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§ 0 Introduction

This paper is dealing with a version of the characteristic function of an NTU game in
the case of incomplete information. The model is based essentially on the work of
HARSANYI-SELTEN and MYERSON. However, we argue that the question of a
suitable extension of a bargaining solution (a suitably modified NASH-value) should be
raised again. On one hand, MYERSON’s objection against the HARSANYI-SELTEN
are worth a discussion, on the other hand his axiomatic approach yields a strong dis-
continuity. We discuss at length a slightly modified version ("ex post individual ration-
ality") of the HARSANYI-SELTEN value which seems to be more satisfying in view of
the family of examples under consideration.



§ 1 The Model

Let I = {1,...,n} represent the players or individuals involved in the game. For each i€l
let there be given a finite set T representing the possible "types" player i can find him-
self to be in.

p denotes a probability on T = T v T, called the "joint distribution of types".

Next, let X C R® be a compact convex set representing the possible "alternatives"; x €X

1 a single specified alternative, called the threaipoint.

Finally, fori €I a function

Ui : T x K—i R
(continuous and concave) reflects the utility of player i €I if the players find themselves

in the position of types (tl,...,tn) €T and x is the alternative chosen. We write

U: T« X~ U,(x) = (U} (x),... U} (x)).

Definition 1.1: r=(,7T,pX x U)

18 a cooperative game with incomplete information.

A (tentative) interpretation of how this game is actually being played is provided as
follows:
Let (LE,P) be a probability space and

7:82—=T

be a random variable such that p=7P =P o 7L is the distribution of . By this ran-
dom device an n-tupel of types 7{«) is drawn by chance and player i € N observes his
oun type 'rl(w). Given this state of affairs, the player may communicate and, via a
binding (and enforcable) contract, agree upon jointly choosing some x € X. If so, player i

is awarded the utility

U’T(w)_(x).



If players fail to agree upon such a contract, they will receive the utility
i
Urw®

Remark 1.2: For t € T consider the set
V, = CPH {U,(x) | x€X}

(where CPH denotes the "comprehensive huli") and the utility vector
u { = Ut(}_() € Vt

If chance chooses 7(w) = t, then players actually are engaged in a unanimous game (a
Nash Bargaining problem) (V,, u,) — but they are unaware of the real t apart from each

players own coordinate.

Utl(‘)

(Fig.1)

Hence we may visualize the fact that the players simultaneously consider bargaining
problems (Vt, u—t)te’l‘ — each of them being assessed with a certain conditional probabil-

ity by each player according to his observation.



Note that the requirements imposed upon U and the fact that Vt is taken to be a com-
prehensive hull imply that V, is a convex set which is compactly generated (i.e., the

convex comprehensive hull of a compact set).

Now, by agreeing on a contract which states that x € X is the common choice, the
players simultaneously choose u = Ut(x) €V, for each t —again, each player only being

aware of his coordinate.

Remark 1.3: HARSANYI and SELTEN ([2], 1972) in a different framework
consider the "generalized Nash bargaining problem" which, in our
present set—up may be defined as follows.

Introduce player i’s conditional expectation of payoff given that t i is known to him, i.e.
i i i
AL = Bp{U () | 7= i)
and let the (comprehensive hull) of all feasible payoffs for all types of all players be
1 n I T 4. | TP
Vi= CPH{(Al () . (AT () ) crlT I+4IT
1 t.€T n tneT

1
also introduce the corrresponding threat point

1 n
Al n [T +...+] T}
u:=((A; (x)) - (AL (X)) JEeR
b= b X t,€T! tn X ¢ €T"

By a system of seven axioms these authors arrive at the "generalized Nash solution”
which is the (unique) utility vector u obtained by maximizing the "generalized Nash
Product”

O O, (-y) °

i€l ter 4 M

with



More precisely, the contract suggested is an x € X such that

§= (Al % (AL (%
= ((Atl( ))tlerl’ ’(Atn( ))tner“)

maximizes the generalized Nash product.

