ t ,t
- I(Rth+ N S'Yt""l IX ;Y )

+
t l'Yt+l

1

> (R Fa SIX )

> TR A S[x,YN). #

Re-investigating the central identity 3.3 we find all the terms to be

zero, provided the independency of R and § holds. Thus we find the

3.5 Condition

A (XL R) e (x5,YY) e (v

teNn

s)

t+l t+1’

to be a surrogate for the two markovity-conditions given in (3), sesction

2. (condition 3.5 obviously implies both parts of (3}.)
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By preposition 3.2 we found that the conditiocnal probabilities in the
set of states become stable. We shall now investigate the assunptions
under which the approximate result "stable” becomes trus in a strict
sense. To put it another way: What is the assumption on the strategies
that guarantees the sequence of conditional probabilities te become
stationary?

3.6 Lemma

For:strategies (X,Y) the following conditions are equivalent:

. T.,T
{i) T?T {(R,8) = (X", Y} = (Xr+1’YT+1""Xr’YT)
and
(i1) AR5 ex
t>T
and
A s e (x5 Y 2
t>T
Proof
The markovity
T ,T
A (R,8) « (X", ¥") = (Xt+1’YT+1"" XT,YT)

7> T

holds, if and only if

_ T T
0 = IR,S) A (Kp . Yo joeer X ,¥) | X,¥)

- which is, using the Kolmogorov-identity extensively, equivalent
to

A (R,S) e (x5,YY) e (x
tyT

¢n the other hand, I{R.S A X

t+1'Yt+l)°

T,T
T+1’YT+1"" XT,YT | £°,Y") may be
split up to give

a

HR,S[XT,¥Y") - H(R,S|x7,¥")

HRIX Y)Y - HR[XT,¥)

st yh) - Hs T, YT
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X, ¥ XT,T}

T+1 Tme1r 0 R Yy I

T T
# (S A Ko Yoyaieee X Y| X,Y0),

= I{R A X

where we used lemma 3.4 to ensure the second equality.

For symmetry reasons it is sufficient to show the squivalence of

T.,T, _
I{(R A XT+1' YT+1"" XT, Yr ] Y ) =0
and A R o-(Xt,Yt) - Xt+1 Using the Kolmogeorov identity we
0T
infer
_ T T
0 = I{R A Xpyy Yopqoees B,Y | X,¥0)
-1
t ,t
_th I(R A Xt+l, Yt+1 PX,Y0)
r-1
_ Tt t+1 t
=2 IR A Xt+1 | X7,8°) + I(R A Yt+1 | X YO0
t=T
As a consequance it remains to prove the equality
+
0o=1(R Av,, | xyY

t+l
quite generally for all strategies X,T and t € W.

QObserve however,

t+1 t
I(R A Yt+1 | X ’ Y )

t ¢t
LE NN A

[ PaN

= 0'

the last identity following by assumption {(3), section 2. #
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4. An alternative Representation of the Payoff

Having been occupied with the dynamic structure of plays of the gane, we
shall now investigate the payoff resulting from an arbitrary pair {(X,Y) of
strategies. It will emerge that the payoff may be divided into two parts.
The first one results from the choice of actions up to some stage 7. Since
this interval is finite it may be neglected from the payoff--centered point
of view. The remaining portion may be viewed as being derived from playing
a supergame. This 1s due to the fact that the conditional probabilities on
later stages may be approximated with arbitrary exactness by the
cenditional probability already obtainsd at some stage T. Thus we shall
argue that the true seqguence may be repléced by the constant sequence of

conditional probabilities on % x ¢, computable.as early as T.

4.1 Lenma
Let ¢ > 0 and a pair of strategies (X,Y} be given. Then there

exists T € M such that for all r > T

e> et
RSX'Y t
-1
- T
t

-
z u{R,S8; X

Y]
1 t

t

t-1 ,t-1
E,., ..., IE XY R YT
1 Xt l,Yt 1 XthRTST 't

[u(RT,ST

M~

Here the notation is as follows:

The joint distribution on (% x ¥} x (%' x %) induced by R,S and

-1

X,Y is rewritten as marginal distribution on (% x wr-l) times

the conditional distribution on (& x ¥ x (%X x %). {RT,ST)

dencotes the conditional probability on & x ¥ given XT, vT,
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PROCF

