Abstract

The pre~nucleolus for cooperative side-payment games with finitely many players in an
infinite universe can be characterized by single valuedness, covariance under strategic
equivalence, the reduced game property, and anonymity ([10]). In [6] it is shown that
the last axiom can be replaced by the equal treatment property. In the present paper
the logical independence of both systems of axioms is proved and it is deduced that the
assumption on the cardinality of the universe of players can be dropped as a prere-
quisite of neither Sobolev’s nor Orshan’s theorem. :




1. Introduction, Notation, and Well-Known Results

The paper is organized as follows. In this section the necessary notation is given and the
well-known independence of three of a system of four axioms characterizing the pre-
nucleolus (see [10]) is recalled. )

Section 2 provides a proof for the independence of the remaining property.

In Section 3 it turns out that Sobolev’s theorem (Theorem 1.6) remains valid for a
finite universe U of players, if and only if the cardinality of this set does not exceed
three. Finally it is shown that the second system of axioms which arises from the first
one by interchanging anonymity and the equal treatment property (see [6]) is no longer
equivalent, if U has any finite cardinality larger than three.

A cooperative game with transferable utility — a game — is a pair (N,v), where N is a
finite nonvoid set and
v: @2(N)—R,v(0) =0
is a mapping. Here P(N) = {S C N} is the set of coalitions of (N,v).
If (N,v) is a game, then N is the grand coalition or the set of players and v is called
characteristic (or coalition) function of (N,v). Since the nature of N is determined by
the characteristic function, v is called game as well. .
The set of feasible payoff vectors of a game (N,v) is denoted
XH(Nv) = XA(v) = {x €| x(N) < v(N)},
whereas
X(N,v) == X(v) = {x RN | x(N) = v(N)}
is the set of pre-imputations of (N,v) (also called set of Pareto optimal feasible payoffs
of (N,v)). Here
x(8) := I x; (x(0) =0)
i€S
for each x € _xz and S CN.
A solution concept ¢ on a set I'of games is a mapping

o:T— U 2(X*v)), o(v) CX*(v).
ver

If T'is a subset of I} then the canonical restriction of a solution concept ¢ on I'is a
solution concept on I We say that o is a solution concept on [, too. If P’is not specified,
then o is a solution concept on every set of games.

e

e

Definition 1.1: v
i For a set U let Iy, = {(N,v)|N ¢ U} denote the set of games with player set
U g

contained in U.

N

(i)  Let (N,v) be a game, x €k, and § be a nonvoid coalition of N. The game

(5,v°), where . .
B v(N) — x(N\S), if § =
vOX(§) = 0, if § =
max {v(SUQ)-x(Q)]0Q CN\S}, othervise

is the reduced game of v w.r.t. x and § (see [1]).

- u
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Some more notation will be needed. Let (N,v) be a game and x €Y. The excess of a

coalition S C N at x is the real number
e(8,x,v) := e(§,x) := v(8) - x(S).

The nucleolus of a game was introduced by Schmeidler ([9] ). The nucleolus of v w.r.t.
X, where X msz. is the set

HXK¥) = {xeX | &(x,v) Hm &(y,v) for all y € X},
ex

where ©(x,v) is the vector of all excesses at x w.r.t. v in a non-increasing order.
Schmeidler ([9] ) formulated and proved the following

Lemma 1.2: Let (N,v) be a game and X € RN,

(i)  If X is a nonvoid compact set, then /#(X,v) is nonvoid.

(ii)  If X is convex, then #(X,v) contains at most one vector.

(iii) If X is a nonvoid, closed convex subset of X*(v}, then /#(X,v) is a singleton.

The pre-nucleolus of (N,v) is defined to be the nucleolus w.r.t. the set of feasible payoff
vectors and denoted PAH(v), i.e.,
. PH(v) = HX¥{v)v).

By Lemma 1.2(iii) the pre~nucleolus of a game is a singleton, and, clearly, the pre-nuc-
leolus is Pareto optimal by definition.

The unique element ¥(v) of PA{v) is again called pre-nucleolus (point).

Now Kohlberg’s ([2] ) characterization of the pre-nucleolus by balanced collections of
coalitions is recalled. It should be remarked that his assumptions on the considered
games can be deleted without destroying the proofs (see [8] ). Some notation is needed.




Let (N,v) be a game, % msz. and X be a finite subset of BN, The set X is balanced, if
there are real numbers §y > 0 for all x € X such that

Y bfxx=1
x€X * N

where 1¢ is the indicator function of a coalition S, considered as vector of s_ H _. In this
case the sequence (8x) . is a sequence of balancing coefficients for X. A subset & of
#(N) is called balanced, if {15] S € 2} is balanced. For each a € R let

D(%,0,v) = {SCN | e(5,%,v) > a}
denote the set of coalitions with excess not less than o

Lemma 1.3 ([2]): Let (N,v) be a game and x € X(v) be a pre-imputation. Then x
coincides with the pre-nucleolus of v, iff @(x,a,v) is balanced for
each a with D (x,a,v) #£0.