Later on MYERSON in a series of papers [6] [7] introduced the concept of a
"Bayesian incentive compatible mechanism" (BIC) based on similar decives employed
by HURWICZ [ 4] and D’ASPREMONT/GERARD-VARET [1]}. In his first approach
he just restricts the SELTEN-HARSANYTI solution to the set of BIC’s while in his
second approach he axiomatizes a further solution concept. In a further paper
MYERSON also considers a generalized NTU-Shapley value [ 8] .

Note that in our approach the set X is already assumed to be compact and convex (and

the utility concave and continuous). Thus, "joint randomizing" is generally not neces-
sary. The above mentioned papers, however, deal with finite X upon which players may

jointly randomize.

Despite the fact that these concepts may be "imbedded" in our present one, the intro-
duction of the present model bears a slightly different flavour.

Definition 1.4: A mechanism is a mapping 4: T — X.

Remark 1.5: Mechanisms have been introduced by MYERSON into the context
of the Nash bargaining situation; of course the concept is known in
various contexts. A mechanism represents the idea of the following
type of agreement between the players : each player i €I will
report a type t. € T' and then u(t) €X is the alternative agreed

upon.

It may be observed, however, that this interpretation has a certain influence concerning
the story about the characteristic or "coalitional" function. "Binding agreements"
should now be possible with respect to mechanisms — which is more to ask for then was

included in our model so far.



For the "judicial" procedure which so far made it possible to (bindingly) "agree upon x"
(an enforcable contract or a referee accepting contracts) should be capable of extending
its functioning towards mechanisms.

Thus "law enforcement" is a new aspect which enters the picture. For, obviously
players may get vital information by the announcements beeing made {which trigger
the mechanism) and, accordingly, they might very well regret having agreed to this
mechanism in the face of chance’s choice of t. Thus, as x cannot be registered unless t is
chosen, the duties of the "referee" must be greatly extended.

At the same time we should make up our mind concerning the temporal relationship
between bargaining about the mechanism g and the chance move that discioses t. For,
if bargaining takes place after players know their type and mechanisms can be enforced,
then players may disclose information by insisting on mechanisms favorable to them
under certain conditions and extremely unfavorable under different ones. (This is parti-
cularly the case if a mechanism is "Bayesian incentive" — a term to be discussed later.)
However, we basically want to insist on the notion that players inherently cannot dis-
close information concerning their type.

Thus we come up with a modified story as to how "the game is being played":

First stage: players bargain about a mechanism x. If they agree upon some such g, they
may register it with a referee ("the court"), who is able to enforce it. If they do not
agree, x will be enforced later on.

Given 4, a new game in strategic form, called I¥, arises which is verbally described as

follows:
*) Chance choses t € T.
sx)  Player i €I, his information set being described by t. € Ti, announces, that

he is type 8; € i

*x+x) Player i receives U;(p(s))



Remark 1.6: Consider the game ™ A strategy of player i in this game is given
by a mapping

ERE L
Mearing "announce s, = crl(ti) if t; is your type").
In view of this incomplete information concerning the other players types, player i’s

expected payoff in the subgame Iﬂ determined by chance’s choice of t depends on fj only
1
and is given by
1 . _— _—
(1) K::_‘u'(a jeny0h) = EP(U,lr(;,L ooor)| 7= t) = Kl_‘%"(a en0)

1

where ¢ o 7 means (g, © 7y,...,0, © T ).

Clearly, his payoff in the game is
R Car)
=Ep U,]r(,u,oa‘o T}

(2) = [Ep Ul (nooor) |7 =t)P(r edt)

= J K:’i‘ (0p0y) P(dE;)

where pi denotes the distribution of 7 which can be computed by means of p via

i 1
p(F,) = f dp (tyseeosbynty) = B (T x...xFix...xTn)
1 n
(T x...le...xT )
Remark 1.7: A particular strategy for player i is "telling the truth", represented

by the identity map
o T =1

ACUSRY



Definition 1.8: u is Bayesian incentive compatible (BIC) if "telling the truth" is a
Nash equilibrium in [*,

Now, given some trivial positivity conditions on p, which we adopt for the remaining

exposition, this means that ¢ is a Nash equilibrium in each Iﬂ_ If we focus our interest
t

on player 1, then, in view of ¢ o T = 7, the equilibrium condition writes

1 1_ -
EpU_(uer|r =1)