E [T_l

RSy t
. 1 )
=7 " E [E [u(Rlsl,XlYl)

XlYl Rlsl

ot~

1u (R,S; Xt'Yt)]

T

v ox oy U EUIR SR ) (K Y Ry ST
272 Tr t=2

-1 )
=77 (Ey y [Ep o [u(Ry,S;5X Y]]

11 171

T

T By vy, g s xy....xy [ ZulR,S;
T r t=2

A .Y 0 (X, ,Y.10)
17 RySEpY,- L

By iteration we obtain the coincidence of the payoff with

-1
r - (E (E [u(R,.S.; X, .Y,)]1]
XlYl Rlsl 1'71 1771
2 .2
+ E {E [u{rR,8,; X,Y,) [X",¥"]]
XZ,YZ R252 2 2 272
+
, =1 -1
PE g 1By oy g [MRLSLEYRDSYE D
X Y rTTrTroT
r
-1 t-1 ,t-1
=7 : B ., . [E [u(R_, 5. XY H|X ~, ¥ 711
ec1 gt 1Yt i X YRS, t'7t Tttt

Now proposition 3.2 may be used to replace the conditional distribution

(Rt,st) by (R ,ST) for all t > T. In fact, the terms

T
t,t
E £ {u(Rt,S ,Xth)|X Y]]

Xth Rtst t

are approximately equal to

tot
E, (B, . [u(R,.5, X .Y )|X'¥1]
Eytt RoSy t ot

for t »>T, T sufficiently large and thus even the weighted sum may be

T'ST,

replaced by a sum in which the expressions within the tail are replaced.

#
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The lemma may be summarized verbally as:

Given any pair of strategies (X,Y), there exists T € N such that from T
on the conditional probabilities ;d-,-|xt,yt), t > T are changing so
little that, as far as the payoff is concerned, the true probabilities
may each be replaced by the conditional probabilities p(-,~|xT,yT)

induced at stage T.

Assume a strategy Y of plaver 2 to be fixed.

A strategy X is called T-compatible (with X) if

(1) A . =%
t=1,...,T

. t ot
(ii) A Re(R,Y) X
£>T t+l

Looking back to the proof of lemma 3.6 we find that T-compatibility is
eguivalent to

AR < (X7 ¥7) o (¥

XT.YT)
T

T+1’YT+1""
or

A BRIV = BRETYT

T
(= B(R T, YY)

This means that the conditional probabilities ;ﬁ(z|xt,yt) on R become
stationary and equal to pl(2|xT,yT) for t > T, whers, as usual we assume
{("by notation™) projT (xt,yt) = (xT,yT).

As a consequence the conditional distribution on R is also not affected
by a variation of the strategy Y of player 2 which takes place on stages
t > T. Thus we may denote ¥ to be T compatible with (pl(zle,yT)), where

we tacitly assume (XT,YT) to be given.
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We shall now prove that for any pair of strategies (X,Y) there exists T
and T-compatible strategies (X,Y¥) which are almost payoff equivalent to
(X,Y).

4.2 Corollary

Let ¢ > 0 and X,Y be given. Then therz exists T & W and

T-compatible strategies ¥ (and ¥, respectively) such that

r

-1
e > [E [r Z ufR,;X..Y)]
RSX Y’ t=1 vt
-1 T t-1 t-1
-7 £ E_ .. .IE (u(Re, S, Y ) |X° 5,y 717
=1 gt lYt 1 xt,Yt,RT,sT T M Tt
{and
..1 T
e IE (r z u(R,S;Xt,Yt)]
R, XY™ t=1
-1 T t-1 ot-1
- T Z E _ _ [E [u(R fS ;X p? ) |X r? 1]) |)
r=1 yxt lgt 1 X Y RS, 7Tt
Proof

As a consequence of the preceding leama it is only to be shown

that for sufficiently large T and t » T the expectation

_ t-1 _t-1
Exth[ERTST[u(RT,ST,Xt,Yt)IZ YT

is approximately equal to

. t-1 t-1
E . t[ERTST[u(RTS PR Y)Y,

7y 7

This however, follows from proposition 3.2, lemma 3.6, the

, , t-1 ,t-1 . .. )
continuity of I(R,tht+1Yt+l|X Y } and its coincidence with

zero, if and only if (X, ,Y) = xU1y' Y o (R,8), in as much as
thereby the nearby independency of (Xt,Yt) and (R,S) given

thl, t-1

( Y } 1s insured. Continuity of the expected payoff as
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function of the wunderlying probabilities given the desired

result. #

Now, suppose (Xt,Yt) to be given. The sets EI. fg

T-compatible with (XT,YT) {or, with (p(-,-|xT,yT)) may be viewed as sets

of strategies

of strategies for supergames for which pre-play correlation takes place
by observation of randomly generated sequences (xT,yT) preceding stages
T.

