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Simple Games:

On Order and Symmetry
1. Notation

Let me call (simple) game a monotonic non—constant boolean function v for some finite set
N, ie. N={1,2,...,n}

v:2N-2:={0,1}, 7(0,....0)=0, v(1,...,1}=1

54T =+ w(5)<v(T)
Let us identify n—vectors and subsets of N; the subsets 5, of N are called 'coalitions’;
elements of N / coordinates are called players. _

Let V denote the set of all games.

A game can be (uniquely) represented by

— the set of 'winning coalitions' W=W(v)=v"{1)

— the set of 'minimal winning coalitions' M=M(v)={SeW; T<S + v(T)=0}

— the 'incidence matrix' X=X(v) with rows SeW ordered lexicographically faccording to
their binary number

— the 'minimal polynomial' p(xl,...,xn)=§ M I le (Z for union, II for intersection)
eM ie _

Example: The game maj is defined as follows
—n=#N=3, v{§)=1 iff #5>2

110

101
Now W={123,12,13,23}, M={12,13,23}, p—xlx2+x1x3+x2x3 and X= [0 11 ]
(We drop the brackets and commata for coalitions.)



2. Post's Classes

In 1941 Post classified all classes of boolean functions that are closed with respect to four

. basic operations. As the set of monotonic non—constant boolean functions, i.e. of games is

closed, we can use the corresponding part of the classification as classification of games.

Post uses the following operations:

a. Permutations of N induce isomorphic games (av)(S)=v(xS)
b. Adding a dummy (dv)(81sees8y 4 1)=7(8 558 ) .

c. Aggregation (a.v)(Sl,...,Sn_1)=v(Sl,...,Sn_l,sn_l)

d. Composition V,¥qs--, ¥, ale games with players sets N’Nl""’Nn
v[vl,...,vn] is the game with players set IN. (disjoint union) defined by

(v[v 1,...,v'n] )(S)=v(v1(SNI),...,vn(SNn)) (product = intersection)

Operations a., b., d. are often discussed in game theory. Operation c. is also relevant for

applications on committees when two parties join.

In the following parts permutations 1r=(ao,...,a.r) are defined as usual (ma.=a. and

1~ 141 mod r
xb=b for b not element of {a.i;i=0,...,r}).

Let us denote the complementary set of S by =S, and define the dual game *v of v by

(*5)(8)=1~(5)



Lemma: V is closed under operations a.~d. and under *.
Easy calculations show that the generated boolean functions are monotone and not
constant.Let K be a subset of V. <K> be the set of all games generated by repeated use of

operations a.—d.

We define some more games by their incidence matrix:

—id = (1)

10
—et=(11), vel=[01]

_[110
- veto = [101]

Calculations: aet = id = a vel, a“ veto = a et = id, a‘.2 ma)=a(l12)did =id

Theorem (Post 1941): Every closed class K=<K> is one of the following list
- <id>

—~P=<et> and its dual Py=<vel>

— D=<maj>

— F%=<veto> and its dual F§

- Fk={v €V; any k—set of W has nonempty intersection}, k=2,3,..., and their duals Fk

Remarks. <id> is known as the class of 'dictator games'.

P is known as the set of 'unanimity games', i.e. veP fulfills v=ur, up(S)=1 iff T<S.
D=*D is known as the set of 'constant—sum games', i.e. veD fulfills v(<S)+v(S)=1. Bz
definition of the dual game we can characterize D as 'selidual games', i.e. *v=v.

F® is known as 'veto games’, i.e. veF” fulfills N{S;SeV} not empty.

F2 is known as 'superadditive games', i.e. veF? fulfills [ST=0 - v(S+T)>%(8)++(T)}.



I shall write [p] for the set of all games with property p, sometimes I use [s.a.] instead of P2
and [c.s.] instead of D.

Shapley 1962 contains a list of all simple games for n<4 (up to an isomorphism and
dropping dummies).

Example. Game (1) of the list.
1100 n
(1)(1) i (1) = (1234)a(12345)maj[id,id,veto]F

By multiple use of permutations, aggregation and composition we can generate every
nondisjoint composition, for example game (1) = maj[fid;,id,,vetogy 41l if you allow for the

nondisjoint composition {[...]}.

Proposition 2.1: ve[s.a] iff v¢*v
This statement is a simple consequence of the definitions of * and s.a.; the above formula
and its dual formula ve*[s.a.] iff *v<v can be seen as a weakening of the folling property

stated above: ve[c.s] iff ¥v=v. Observe that [c.8.}=[s.a.]¥[s.a] — remember: product

means intersection.