1 1 1 2 n 1 -
> EBp Ul (et ol ) =1

and if p (- | t;) denotes the distribution of 7,,,...,7, under P(- | = t,), this inequal-

ity is
1 _ -
JuZ (F"(tl:t?---:tn)) dP(tgr--,tn ! tl)
t]. t2'"t11
1 - _
> ju- ([.L(al(tl),t2,...,tn) dp(t2,...,1;11 | tl)
tl t2...tn

As 0,(%;) is running through T! while o, is running through all possible strategies of

player 1, we come up with a trivial

Lemma 1.9: pis BIC if and only if for any (fl, 5 € T! « T! we have

[ U%_ (WE-)) dp (e Ty

1
T2x x T8
(3)
> [ UL ) dp (e | )
11
Tq x...x T



Note that, of course, p(... | tl) can be computed by means of p, clearly

2 n 1
p (t2:"':tn I tl) =P (T = t2,...,‘r = tll I T = tl)

)
Sg,..,8, 11 %27 %

At this stage we should again discuss the temporary relationship between bargaining

about the mechanism and the chance move that assigns the type t; to player i. Follow-

ing HOLMSTROM-MYERSON [3] we distinguish 3 categories in which players
decisions (and bargaining) can be viewed.

(4)

(5)

(6)

"ez ante" — before chance moves players will discuss the decisions to be
made and, if possible, agree upon a BIC—mechanism. At this stage an
important criterium that matters for the decision is the expected payoff

X45) = Ep (UL (o 7)

-hence, if we adopt the notion that players basically agree upon

BIC—mechanisms then at this first stage we might consider the idea that
they are essentially bargaining concerning payoffs from the feasible set

CPH {A'¥(7),..., () | 4 BIC}.

"in mediis" (or interim) — after the chance move, that is, when every
player knows his type t, and before any announcements have been made

concerning every other players type. We could also say that the in mediis
situation occurs after chance has selected one of the subgames If that

where mentioned earlier. Given this information, player i’s payoff is given

by
i i i
Kt? = Ittl (0} = Ep (UT(J” o) | = ti)-
Even, as we have constantly stressed to be the case, bargaining takes place

ez ante then nevertheless players might argue about their situation in
mediis and considerations concerning what is "fair", "equitable", or what
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kind of power a player has during the bargaining process, will also touch
the possible situation in mediis. In this case they are actually considering
the following "feasible set" of possible payoffs:

Definition 1.9: Let

V.= CPH {(Al (u vy (B (4 4 BIC
(AL, s BLE, a1 #510)

then the following is a trivial statement (cf. also MYERSON [ 5] ):

Lemma 1.10: V €V and V is a compact, convex, and comprehensive subset of

i n
plT 1+ 1T

This is seen by essentially using the linearity of X}G.(-) in 4 as well as the fact that
i

BIC’s, being defined by linear inequalities of type (2), form a compact convex polyhe-
dron (in XT)

In fact, in [5] MYERSON evaluates the HARSANYI-SELTEN value essentially with
respect to V.

Our discussion concerning the temporal aspects of our model should continue with

3. "ez post" — that is after the announcements have been made that where
agreed upon according to the mechanism g. This notion is particularly
intriguing because, if the players had agreed in advance upon a BIC
mechanism then, after these announcements, every player is completely
informed about the prevailing types. This fact was not initially included in
the model, rather it is a consequence of the adoption of BIC mechanisms.
Hence, every player is now aware of the bargaining situation (Vt’ Et)tET -

and he might very well regret being in a situation like this in view of what
the mechanism has in store for him. That is, even if bargaining takes place
ez ante players, while arguing about mechanisms, will point out that they
could end up with a certain probability p({t}) in this bargaining situation
and that the mechanism y — if considered to be fair or equetable — should
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somehow reflect its properties within this situation. Of course, player i’s
payoff ez post is described by U; (4(t)) — but while the discussion is taking

place ez ante, the distribution of these payoffs which is given by the law p
matters as well.