Regarding (XT,YT} to be fixed for a while, ws may denote those super-
games a3 a correlated supergames,

Observe that all the T-compatible strategies trivially give rise to an
identical correlated supergame and are thus indistinguishable at stage
T. The mmost efficient pursuit for the players, once xT,yT and
y(-,-]xT,yT) being common  knowledge, 1s  consequently the one

guaranteeing an optimum payoff within the correlated supsrgane.

5. The value of a correlated supergame

The value of a correlated supergame will be shown to be easily derivable
frem a particular case of the famous "folk theorem™. This result, atiri-
buted to R.AUMANN and L.SHAPLEY, establishes the coincidence cof the set
of equilibria of an infinitely iterated norrmal-form game with the set of
individually raticnal paycffs. This characterization allows for the
computation of equilibrium paycffs in the supsrgame, - at least 1in

principal.
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Let us give the formal definiticns.

Suppose 4 = [1,...,Ni{ to denote the set of players. For cach n € 4+ a
finite set of actions in available to player n is given and assume the
payoff functions
u I r o iR, n € A

n n

n

to relate the payoffs to all plavers with the selscted actions.
A supergams r” is defined as the infinite iteration of a normal-forn
game, such that its strategies are given as vectors (X, ) and (Y, )

t tei t'tel’
t ot

t B
where X ¥ — r and Y [ TTOX W = U,

)It
pe 12X t+1

The concept of an equilibrium (value) is burdened with the same diffi-
culties as for infinitely repeated games, thus the same solution is used
here. We omit its formulation.

For the one-shot game we shall use the following notation: We shall
denote the convex hull of the {achievable) payoff-vectors by ¢, i.=2.

¢ = conv ({uN(xN)lxN € %Nl).

Define the maximum payoff player n can guarantee for himself to be L

¥ = max min {E[u_(X ,XN n)]}
n n
b4 N-n
n X
(= ain max tE[u (X ,XN 1)
n''n
N-n p:4
X n

Then the sat of individually rational pavoff-vectors is defined as

C.=1{a €C/ ~ a > rn}.
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R.AUMANN and L.SHAPLEY found

5.1 Theorem (folk theorem)
The set of payoff-vectors induced by Nash-equilibrium strategies
of the supergame r” coincides with the set of individually
rational payoff-vectors CR of r.

Whereas the set of equilibria generally is greatly enlarged by the

transition from the one-shot to the infinitely iterated game, this is

not the case for the class of two-person zero-sum games.

In fact, in this case the above sets and numbers reduce to

¢c = Hal,az)/;ntlnx {u(xl,xz)l galgzaxx |u(xl,x2)} a, = - al}
1'72 172
r, = iax Eln E[u(X1,X2)]
1 2
= vyal (r)
=—r2
and consequently
Cp = {(az’az) / a; 2 val(r), 3, 2 - val(r), a, = - 31;
yielding
5.2 Corollary Co = {(val(r), - val(r))}.
Verbally:

The payoff for player 1 resulting of equilibrium strategies of a zero--
sum supergame is given by vwval(r), or

val(r™) = val(r).
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Suppose now cerrelation of strategies of a supergame to be available by

joint observation of sequences xT € ?T and yT € vT, randomly chosen.

{The mechanism according to which xT and yT may be specified arb-
itrarily, known or unknown to the players.) Denote this game by rzorr'
It is observed that this type of correlation does not change the value
of the supergame.

5.3 Lemma

Aval (7 ) = val () (= val(r)).
T corr .

Proof
. T T , .
A correlation svector X',y and the realization of a strategy

within r:orr may be viewed as realization of stratsgies within

r”. The total difference in payoff obtained from intsrpretaticn

in either case is
T

z ulx,,v.}
g1 0F

which 1s negligible in as much as it 1is only the asymptotic
behavior of the payoif, that counts.