Remark 1.4: Let N be a finite set.

If & is a balanced collection of coalitions in N and § € N is a coalition in the

linear span of P~ i.e. HM.QPH Ly = 1g for some aq €R, T € P~ then U {5}
€

is balanced.

Some convenient and well-known properties of a solution concept o on a set I'of games

are as follows.

Definition 1.5: Let o be a solution concept on a set I'of games.

(i) o is single valued (satisfies SIVA),if | o(v) | = L forvel .

(ii) o is covariant under strategic equivalence (satisfies COV), if for (N,v),
(N,w) € 'with w = av-f for some a > 0, f€ sz
a(N,w) =ac(Nyv) + 4
holds. The .mmamm v and w are called strategically equivalent.

(iii) A solution concept ¢ on a set I’ of games satisfies the reduced game property

(RGP) if (N,v) €T, x € o(v), 645 # N implies Aw.cm.xv €land X|3 mQAw_<m_J.

(iv) o is anonymous (satisfies AN), if for each (N,v) €T and each injective mapping
7: N— N’ with (rN,rv) €T
o(TN,mv) = 7(a(N,v))

holds (where (7v)(T) = v(7-YT)), rj(x) = x_.,. (x mﬂmz“ HT.Z. T C 7N)).

T
In this case v and 7v are equivalent games.

(v) o satisfies the equal treatment property (ETP), if for x € o(v), v €I} and inter-
changeable players i,j (i.e. v(SU{i}) = v(SU{j}) for S ¢ N\{i,j}) xi = x; holds.

(vi) o satisfies non emptiness (NE), if o(v) # § for v €l
(vii) o is Pareto optimal (satisfies PO), if o(v) CX(v) for veL

(vili) o satisfies the converse reduced game property (CRGP), if for (N,v)€l
x € X*(v) the following is true: ﬁm.<m,J €l'for S CN with |S] =2 and if
X5 mq?m,xv for all 5 C N with |S] = 2, then x € o(v).

Theorem 1.6 ([10] ): If U is an infinite set, then there exists a unique solution

concept on Ty satisfying SIVA, COV, RGP, AN; and this

is the pre~nucleolus.

Theorem 1.7 ([6] ): If U is an infinite set, then there exists a unique solution

concept on —,c satislying SIVA, COV, RGP, ETP; and

this is the pre—nucleolus.

Next three examples of solution concepts are given which show the independence of the
axioms in the theorems with the exception of AN and ETP respectively.

The pre-kernel satisfies COV, RGP (see [7]), ETP, AN, but clearly is not single valued
as four-player examples show.

The "equal treatment solution", i.e. o(v) = {xeX(v}|xi=x; for i,jeN}, satisfies SIVA,
RGP, AN, ETP, but not COV.

The Shapley value satisfies SIVA, COV, AN, ETP, but not RGP.



2. Independence of Anonymity or the Equal Treatment Property

During this section let U be an infinite set. To prove the main result of this paper the
following definition and lemma is useful.

Definition 2.1: For each ¢ € R the solution &¢ on I; is given by

o (N,v) = {xeX(N,v)|e(S,x,v) ¢ max{e,e(S,{v),v)} for SCN}
for (N,v) € Iy;.

Note that 5¢(N,v) is a nonvoid convex polytope containing the pre-nucleolus. If, e.g., ¢
is a lower bound for the excesses of non-trivial coalitions (the grand and empty are the
trivial coalitions) w.r.t. ¥(v), then 6(N,v) coincides with the pre-nucleolus. On the
other hand, if the e—core of v ~ as defined in [5] - is nonvoid, then these solution con-
cepts coincide. Therefore mmﬁz.é can be vaguely interpreted as consisting of all vectors,
which successively minimize excesses and the number of coalitions attaining them as
long as the excesses are larger than e. Clearly ¢ satisfies NE, ~ . AN, but not ETP.
This solution concept also satisfies RGP as stated in the following

Lemma 2.2: Let ¢ € R.
(i)  o° satisfies RGP.