Actually it would seem that consideration of the ez post situation is also
induced by the application of BIC mechanisms. For, such mechanisms are
deviced in order to render a tramsfer of information between the players
feasible. The use of such information can be to the advantage of all players
— or of a few ones. However, this advantage materializes only when the
additional knowledge in some sense enters the communication process
which takes place ex ante. Perhaps one can argue that the introduction of
BIC mechanisms makes no sense unless we assume that players want to
use arguments from the ez post situation within the ez ante bargaining

procedure.

The notion of "probability invariance" ([ 6] ) should also be discussed in this context. It
would seem that this idea more or less presses the fact that V is the only and essential
quantity a solution concept should depend upon. If so, then a probability invariant
solution concept depends only on the "in mediis" stage of the whole game and does not
reflect the concerns of the players with respect to the ez post situations.



§ 2 Examples

Example 2.1:

(1)

~-12 -

Two players divide 100 dollars. While player 1 has a utility func-
tion linear in money, player 2 may be one of two types having
either linear or logarithmic utility accordingly. Thus we have

2
X = {x€eR | x,+x, < 100}, x=(0,0)
1l = {«}, T2 = {a,r}
p=(p,,p)20,p, +p, =1
1 1 1 1
U*,a(') =U,()=U, Ux) =x

UL = U0 =%y

Ui,r(x) = UX(x) = log(l+x,)

The "cooperative situation" (X, Vt( tET)) is obviously represented as follows

100

11

0 100

100 log 101

0 100

(x5 T0g(1+100-x;)) | 0 < x; < 100}

(Fig.2)
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Example 2.2: Similar to Example 2.1., let players divide just 1 doliar and player
2 in situation of beeing type "r" has the utility
Hxy)
2 _T2ry 1
U*,r(x) - Ur(x) =X Ix,
where
2t o¢tca
(2) 1) = 1
7(?-51 ast<l

and % < a < 1 denotes a parameter.

The graph of 1 is
as follows

1/21

—ap t

(Fig.3)

and in case of t = (x,r), an agreement (x,,x,) € X results in utilitis
* 2
(x, x3) = (x;, U3(x))

for the players such that

*
x_2 l(xl)
(3) %,
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*1
(Fig.4)
1(x)
That is, player 2’s utility in this case is increasing proportionally to # ; this leads
1

to the following situation

(Fig.5)
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Example 2.3: Consider two Bimatrix-Games, called "TOP" and "BOTTOM",
each being represented by two matrices as follows
(1 4 (6 4]
TOP: [0 6 ] 0 0
(4) i i
5 6 6
BOTTOM: 0 6 ] 0

Both games have a Nash equilibrium in pure strategies as indicated.
These games may be used to construct another one as follows:

Player one is given the information TOP or BOTTOM. Both players may then choose
jointly randomized (correlated) strategies and, after agreeing to what kind of strategyx
they want to apply, receive their corresponding expected value.

This model, which is constructed rather in the spirit of HARSANYI and SELTEN [2]
as well as MYERSON [ 5] may be presented in our present framework. Note, however,
that we have to agree upon a "threatpoint" — which could be generated by adding a row
and a colum of zeros in each matrix — or by having each player play "max—min".

Also note that the parametrisation via the joint random strategies is not 1-1.

Hence by choosing a different parametrisation we certainly change the game — and it is
a matter of discussion whether 1-1 parametrisations are relevant.

Our parametrisation, as indicated is choosen such that the Paretc curve is parametrized
linearly in an obviously way and any non Pareto efficient point is connected to zero,
thus defining a Pareto efficient point — the properties of which determine the parametri-
zation of the non Pareto efficient point.
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TOP -

BOTTOM

121
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MYERSON considers an example in [ 5}, [ 6], this is the only one so far existent in the
literatur, for which this solution and the HARSANYI-SELTEN solution were compu-
ted. Again, as we used "joint randomized" mixed strategies, this example is presented
more in a "Bimatrix set up" spirit. However, it could be argued that it fits much more
in our present framework (which allows for a continuous share of money).

This example is presented somewhat more formal as follows.