Suppose novw a strategy X(Y¥} within r” to guarantee some pavoff a.
Then its cut version X(Y} of the available strategies of rgorr

equally guarantees a. Consequently val (r™) = val (rzor). #
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6. Generation of Supergames and Attainable Information

The particular supergame which is generated in the course of the play
depends on a stochastic and a strategic component. The first one is due to
a particular realization of the random strategies whereas the second
depends on the strategies which the players decided to use. It remains to

investigate the latter component.

Consider now the set of privately observable states of nature of any one of
the players. Our first observation will be that the players may genzrate
conditional probabilities on this set on their own, by playing
appropriately. More precisely, for some strategies of player I the
conditional probabilities on R only depends on the realization of X, but

not on those of the opponent's strategqy.

6.1 Lemma
Let X denote a strategy of player I additionally satisfying
A Y e xb Ry e x, .,
t+1
t<r
then I(Y A R|xT) = 0,
Proof

By Kelmogorov's identity

1Y AR
= 1wt AR + I(Y_ Rx ¥ h).
Now I(Y_ RiX7,Yh ¢ I(Y_ A R,xr|xr'1,yf'1)

=0
since strategies satisfy (3), section 2. Consequently it 1is

sufficient to prove 0 = I(YT_1 A R|XT).
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The latter term is bounded from above by

1yl A R,Xrlsxr_l)

1 -1 -1

)+ I(Y T A XT[R,XT_l

= I{Yy AR ).
By assumption the second term is equal to zero, whereby we
reduced the claim to be proved from stage 7 to stage r-1.
Iterating we come out with the upper bound
I(Y; AR[X) < T(¥; A RX) =0 tothe tern I(Y" A R|XT), proving

the claim. %

Recall that I{(¥Y A R]Xr) is equivalent to the independency of the

conditional distribution on % form the realizations of Y. Thus we find
AplxTyTy = px)

r
Yy

under the above presupposition.

6.2 Lemma

The set of conditional probability vectors (pﬁ(-lx )

asymptotically coincides with

vl k) / K finite sst, v k) prob.distr.

keK)
on R for each k, = T vi-|k) = p ()
k 1

for some probability-vector (qk) i.

kek
Proof
Trivially the set of «conditional procbabilities induced by

strategies X € Z, 1is contained in the above set, therefore it

1

remains to prove the converss relationship.
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Assume (U('Ik)keK satisfyiang i 7 v{-|k) pl(-) te be given.

Choose T such that |W|T > |K| and identify somehow elements k € K

with sequences xT € ET.

Now define
T

prix? = xTIR el = g, v (r| x7) =, v Ler)

X Ingv (r]§T5 X
X X

Given r € R this defines a probability distribution on %T, the

distribution of XT.

We obtain for the conditional distribution on R induced by XT:

T_.T.o
N “1(r|xT) plr) -PriX"=x |R = rj

reR z w(r) Pr{XT=xT|R = I}
r

T
pE) g 51%4;71“_
X

v(f’xT)

Z pir}y g 4
r X 7189

g o vlrx)
X

1 ¢ E_v(r|x)
X r

= u(r[xT) E

Some strategic freedom of the players only remain in generating vectors
of conditional probabilities. We observed above that only those vectors

(P1('|k))kex and (u,(-]1)); , are obtainable which satisfy the condition
E Loy (-[K)] = 4 ()

and E [yz(-|L)] = yz(-),
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where K and L denote random variables with values in # and #.
These properties give rise to additional concavifications and convexifi-

cations of the payoff-functions.

6.3 Lemma
Let ¢ » 0 be given.
Let £ : @ » R denote a function definegd on a compact, convex set
2. Then there exists a finite set z = z(e) such that for

z=zz{zy = 1{Z2,{g)

I | Z random variable with value in z

Ag s 2 o @ satisfying
z

” Eigz(w)] = w}
%]

the following inequalities hold:

(1) (vix £ (@) {E[gz(w)]) + &
w
> nin {E[f o gz(w)]i

(Z,(gz)z)ez

> (vex f(&))} (E[gz(m)])

(vex £(R)) (w)
@

and

(ii) {cav £(@}) (&

(cav £(&)) (E[gz(w)]}
[15]