Post‘'s Theorem and Shapley's list can be summarized in the following diagrams:

\Z

[so ]
(mq.j‘)

<vebed
Vel {er >




[n=3] | | (a=t]

The numbers given in the diagrams mean the number of games in Shapley*s list contained
in the respective class but not in a lower one. Shapley's list gives games up to an

isomorphism and without dummies.



" There are only three games in ~([s.a.]+*[s.a.]} for n<4, namely

— game (0)= [ 00 (1) ?J:vel[et,et]
1010
~its dual (*o)=| 5 1 1 § [=etivelvel
0101
1100
—and {p)=]0110
0011

Observe: *(p)=(12)(34)(p), (p) is isomorphic to its dual

Lemma 2.2: The number of winning coalitions is equal to the number of coalitions not

winning in the dual game, formally: #W(v)=#-W(*v)

Games v that are isomorphic to their duals (i.e. there exists a permutation = of N such that
*v=av) are called 'dual—equivalent'; write d.e. and [d.e.]. Constant—sum games are d.e.,
but not all d.e.games are c.s., see game (p).

Games v that fulfill #W=4#-W are called 'half-half games'; write h.k. and [h.h.}.
Dual—equivalent games are half—half, but not all h.h.games are d.e. (an example will be

given later, n=6).

3. Weighted majorities and ordered games

A weighted majority game v (write ve{w.m.]) is a game such that exist a measure m and a
level 4 such that

v(5)=1 if m(S)2p
For velw.m.] we use the notation v=(p;m1,...,mn).

All games of the list except the three games (o), (*o), and (p) are w.m..



The notion of ‘ordered games' is based on the ({following) desirability relation on the
players set N:

iyj f fjeS - v((1j)S)2v(5)]
Remember: (ij) is the permutation exchanging players i and j.
Let i>j and i~ be the asymmetric resp. the symmetric part of the relation.
The desirability relation is transitive but generally not complete {Maschler/Peleg 1966,
Th.9.2); thus define

illj iff [not irj] and [not j¥i]

A game v is ordered (write veford]) iff || is empty (desirability is complete).

Lemma 3.1: {[w.m.] is a proper subset of [ord]

a. a player i with a higher weight as j is a substitute for j in any winning coalition,

~ b. up to n=>5 all ordered games are w.m., for n=6 there are many ordered non~w.m. games
{see Ostmann 1987); one of these is the game e4k ('the parents and there four children’:
losing means 'staying at home', winning means 'travelling around'):

M(e4k)={two parents and one child}+{one parent and two children}

For ordered games an easy representation is common use: players are numbered with
decreasing desirability (strongest first). edk is represented by <110001,010011> — this
means that by shifting the two coalitions to the left — player by player — M is generated.

Theorem 3.2: The only Post—classes fuily contained in {w.m.] (resp. in [ord]) are the class
of unanimity games, the class of their duals and the class of dictator games.

It is enough to construct a game wefc.s.]5[ord], because etfid,wle<veto> and its dual is

element of *<veto>. Such a game is proj7, the game with 7 players and the 7 projective

lines as minimal winning coalitions.



Proposition 3.3: (w.m.] and [ord] are closed with respect to *,

[w.m.] is a subset of [s.a.)+*[s.a.].
It is known that *(gm)=(m(N)+1—;m) and that * of v and * of *v are identical (f.
Ostmann 1985, 4.2 and 3.8).

Proposition 3.4: [w.m.] is closed w.r.t. a, but [ord] is not;

{ord] is not a subset of [s.a]+*[z.a.].
- mu(am)=mn(v)+mn +1( v)
— consider Aumann's game <10011001,01100110> and an aggregate player 34; in the new
game we get 1{{34: 110 0 110 is winning but 010 1 110 is not (i.e. non 3*1), 011 1 000 is
winning but 111 0 000 is not (i.e. non 1»3) B

Aumann's game, call it au8, is neither s.a. nor dual s.a.

Proposition 3.5: [ord][c.s.] is not a subset of [w.m.]

Two examples (n=13), call them 0s13,, were given in Ostmann 1985.

Lemma 3.6 (for d.e.games): If *v=1v, a player i and his image i are either equivalent
(i~xi) or incomparable.

itj induces miraj (ieS, ievwS:  v(a8)=(*v)(S)2(*v)((ij)S)=v{x(ij)S)=v(( =i 7j)7S) } because

the dual game has an identical desirability relation. So i)_‘ri)_-‘.rgit...ti and i~7i or iffxi for all

1eN.