Example 2.4 (Two players, I = {1,2}). T! = {T,B}, T = {*}

i.e., player 1 is TOP or BOTTOM, while player 2’s type is fixed. Let

2

X = {xeR,

| x; + x5 <1}

Possible states of nature are (T,x) and (B,x), let us omit the x. Then the utilities are
given by

Ul(x) = 10 x; — (x; + X))
(5) Uh(x) = 10 x, — 7(x; + x,)

U%(x) = 10 x, — (x; + xy)



121
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(~7,9)

(9,-1)

(Fig.7)
Note that the utilities can also be written
U,i(x) =9 (x; +xy) — 10 Xy
(6) Up(x) = 3 (x; +xy) - 10 x,

U%(x) =9 (x; + x,) ~ 10 x,



~-19 -

and in particular, on the Paretosurface (x1 + Xy = 1), we have

Ur},(x) =9-10x,

(7) Ug(x) =3-10x,

U4(x) = 9-10x,

Thus the interpretation (cf. [5]) is as follows: The players may engage in some joint
venture which generates costs of 10 units. For player two, its worth is 9 units while for
player 1 it is 9 or three units, according to whether he is type TOP or BOTTOM. X

denotes the amount player 3— has to pay (and X suggests, that the venture can also be
obtained on a lower "activity level" X; + X5 < 1 —in which case the agreement, how-

ever, would not be Pareto efficient).
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§ 3 BIC-mechanisms visualized

Consider the case (as suggested by the examples in the previous section) that I = {1,2}

and player 2 has only one type available, say T2 = {*}. We have then p(- |t1) =6 N

and hence

1 1
S Ue,.) (Wt D dpC 1) = Ty Gty )
T
such that the inequality in Lemma 1.7. reads for all t, €T

(1) Ule, ) (Bt25#0) 2 Uy (s )

whatever 51 € Tl.

The second inequality is trivially satisfied, as 1, = 8, = x is the unique element in T,.
Omitting the star %, we have a BIC mechanism represented by a mapping
i: Tl —X

such that
Uil (u(t,)) 2 Uil ((s;))

forall s T

p b €Ty

Assume now, in addition, that T = {T,B} consists of just two elements. In accordance
with Remark 1.2., let us write

up = Urp (u(T)) €Vrp
up := Ug (#(B)) € Vg

Within this simple set up the conditions for z to be BIC are

w2 U (4(B))

ug > Ug ((T))
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Consider the first conditibn which we write

Up (4(B)) € {u | uj 2 u;}

WB) €U ({u | up 2w }).

- Applying UB we come up with
—1 1
ug €Up(Up™ ({u [ up 2 0;})).

Assume that UB and UT are 1-1 and that U! is monotone in the first coordinate, i..e.,

the situation has been modelled in a wa.y-that player 1’s utility increases with the 1st
coordinate of x € X.
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Then, intuitively, U:El ({u | u,i. > u,}) is a set in X to the right of the curve
U',ITI ({u} u.% = u,}) and similarly Ug (U,_I."1 {...})) scan be visualized in Va-

Similarly, the second equation in (x) will lead to a requirement

up €Up (U5 ({u | ug 2 1,})

and the pair (y(T), #(B)) is BIC only if both commodities are satisfied which typically
might be the case if the following picture is reflecting the true situation.

u(B)

(Fig.9)
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Of course, as Ug and Uy are 1-1 mappings the situation is completely depicted, say,

by the 1-1 mapping

and the two vectors uT € VT, u

Remark 3.1:

=1l .
UO.—UTOUB.VT—aVB
B

€ VB which should satisfy
ug €Uy ({u€Vy | 1y <ug})

up €Uy ({ue Vg | u; < ug})

Note that g(T) = w(B) or

Uplug) = up

always implies BIC; this is the situation where the mechanism
does’nt react to the announcements of the players.

Next, let us adapt Definition 1.9. to the present situation. We have to consider typical

elements of V of the form

(Ep(u), Kp), K1)

where p is BIC. Assuming that

we have, e.g.

and

P(r=T)=q
P(r=B)=14q

AL(s) = Ep(Uk(po 7) | 7= T) = UZ(i(T)) = ux.