> max {Eff o g (w)]}
(z(gz))ez

I

{cav f(@)) (w).
®
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Proocf
For symmetry reasons it is sufficient to consider only (i).
Since (vex f(&)) {-) is convex per definition, the insquality
W

(vex f(@)) (w) ¢ z Pr {Z=z} (f o gz) {w) = E[{f o g,} (W]
@ z

holds for any (Z, (gz)) € z.
On the other hand, a result of Caratheodory ensures the existence
of a pair (Z, (gz)) such that

E[{f 0o g)(w] =z2Pr (Z=2} - (fo gz)(w} ¢ (vex (@) (W + &.
z @

By now we found that any pair of strategies eventually makes the inter-
pretation of the rspeated game as a correlated supergame accessible. Yet we
did not investigate the strategic considerations cf the players concerning
the correlation in as much as different portions (XT,YT) yield different

supergancs (with respect to their stationary distribution on states).

However observe that in section 5 we analyzed the payoff from an over-
looking person's point of view. In fact we assumed that at some stage T a
conditional propability y(-,-[xT,yT) and 1its stationarity are c¢ommon
knowledge. We shall investigate this assumption, its implications and
thereby shall investigate the strategial aspect of information to be

acquired.

Qur central question now is:
What type of information do the players have on supergane

being eventually achieved by the available strategies?

From this point on it is important to discriminate the succession in which

1"

the players select their strategies. We shall investigate the case of "max
min", that is, we assume player I to be the first to announce the strategy

that he will use in the play. The minimizing player II thus may use his
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knowledge on the strategy of player I in order to find an appropriate
strategy of reaction. Of course, the cage with reversad réle, "min max"',

follows by duality.

Suppose the strategy X of player I been sclected and, - assuming player I
to be preplaying, - to be common knowledge. Looking at X as a vector

(ir)rew with components %r to be used whenever state r prevails, both

players may compute the conditional distribution pl(-|xt,yt) on the basis

of their common observation (xt,yt).

6.4 Proposition
Suppose player I to be the first to sclect a strategy. Then
player II may guarantee a maximum payoff not exceeding

cav vex val (r(ﬂl,ﬁz}) (yl,pz}

Proof

It is sufficient to provide a strategy for player II using this payoff for
him.

The definition of player II's strategy may depend on the strategy selected
by player I, as we are in the case of investigating max min.

Observe that according to the lemmata 3.2 and 3.6 any strategy of player I
almost satisfies the markov chain condition

t t
R = (X ,y)ﬁ}*(H1

for t sufficiently large. Thus, in view of lemnma 4.2, we may assunme X to be

T T
Tx—compatible with (yl(-|x X,Y %)y,

Let e>0 be given and suppose (nl)Ei to be such that

T_T
E p g [vex val (Pl (-] T B ()
TX TX
B, o[z opoval (r(pl(-[x 'S uz(-|l)})][ (e
X, Y les

where £ is some finite set.
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According to lemma 6.2 player II can find an arbitrarily good approxi-
T
mation to (uz(‘|l)) by conditional probabilities (pz(-ly y)), choosing TY €

N sufficiently large.

In fact, assuming Y to satisfy the conditions

(i) A x5S e wh) e
t<T
=Tz
and
. t t
{ii) A X" e (§,Y") e—Yt+1
T.>t>T
Yo eTx
admits for selecting Y such that the conditional probabilities satisfy
t .t t t
Aple s ®Ty T = o RTY ) e ()
t<T
='x
and
T T
t ot X b4 t
A plez ) = o Cr Ty T ey YD
T >t>T
y-t'x
Consequently, assuming Y to satisfy
AS e (XY e
tT
Y
we obtain
t t Tx Tx Ty
noopbe Ty = e R Ty T ey oy T

T
Y

To put it other way, subsequent to stags Ty the conditional probabili-ties

on & and # remain fixed.
Let us now assums in favor of player I that he is aware of the stratagy
used by player II, in particular on the conditional probabilities arising.

Then the assumption on Ty compatibility of both strategiss yields that a

commonly known correlated supergame is played.
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Observe that, since the strategies do not refer to the (fictitious)

variation of states, the average payoff-function

TY TY
Y )

Z ulr,s|x cu {r,s;-,+) 1 ¥ x U 4R

r,s

has to be considered.