(i) Ifxeda®(N,v)for a game (N,v), y € mmﬁmkm_xv for some reduced game GE?J

of Az,.é wrt. xandif z € RY is defined by zi = { w“ ““Mm/m. then z € 7°(N,v).
Proof:
(i) Let xeX(N,v),0#S¢ N, ye Mmamkm_xv, and z be defined as in (ii). It suffices to
show that
x(T) < y(T) 5 - (1)
and
e = mAﬁx_mEm.J > (2)
for some ¢ T ¢ S implies x ¢ 7% (N,v). Let (1),(2) be satisfied by T and e be
maximal. Then, by definition of ¢ we come up with x(R)=y(R) for all R C §
with e(R,y,v>) > e. Let P C N with PnS # 0, S ¢ P, and e(P,z,v) > e. Then
e(P NS,y,v°%) 2 e(P,2,v) > e, hence 2(P) = x(P). Let vO"™X(T) = v(T U Q)-x(Q)

for some Q € N\S. Then
c<e(TUQx,v)=e>e(TUQ,zv),
hence x £ 7°(N,v) by definition. .

(i)

Using (i) it is obvious that
mﬁﬂx_mkm.xv = mﬁ,.%km.xv ¢

for T € S with mﬁ‘aim,xv > €. The proof is finished by again noticing that
e(RN mﬁx_wém_xv 2 e(Rx,v)

holds truefor RC N with RnS#6,S¢R. q.e.d.
Let U be a completely ordered subset of U with order relation <.

Theorem 2.3: If the cardinality of U is at least two, then there is a solution con-
cept o on I, , satisfying SIVA, COV, RGP, and not ETP.

Proof:

Let (N,v) be a game in Iy and ¢z=(). Define
o(N,v) = &AXEV.

where ;
X={xed*(Ny) | X| iy wa Y|ty for v € mmnz.&v.

Here < is the lexicographic order induced by the relation < of U} on each subset of U.

lex
. ~E .
Since ¢"(N,v) is a convex compact polyhedron, the set X inherits this property.
Lemma 1.2 implies the single valuedness of a. Moreover, o satisfies COV. Indeed, with
the observation that "reducing commutes with strategic equivalence", i.e.

Ag & va.en.*h“ D‘cw.un + Qnm
fora>0,0¢ 52~ 04S¢ N,x€X(N,v), a proof of this property is straightforward.

Claim: o satisfies RGP.
LetxeX,0#5¢N,y¢ imlmaxy and let z be defined according to Lemma 2.2(ii).




Applying this lemma we conclude

X <z and x >y
|OnN 2, 10N [Uns 2, 710N

hence

10N = %1 0N
It suffices to show that x(T) < y(T) for some ¢ # T ¢ S implies x ¢ ¢(N,v). This can
be done completely analogous to the proof of Lemma 2.2(i) by dropping ¢, whenever
€ occurs.

To show that o does not satisfy AN or ETP, an example is presented. Assume w.l.o. 8
{1,2} ¢ U dnd 1 < 2 w.r.t. the order relation on U. Define ({1,2},v) by

<AMV mmlu if _m_ .

" oiﬁnﬁmm
Then ¢¢(v) = convex hull {(~1,1),(1,-1)}, hence a(v) = {(-1,1)}. Clearly both players
are interchangeable, thus, e.g., ¥(v) = (0,0) ¢ o{v). q.e.d.

3. Sobolev’s Theorem for Finite U

Let U be a finite set during this section. The following examples show that Theorems
1.6 and 1.7 are no longer valid in case the cardinality of U strictly exceeds three. Final-
ly it is proved that the theorems remain true in case |U| < 4.

Example 3.1:
(i)  Let U= {1,2,..,n} for some n > 3 and n € M. Let (U,v) be the weighted majority
game defined by the representation (A,m), where
m=(2,2,....,21,1), A =20-5; i.e
{
n-2 times

¢ 1, if m(S
wsy={}? it 2 A

Put x = (1,1,..,1,0,0)/0-2 € RY and define

{7 (x+0)},if v = T(av+f) is equivalent to a
a(w) = game mnnwammpn&.pw equivalent to v.
PH (w)  ,othervise

Clearly, ¢ satisfies SIVA, COV, AN, ETP by definition, and no game with
player set U can occur as a pure reduced game of any game with player set con-
tained in U. Let z € o(w) for some game equivalent to a game strategically equi-
valent to v. It suffices to verify that z Is = Uw 5, ) for the reduced game of w

w.rt. § and x. Since reducing commutes with strategic equivalence (see the
ém.&x.g S,x
. ﬂ_mvc. Y

proof of Theorem 2.3) and with equivalence (i.e. (7v)
suffices to show that X5 coincides with the pre-nucleolus of VX, Using the