A5 (k) = ug
o) = Ep(U(ke 1))
= Q UA(W(T)) + (1-q) UZ((B))

2 2
=qug + (1q) ug
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that is, if up, up are the utilities induced by BIC mechanism, then

(wp, ug) = (ug, ug, q v + (1-q) u3)

generates the set V as (ur, ug) ranges through the BIC utilities.

Example 3.2: (i-e., Example 2.4.}
In Example 2.4., VT and VB can easily be visualized, we omit the parameter set

X which is

1<

(Fig.10)

For instance u = (4,4) and up = (-2,4) constitute a BIC mechanism.
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Let us consider the case that ¢ = 9/10. The following pairs of utilities constitute BIC’s
with the property that

(u%,ué,qu%-+(Lﬂ)u§)
is an eztreme point in V. These are (for q¢ = 9/10):
(-1,9), (-7,9) = (-1,-7,9)
72
(08), (0,0}~ (0,0, 13
(9,-1), (3,-1) — (9,3,-1)

It may be verified that these are all the BIC’s yielding extreme points in V. Thus V is
the convex hull of

(_13_7:9)1 (O:Or Z%o)! (9!31_1)

(0,0, 75 )

— . (8-¢, 1.32, 3.6)

(9.3,-1)

(Fig.12)
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The maximizer of the generalized Nash Product
9/10 1/10
b B T
18 approximately of the shape
(4-¢, 1.32, 3.6)
and is "implemented" by the BIC utilities

ug = (1.32, 0.43)

9 _0.43
)

— (4—6, 132, 3.6 + TU € —*']T

which means ¢ = Ogﬁ This example corresponds to MYERSON's computation in [ 5].
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(1.32, -0.43)

(Fig.13)
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§ 4 Ex post arguments

We have previously argued our basic assumptions, that is, we assume that bargaining
concerning p takes place ez ante — 50 as to be sure that there is a well defined game I
such that "telling the truth" is a Nash equilibrium.

Also we are assuming that "announcing types" takes place in mediis. However, player i,
when discussing u is mentally passing by all possible states fi € T' he may find himself

to be in, that is, that player i is concerned with what happens if chance has moved.

Moreover, we favor the idea that the players settle for some BIC mechanism and hence
they will eventually know the other fellows types; this fact is also known to the players
in advance. Of course this idea is based upon the basic assumption of the possibility of
"law enforcement".

If bargaining at the ez ante stage allows for arguments which refer to the stages ex ante
and in mediis, then we should also allow for arguments derived from the situation ez
post. Player i knows that, given a BIC mechanism, he will eventually know the truth
that is the realization of the type selecting random variable. Therefore he might as well
be worrid ez ante what will happen to him ez post — that is, he considers what he will be
awarded by g not only w.r.t. his expectations but also w.r.t. all possible t € T. It is
likely that players in such situation will argue that they cannot accept a mechanism
which leaves them with a possible payoff which is not even individually rational — even
if this should happen with small probability. This means we want to introduce the
notion of ez post individual rationality.

Definition 4.1: p € BIC is called ez post i.7. if, foralli€Iand all t € T
(1) Ui (ut) 2 Ul(x)

or, for short, if we write this as a vector inequality
(2) U (ult)) 2 Uy (x) (teT)
or
(3) u 2, (teT)
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We shall use the notation "u € BICIR" to indicate that x4 € BIC is i.r..

Let us shortly discuss the notion of a "solution concept". Such concept should also in
some sense depend on all three stages of the game. In particular, it is possible that the
concept is influenced by ez post arguments (as the players in bargaining about mecha-
nisms will use such arguments), a fact that might violate MYERSON’s probability
invariance axiom. First of all the consideration of the ez post stages of the game leed to
the introduction of the set

(4) VT = CPH {Uy(x) | x€X, Uy(x) > U,(x)}
=CPH {u, | u, €V, u, 2 Et}

and, of course, the fact that a mechanism x is ez post individually rational and BIC
induces that

(5) U (ut) €V (teT)