For this payoff-function the value may be evaluated by lemma 5.3, giving at
T T T T

nost val (r(“("'lx Y,y y))) for fixed x y' Y Y, assuming (Yt)t>T to be
y

optimal under the above constraints. Properties (i) and (ii) of player II's
strategies allow for approximation of any vector of conditional
probabilities satisfying lemma 6.2, provided Ty is sufficiently large. Thus
lemma 5.3 becomes applicable showing the payoff to be upperbound by

T T

. g Xy, o~
3 Ty [vex val (r(pl( X =¥ ) pz)) (pz)] + e
x Xy %

the e results from the quality of approximation of the optimal vector of
conditional probabilities. (Remind the continuity of the wvalue for
correlated supergames with respect to the payoff-function, which in turn
fellows from the continuity of the value for normal form games with respect

to the payoff-function.)

Observing now that by lemma 6.2 E [ (-[XT,YT)] = p, (+) we find as an
XT Yt 1 1
upper bound to the payoff any number exceeding
cav vex val (r(yl,pz)) (pl,yz)
whence the claim follows. #

To obtain an upper bound for the asymptotic per stage payoff we put the
preplaving player in a better position than he really is. We assumed him to

know the conditional distribution pz(-lyT) and thereby the determinants of

the correlated supergame. In order to give a lower bound, however, we have
to stick to the actual information available to the player I and, according
to this, computation of conditional probabilities is not feasible, since he

is ignorant of the strategy ussd by player II. The uswal apprecach to
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overcome this difficulty, namely upperbounding "max min" and lowerbounding
"min max" in an analogous manner does not give results, since equality of
"min max" and "max min'", i.e. the existence of a value is not guaranteed in
advance (and sven is false in general}. This 1llustrates the differcnce to
finitely repeated games, for which the existence of a value is ensured

"exogeneously",

Thus in order to find bounds to the payoff the roles of the players as to

be preplaying or postplaying come out to be decisive.

An expedient for computation of payoff achievable for player I comes from
D.Blackwell's theorem on approachability of sets of payoff-vectors. In

order to provide Blackwell's theorem we shall need the following notaticn:

Assume a vector payoff-function
U 4 X XY o IRH

been given.

Now the definition of a vector-payoff supergame is a trivial extensicon of

the definition of supergames given earlier.

The notion of a value does not generalize in this case. Mostly there cannot
be given a partition into sets in which - using optimal strategies - the
asymptotic payoff is sure to be found. This contrast jthe case of payoffs
given by real numbars where the set [val(r),e) is approachable by player I,

whereas (- o«,s val r] is approachable by player II.
The concrete definition and results are:

Definition
L set 4 < RM is approachable {by player I), if
ts
f u(a,xtyt),A) > el,

-1
A v AA e > Pr { v d (t
Xt((Yt) s 1

el (Xt) T (Yt) to)r t

where d{(., ) denotes the euclidean distance on RH.
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Additionally we define for random variables X with values in

T(X} = conv I(E[u(a,X,y)])a

yeu EAI'

D.Blackwell [56] proved

Theoren

Connent

Assume 4 to be & closed subset of RH. 1f for every a ¢ A there
exists a random variable X with wvalues in %, such that the

hyperplane through a{«), the nearest point to o within A4,

perpendicular to the 1line segment aafla), separates a from
T(X), then S is approachable with X = (Xt) satisfying
X(at} if t > 1 and
_l t
hd = a, =t Z O~ € A
t+i t t=1 °
arbitrary otherwise.

Observe that this result immediately generalizes to vector-payoff super-

gamss in which correlation may be performed by mutual observation of

pavoff-irrelevant actions in stages 1 to T:

hpproachability d1s not affected by bringing forward the
beginning of the payoff-relevant stages, therehy transforming
the supergameé endowed with preplay correlation to an ordinary

supergame, compare sacticn 5.

Using Blackwell's thecrem we are now able to prove

6.5 Proposition

Among the strategies X e zl of player I T-compatible with thes
vector (pl(-|xT,yT)) of conditional probabilities, there is

one ensuring asymptotically a per stage payoff exceeding
T T ~
%ex {val I (pl(o|x Y)Y, yz(-))) (yz).
2
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Proof
In view of the preceding comment we may assurs that the first

T stages were used to guarantee (pl{-]xT,yT)) Subsaquent to

T
X

stage T player I is assumed to use the Blackwell strategy with
initial payoff already obtained. Observe, that he may use the

Blackwell strategy since the vector-payoff
T T T T
(z uwlr,s;x..y) + Zpulrjzx,y) - = ulr,six,y,))
t=1 t’ t S 1 t=t+] t'""t Tser
obtained from actions (xT,yT) selected up to stage 7 is
computable. Moreover recall that the Blackwell strategy is

independent of s and thus T-compatible with (pl(-|xT,yT)).