Proposition 3.7: [h.h.][w.m.] is a subset of [c.5.];
[d.e.]ford] is a subset of [c.5.].
— according to Prop.3.3 weighted majority games are either s.a. or dual s.a.;
such games fulfill v<*v resp. v2*v (Prop.2.1}; Lemma 2.2 gives #W(v)=#-W(*v);
since ve[h.h.], i.e. #W(¥)=#W(v), we get v=*v.



—let *v=7v, T=18; v(T)+v(~T)=v(28)+¥( m8)=(*v )8}~ *v)(28)=2~v(8)—v(-S); if
S=T (this includes the cases S=-~N or §=N) v(5)+v(-8)=1; since all players are
equivalent to their image we get v(T)=v(5) and v(~T)=v(-S). It follows that

v(5)+v(=5)=1, and we get *v=v.

3.8 The following game is element of [h.h.}jord]+{c.s.]:

- <101001,010110>

The game is ordered by construction. To count the winning coalitions, define *={0,1} and
observe W = 111%** + 1101%* + 11001* + 110001 + 1011** + 10101* + 101001 + 10011*
+ OL11#* 4 01101* + 01011*. Thus #W=8-+4+2414+442+1+2+4+2+2=32, But both
100110 and 011001 are winning, and the game is not constant sum. (All other six—person
ordered h.h. not—c.s. games have more shift—minimal winning coalitions. These games are

reported in Ostmann 1987).

3.9 The following game is element of [h.k.]-[ord]-{d.e.]:

Define the game ho by use of the octahedron; the players are the six vertices, minimal
winning coalitions have size three and M contains all non—faces minus two coalitions that
form a partition of N.

With the conventional numbx’;ring i+j=T for an antipodal pair, we can get the following

incidence matrices for ho and *ho:

110010 111000

101100 110100

101001 110001 +~ is not a face
100101 - 101101 + contains 4 players
100011 101010

011100 100110

011010 (011001

010110 010101

010011 001110 +~ is not a face
001101 001011

000111
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The game ho is not dual equivalent (consider the incidence matrix). An easy calculation

.shows that ho and *ho are not ordered, but they are hali~half.

We summarize the findings in the {following diagram (the example games given in the

diagram are games in the respective set but not in a lower/smaller one):
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4, Symmetry

Let us define the full automorphism group of a game v by
=Aut v:={7eSn;1v=v} _
5, denotes the permutations of the player set N; A denotes a subgroup of I".

Orbits T'i of players ieN are called types. If jel'i then write iz,

Lemma 4.1: i~j induces ixj
iz} induces i~j or il

in iff (if)el"

Let N (7) the set of all 7-vectors of players corresponding to r—sets (i.e. no two components
are equal).

A permutation group (I1,X) is called transitive if [Ix=X for some x¢X. A game is called
r—transitive if (I‘,N(T)) 18 transitive. 'transitive' be short for 1—transitive.

Let us denote the corresponding classes of games by [t] resp. [2t], [3t], ..., [t].

Observe: [( 7+1)t] is a subset of | t].

Corollary 4.2: Players in transitive games are either incomparable or equivalent.

Let 7el, then it xiy7ir...5i and i~ri or ifl 5 for all ieN.

The games (o) and (*o) are transitive. The 7 Pythagoraian games (N=vertices, M=faces of
a P'n polyhedron; including the 5 Platonic games) are transitive but — except the
tetrahedron game — not elements of [2t]. The game maj{maj,maj,maj] is element of

[thH[2t]-[ord]. The game proj7 is 2—transitive and not ordered.
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Theorem 4.3: v¢t][ord] iff v=(y;1,...,1)
— Corollary 4.2 + ord: there is only one type
-~ Lemma 4.1: for all i,j the permutation (ij)el’, thus I'=3_and v is a game with all sets

with more elements than some number p winning.

Let B(i):={5eB;ieS}, B(1,j):={SeB;i,jeS}, B(i,j):={5¢B;i¢S,je~S}.
Define 1>>j iff W(j) is a proper subset of W(i).

Remark. i>>] induces 1¥].

Proposition 4.4: if v is transitiv the following holds for B=M and B=W
#B(1)=#B())
#B(1,4)=#B(j,)
The first statement follows directly by tramsitivity. For the second statement consider the

formulas B(i,j)+B(i,j)=B(i) and B(j,~i)+B(i,j)=B()-

Corollary 4.5: If M(i,j) is empty and veft], then i~j.
— By Prop.4.4 and W(i)=W(j)

In this case M 'does not separate' i and j.

Proposition 4.6: ve[t] implies constant size of the equivalence classes of the desirability
relation

—for el yk={7iji~k}={j;j~vk}=(7k)" (because of: ink iff yinpk)

Remember (4.3): v¢[t] and one equivalence class is a w.m.game, namely (1,...,1).