Ty
"transitivity of reducing", i.e. wi = ?m..w ) E for sm T € S C N, for each
game (N,w) € Iy and x € X(w), it suffices to verify the coincidence with the
pre-nucleolus for reduced games w.r.t. coalitions of cardinality |U|-1. Players
1,..,n-2 and players n-1,n respectively are interchangeable, thus it suffices to

restrict the attention to coalitions § € {{1,...,n-1},{1,...,n-3,n~1,n}}. If § is the
first coalition, i.e. S = {1,...,n~1}, then

m.xﬁ,vﬂ *u if |Tn{1,...,n-2}| 2 n-3

v 0, otherwise
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Therefore n—1 is a null-player in <m_x and 1,...,n-2 are interchangeable. It is
well-known that _\?m“xv treats all interchangeable players equally (by the equal

treatment property) and assigns 0 to null-players, hence x |8 = _\?w.xv in this

case.
In the other case (S = {1,...,n-3,n-1,n}), the characteristic function of the

reduced game can be computed as

S x 1 ,if .*,: > n-2and {1,...,n-3}CT
vHT)={84,if T = {1,...,0-3} or |TN{1,...,n~-3}|=n-4<|T|.
0 ,otherwise

Coalitions T with cardinality n—2 and {1,...,n-3} C T and such coalitions R with
the same cardinality and {n-1,n} C R have maximal excess w.r.t. X| g span the

Euclidean space, and form a balanced collection. Lemma 1.3 and Remark 1.4
imply the coincidence of *|g and ¥(v5") in this case.

Therefore o is a solution concept satisfying SIVA, COV, RGP, AN, ETP, which
does not coincide with the pre-nucleolus. The last statement is true, since it can
easily be verified that the pre-nucleolus of v coincides — up to normalization ~
with the vector m of weights.

In (i) a variant of this solution concept is presented, which satisfies all axioms
with the exception of AN. ,

(ii)  Under the prerequisites of Example 3.1(i) define

{ax+p},if v = ov+f is strategically
o(w) = equivalent to v.
2N (w), othervise

Clearly, this solution concept o satisfies SIVA, COV, RGP, and ETP as before.
Applying a non~trivial permutation 7 of U to (U,v) directly shows that o does
not satisfy AN. «

Theorem 3.2: Theorems 1.6 and 1.7 remain valid, if and only if [U] ¢ 3.

Proof:

By Example 3.1 it suffices to show that the theorems are true, if |U] < 4.
It is well-known that SIVA, COV, RGP imply PO (see (8], [10]). The axioms SIVA
and AN clearly imply ETP and NE. Moreover, if ¢ satisfies PO, NE, ETP, COV on dd.

then o is a standard solution (see [7], [8]), i.e. o(N,v) = PA#(N,v) for a player set N of

o Y e

cardinality two. These considerations complete the proof in case |U] < 3.
Assume |U| = 3 from now on. Let ¢ be a solution concept on I} satisfying SIVA,

COV, AN, and ETP. If x is the unique member of ¢(v) for some game (U,v), then X|s

coincides with the pre—nucleolus for subsets S of U with cardinality two. The pre-kernel
— for the definition [1] and [4] are referred to — is a standard solution. Therefore xS is

the unique element of the pre-kernel of the corresponding reduced game. Let 2% (N,w)
denote the pre-kernel of a game (N,w). The pre-kernel satisfies CRGP (see [7]), thus
x € £% (U,v). It is sufficient to show that the pre-kernel of a three-player game is a
singleton. In order to complete the proof some notation is needed.

A subset Pof coalitions of a finite set N is separating, if the existence of T € P with
jET 3 i for some i,j € N always implies the existence of R € P with i¢R3 j If
y € 2% (N,w), then it is well-known that D(y,a,w) is separating for a € R (see {3],4}).
Using Kohlberg’s result (Section 1 is referred to), it is sufficient to verify that each non-
trivial separating set of coalitions is balanced in case |N| = 3,

Therefore let & be a separating set of coalitions in U. Then we can assume w.l.o.g. that
6,0 ¢ @ + 0. First it can be observed that

n S=%and U S=TU. (1)
Se g Se @

The set & contains at least two coalitions and if this is exactly true, then & consists

of a coalition and its complement (by (1)}, hence 9 is balanced in this case. Therefore

it can be assumed that & contains at least three different coalitions. The following

cases can be distinguished. .

(i) All two—player or all one-player coalitions are elements of 2 These coalitions
clearly form a balanced basis of _xc.. hence & is balanced by Remark 1.4.

(ii) waﬁ.;. two two-player coalitions are elements of & let us say (w.lo.g)
St= {1,2} and $? = {1,3}, where - again w.l.o.g. — U = {1,2,3}. The separating
property then directly implies §3 = {2} and S¢ = {3} belong to 2 Now,
{51,52,53,S4} is a balanced subset of & and spans the Euclidean space rV.
Remark 1.4 directly yields the balancedness of &

(ii) The case & containing exacily two one-person coalitions can be treated analo-
gously to (ii) by mimnnrw:m:—m the roles of S1,52 and §3,54. g.ed.
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