Ve shall now define a set of payoff-vectors B such that each vector herein,
if obtained as asymptotic per stage payoff, exceeds
T ~
vex (val Fp (- [x.y") % 5 () (u)
Ha

2

in the mean and prove that B is approachable.

Let H denots a supporting hyperplane to

T T ~
vex {val r(p1(-|x ¥y o* pz(-)) at lpzt-).
Hy
It may be characterized by a € R(f) via
T T ~
vex {val r(pi(-lx A pz('))) (yz) = o - yz(-)
Ha
T T ~ ~
and ~ val (r(pl(-lx YT} - yzf')) ¢ a - yz(').
ﬁz(-)

Suppose we are able to show that player I has a strateygy guaranteeing hinm

an "average" payoff exceeding o whenever state s prevails. Then the
strategy ensures him an expected payoff at least equal to

vex (val (r(yi(-]xT,yT) * 1)) (pz).
H2

as desired. Consequently it is sufficient to prove approachability of
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B = {(ﬁSJ | ~ ﬁs > asi. We shall verify the presuppositions of Blackwezll's
s

theoren.

Let 6 ¢ B be given. Define o to be its projection on B. The specific shape
of B gives rise to some observations:

For 8 o we find ¢ = a , whereas otherwise o = & . Thus o - &5 > 0.
s 5 s s s S =

Define A such that

~

Py = A {o-8) € 4{#).

Then ;z(s) > 0 enforces o - 5 0 which in turn yields o, = a, by the

above observation.

Novw set

H=¥N%(ﬁd=0h

this hyperplane contains o.

We find, according to the non-negativity of o-&6 and ot

; pz(s) -(55—05) < 0,

and, since & € B, using the shape of B again we are surs of the existence

of s, € S such that 530 < oso thereby finding pz(so) > 0 and

%-(&d(ﬂ.

We shall verify at least that H separates & from T(X) for some appropriate
X.
Let ¥ be an optimal strategy of player I in the one-shot game r(pl(-|xT,yT)

* ﬁz(-)). This strategy may be computed by player I. In fact he is aware of

&, the intermediate per stage paycoff-vector obtained from the actions up to

the stage in question and, since o is known as depending on yz(-), he may

additionally find the projection of & on B.
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Now for the strategy ¥ we find
A Z ylir[xT,yT) . ﬁz(s) - E [ulr,s;X.v)]

~

pz(-)))

[ AV

val (r(pl(leT.yT) *

I

a - ﬁé(-).

Consequently H secparates & from

conv { Z pl(r|xT,yT) ﬂz(s) E [u(r,s. %, v)]]
yeu r,s

which was to be shown. #

Lemma 6.5 guarantess some vector-payoff for player I depending on ths
stationary conditional distributicn obtainsd at some stage T. we shall now
have to investigate optimization with respsct to the stationary condition

distribution.

6.5 Corollary
Supposz player I to be the first to sglect a strategy. Then he
may guarantce a minimum pavoff at least equal to

cav vex (val {r(ﬂl,ﬂz))) {pay r i) -

Proof
Assume {ck)kei to be such that
I o vex val r (ul(-|k), pz) (pz)
kek yz

= (cav vex val (r(ﬁl,ﬁz)}) (pgrbg) s

% finite.

By lemmata 6.1, 6.2 (vl(-lk)) may be approximated with

arbitrary precision by a vector of conditional probabili-
ties.Now using lemma 6.3 and the continuity of the

value of normal form games with vrespect to the payoff
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functions, we may find for any e » O some T € W, such that
z Pr[XT = xTI - vex val (r(yl(-|xT),§2))) (pz)
xTe{rT ’JZ
> (cav vex val (r(yl,pz))) (ylfpz) - €.

The preceeding lemma shows attainability of

T ~
Eex val (r(pl(-|x ). pz)) (“1) - e
2

if xT prevails. The expected pavoff thersfor emerges to be as

claimed. #
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