In this case we have ['=S_ and ve[nt}.
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Proposition 4.7: v¢[2t] implies one or n equivalence classes, for ve[2t]-{nt] all
players are incomparable.

Example: proj7

Proposition 4.8: v¢[2t] implies for B=W and B=M
#B(i,-j)=constant, and

#B(i,j)=constant

Proposition 4.9 ve[2t]-u{uN} implies #M(i,7])>0
This means all players are separated by M. It is well known that c.s.games exhibit the

same property.

Proposition 4.10 (Orbits of minimal winning coalitions): for ve[t]-l{uN]- there is no fixed
element of M (under the action of I' on M); furthermore every orbit of some

element of M contains all players.
Let -w the game with M(=v)={S5;~5¢M(v)}. Since SCT iff ~TC~S, the game is well—defined.

Proposition 4.11: Aut *v = Aut v = Aut w
— g€l v(S)=v(985), /(~5)=-+5, insert into the definition of the dual game
This proposition has the following simple consequence:

Corollary 4.12: *[rt]=[t] for all 7

Proposition 4.13 (Principle of construction):

In order to construct a game ve[rt), take a r—transitive permutation group {A,N) and a set
A of coalitions of N containing all players i{7 (call them base blocks). The game v with
W(v)={T;T295 for some yeA, SeA} fulfills ACAut v and ve[rt].
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Let us call the property S,T'eM ~ #S=#T ‘constant block size' {c.b.) and write vefc.b.] for

the corresponding games v. It is easy to see that ve[7t] is a union of c.b.games (V=Evi,
v;efe.b.][rt]).

Proposition 4.14: If ve[rt] and there exists a coalition SeM such that #S<7 or #S>n—r then
the game is weigthed majority. For n{27+1 the set [7t]-[w.m.] is empty.

— Let k:=#85. Observe that for k<7 and for k>n—7 the orbit of S contains all coalitions of

size k (7—transitivity of the géme). To find a coalition with an nontrivial orbit it is

necessary that k>p and k<n—7; thus 2r+1<n.

Remarks. For n<2741 we found [rt]=[nt]. Remember ,th_a.t by corollary 4.7 symmetry in the
sense of 2—transitivity causes a game to be fully symmetric or ‘completely unordered* (=n
equivalence classes of players). The smallest n for a game in [2t]-{w.m.] according to
proposition 4.14 is 6. Indeed the condition is sharp and we can find such a game. The
construction uses the permutation group (PSL(2,5),GF(5)+«). Take the base block
S={0,1,4,x}. The set of minimal winning coalitions is given by M={78;7ePSL(2,5)}. The
action of ris given by

#(i)= (ai-+b)}/(ci+d), ad—bc is a square; a,b,c,d are elements of the Galois field GF(5),
calculations with w as usual. -

Ordering the players by 0,1,2,3,4,5,0 we can construct the following incidence matrix

111000
110010
101001
100110

x = 100101
— 011100
010101
010011
001110
001011

The game is constant—sum.
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5. On block design games and sharply 7—transitive games

Remark. Group theoretists say they know how to get all 7—transitive permutation groups
(A,N) for 7>1; but construction is difficult. The construction is easy if A acts sharply
r—iransitive. '

We define: (A,N) is sharply 7—transitive iff the only element of A fixing one element of
N( ) is the identity.

Let us call a game sharply r—transitive if there is a subgroup A of I" that acts sharply

7—iransitive on N; write v¢[sh—rt).

A 7—design (N,B) is an incidence structure with constant block size k such that the number
of blocks that contain a r—set of points for every choice of the 7—set is constant;

formally: (0) BCQN, (1) #S=:k (for all SeB), (2) #{SeB;QCS}=:A for all 7~subsets Q of N.
A T—design is denoted as a Sy(rk;n). Let n=#{SeB;ieB}=#B(i) ("repetitions"); r is well—
defined [ independent of the choice of i.

Corollary : for ve[rt]fc.b.] the game induces the r—design (N,M).
If there is lack of constant block size transitive games do not induce 7—designs.
On the other hand r—designs (N,B) can lack of the "monotonicity" S,T€B - non (S3T) and

even of transitivity.