Note that we are still entertaining the idea of a 1-1 parametrization of the sets Vt;

hence a mechanism is essentially described by indicating all vectors Ut(p(t)) EVi’

(t € T). Roughly speaking this means that 4 can be regarded as an element of (IRn)T.
Of course we are also interested in the set
. 1 n
(6) vt =cPE{(E () . |peBicmy rlT I++T
i i€lt.€T

i

_ ;- In particular the case

Vectors in this set are generally deroted byy = (yi )
i i€l t.€T

that the bargaining process fails to reach an agreement corresponds to a certain mecha-
nism p, u(t) = x (t €T); this way the threatpoint is imbedded into the set of mecha-

nisms, more precisely, the threatpoint is regarded as an element of BICIR. Of course we
have u(y(t)) = U, for all t € T and hence, as the strategic behavior of the players within

the game I¥ does not influence the payoff, we find that failure of reaching an agreement
corresponds to the in mediis expectation of a payoff of
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(7) xgw = Ep(Ul(go 1) | ;= t,)
= Eplu, | 7 =t)

ol
= ¥ -

Next, the generalized HARSANYI-SELTEN value is the mapping o that assines to
every [ the unique element y eVt that maximizes the (weighted) Nash coordinate

product
) ) p.(t.)
(8) I (v, -y) '
el 4 Y
1:ieT1

where y ranges over the set V. we write o(I) = u. Compare the discussion of the
HARSANYI-SELTEN value in Section 1 and the definition of p; for this purpose.

Given T, we shall say that u implements o(I) = y if
9) Bm-=7
i

holds true. A prioriit is not clear whether the implementation of the value is unique.

Most likely it is true that ¢ can be axiomatized by means of the axioms which were
presented by HARSANYI and SELTEN [2] - provided the IIA-axiom is suitably for-
mulated within the framework of the sets Vt‘ We will offer no formal proofs for these

facts.

Rather the reminder of this section will be devoted to an extensive discussion of an
example where ¢ is computed for all probabilities p.

This example has already been discussed in Section 2 (Example 2.4) and Section 3
(Example 3.1). The results obtained by our computations for various probabilities P
does not seem all together unconvincing. In this context is is worth noting that
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MYERSON’s axiomatic approach [ 6], when studied for all probabilities P results in a
discontinuity for q = P(r = T) = i (WEIDNER [ 8] ). It is an open question whether

this is a structural problem, however, on first sight it is not unlikely that the proba-
bility invariance axiom when imposed upon a value may cause continuity problems.

Example 4.2: (= Example 3.1. = Example 2.4.) )
Recall that, as in SECTION 3 a pair of uti]jties,uT, ug resulting from a mecha-
nism p, i.e. ' '

Up = UT(u.(T)), upg = UB'(U(B))

gives rise to an element of V' via
1 1 2 2 1 .1 _2
(10) (ups ug) — (uT’ ug, qup + (1-q) ug) = (y7, ¥g; Y

recall that P(r = T) =q.

It is not hard to see that in order for the right side of (10) to be an extreme point of
V+, it is necessarily true that either U OF Up is an extreme point of V,}' or Vg. More-

over if, say U is extreme in V; then in the framework of this example up is extreme
in .
—1 + 1
Up o Up ({u €EVy | up 2 ul})

Therefore, the following procedure is adopted in order to obtain the extreme points of
(%) List extreme points ﬁT € V',:' ) ﬁ_B € VE‘
(x*) - Suppose .y is extreme in V1, combine with some ip €V g ’_ﬁB extreme
. —1 1
inUg o Ugp ({u]up2u})
According to this procedure we find
(6,2) (0,2) — (6,0,2)

(08) (0,0) — (0,0,80)
(80) (20) — (8,20)



- 33 -

(Fig.14)
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Fig. 14 shows the situation for (6,2) (0,2). E.g. (0,2) is extreme in V_iB- and (6,2) is ex-
treme in

—1 1
Upo U™ ({u EVE | ug 2 u,})

The set V+, resulting as the convex hull of (6,0,2), (0,0,8q), and (8,2,0) from this pro-
cedure is scetched in Fig. 15. The triangle A as depicted represents the Pareto surface of
V" (which is its comprehensive hull) only if q > 7.