Remark. {c.b.] and [c.b.][t] are not closed with respect to * (examples are the Platonic

games). Furthermore: [c.b.] and [c.b.][t] are closed w.r.t. -
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If a r—design (N,B) induces a game v directly, i.e. M(v)=B, then the so—alled dual design,
l.e. the design with the transposed incidence matrix also directly induces a game (otherwise
the transposed incidence matrix xT contains two rows s<t, so M(s) is a proper subset of
M(t), but the number #M(.)} has to be constant, because v is a design game).
Hoffman fRichardson show that the only 2—designs with A=1 a.nci the transposed inducing a
c.s.game are maj and proj7. They fulfill X:XT.
Theorem 5.1: A game ve[sh—7t}~{w.m.] has one of the following parameter pairs (,n)

~(1,n)

-(2,p")

-(3p'+1)

—(4,11)

-~ {5,12)

p’ is a prime power

For n=4,5 the groups are the small Mathieu groups M resp. M12.

The main part of this theorem s a well-known theorem on highly transitive permutation
groups: a sharply 7—{ransitive group is either trivial or has the parameters given above; a
proof of all its parts can be found in the book of Beth/Jungnickel /Lenz: Design Theory
1985, part V. The crucial paﬁs go back to Jordan 1873 and Zassenhans 1935.

T+2 S1'+1’
generate w.m.games (S11 clear, for An use proposition 4.13; cf. Lapidot 1970).

The trivial sharply 7—transitive groups are A ST. It is easy to see that they
For r=1 note that every group can be considered as acting sharply transitive on itself.
The case of 7=2 and 3 are near analogues of

— the affine group AT'L(2,p") of a Galois field GF(p"),

— the projective group PGL(2,p’)

In the remairing part of this contribution all games for 7=4 and 7=>5 are constructed.
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Corollary 5.2: sharply 5 or 4—transitive games exhibit #S=6 resp. 5 or 6.
— Corollary 4.14: r<#S<n~7

Lemma 5.3: If the game v¢[sh—6t] then it can be constructed via (PSL(2,11),GF(11)+w).
(PSL(2,11),N(6)) has only three orbits, namely the orbit of the squares
5Q=<013 4 59>, the orbit of the non—zero squares NZ§Q=<w13 4 5 9> and
the cyclic family C=<0 0123 4>
— On N(® the group M, , has the same orbits as PSL(2,11). According to #4 = #A #Ax
and A=PSL(2,11), #A=11x10x6, we get
132 coalitions in each of the squares families and 660 of the cyclic family / summing up to
the total of 12 over 6 = 924 coalitions. The design NZ5Q is called the Witt design
81(5,6; 12). In 1938 Witt sketched the uniqueness proof for this (and the 51(4,5;11) Witt
design used below); a detailed proof was given by L;;neburg 1969 (cf.
Beth/Jungnickel/Lenz). So we know that the games corresponding to SQ and NZSQ are

isomorphic. Call the corresponding games awll and wil.

Lemma 5.4: If the game ve[sh—5t] then it can be constructed via ( (Mlg)m,GF(ll)-i-m),
N=GF(11). Each of (My)_N(®)) and ((M;9) ,N®) has three orbits
induced by the above orbits SQ, NZSQ and C.

— The stabilizer (MlQ)m equals to M;;- Setsin N(s) are complementary to sets in N(G).
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-

The following theorem gives the 13 exceptional highly symmetric games.
Theorem 5.3: [sh—rt]~[w.m.] contains only 13 elements for 754, namely (according to the
number k of members of a minimal winning coalition:
k=6 —the game w12 with M being the unique 51(5,6;12)
— the game 2w12 corresponding to SQ+NZSQ |
- the game c12=*2w12 corresponding to C
— the game w12+c12=*w12 corresponding to NZSQ+C
— the game -wll
-~ the game ~2wll=*c1l
— the game ~c11
— the game +(c114+wl1)
k=5 —the game w1l with M being the unique 81(4,5;11).
— the game 2w11 corresponding to SQ+NZSQ
— the game c11 corresponding to C
— the game wll4cll
both — the only game not in [c.b.): wil4-wil
wi2 = w12, wl24+*wl2 = (6;1,...,1)
wll =*wll, “wll4+¥(wll4wll) = (6;1,...,1).
The 1l—player game w1l has 66 minimal winning coalitions and the large game w12 has
132 of them. Observe that the set W of winning coalitions does not contain all 6— resp. all

7—person coalitions. The mixed game w1l+-wll contains all 6—person coalitions.
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The {ollowing diagram gives the sublattice of the corresponding games for n=11.

4

|

C 5 =

O vel[wml]
¥ 45-5 (sert)
o H#S=§ (Sett)
0 m‘uxeAH

Concluding remark:
For n="7 there exists the first non—w.m. in {sh—2t]. But these games are elements of {c.b.].

The smallest n I found for a game ve[sh—-2t][c.b.] is n=11 (#S¢{6,7} or {4,5}, #M=16b).
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