The hyperplane including A is

{y | ay =¢}
witha =al= (q—i, 1-q, %), ¢ = 6q.
If we solve
1
(11) max {y]- y5 ©- ¥4 | 3y =}

then the maximizer is

2
= _ 12 32q. 4
¥ = (1521 30 4a)
12
—Q(anib:Ball)

I, in Fig. 15, we consider the projection on the 2-3—plane, than 39 € A requires two
additional conditions, namely

3q+4q22

3g+1 <2
i.e.

2 1
(12) 75‘133

Thus, for % <q¥ % , §q is the solution of the generalized Nash procedure (the genera-

lized HARSANYI-SELTEN value).
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(Fig.15)

We now want to "implement" 73, i.e., look for E%, ﬁ% such that

2
—q = —ql —q1 =94 —q2
@hud) —-0F .58 qup + 095

= ¥3

2
12
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Clearly, this gives three eqations for the four coordinates of E,%, E%,

2
1 _ 12q
Up = q-1
(13) ué =3q

2 )
quy + (1-q) ug = 4q

Assuming (by inspection of the situation as depicted in Fig.14) that ET is Pareto effi-

cient in V%, the fourth equation is

1 2
uT+uT—8

and the unique solution is

qa_ (12 ¢ 32q-8-12¢°
T 491 4qg-1

2 1

(14) (7¢a¢3)

e [3q 12¢° - 28¢° + Tq]
B 1 4(lq) (4q-1)

The two boundary cases, q = %— and q = %a.dmit for the following implementations

(15) a=2:.9.¢.9-¢.3%.9
(16) a=3:(44),(1L0) — (4173

Note, that for q = %We observe that P is Pareto—efficient in V . Owing to this obser-
vation we conjecture — and verify ~ that u(T) = u(B), that is u2/ 7 and uB/ 7 are para-
metrized by the same x € X(= (T) = 1B)). Indeed, it turns out that this is x = (-?—g :

%—g), for in this case (cf. Example 2.4.)

Ul@m=10x, -1=8, v3@®=10x, -7=5, v¥® = 105, -1=3

Clearly, it is Remark 3.1., that applies in this situation.



(Fig.16)
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(Fig.17)

Continuing our analysis for q¢ > 1/3 the solution of the maximizing problem suggested
by (11) moves out of the triangle A as the roof of the feasible set (cf. Fig.15) becomes
very "steep". Thus, the maximal generalized Nash Product is attained on the line
(8,2,0), (0,0,8q). It is not hard to verify that the maximizer is

(17) 71 =(4,1,49) (1/3<q <),
and this is implemented by
(18) ET = (4,4) and ﬁB = (1,0).
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As for % <q¥ ?f the solution of (11) has to be found on the line (6,0,2), (8,2,0) (cf.
Fig.15).

However, for q ¢ % this line constitutes all of the Pareto—efficient surface of V' and

hence we have to solve our maximization problem with respect to this line for the
remaining q, that is, for 0 < q € 127 The constraints defining this line are given by

Yo tyg3= 2
Y 1- ¥ = 6
and the Lagrange procedure yields for the second coordinate of y% an equation

q l1-gq__1 _,
6+y2+ Yo 2-y2

Hence we come up with

Fl=5 ™+ (7430), { —(5-30), ~{ + (9-30)) (0 <a<)
where | stands for J49—54q+9q2 .

Now, for q = }2? this yields nicely (47—8 , g , g) , and hence we have a continuous extension

of the value. For q = 0 we obtain indeed

¥ = (7.1,1)

which is of course implemented by

iy = (7,1), iy = (1,1)

Thus we remark that for the extreme cases ¢ = 1 and q = 0 the value coincides with
the Nash value of the TOP and BOTTOM versions of the characteristic function.
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The following table presents an overview:

12q2%:
(4.4), (1,0) — (4,1.4q)
1.
Gq= 3-
(4,4), (1,0) = (4,1, 3)
32027
12 ¢° 12 ¢
[;1q—_“1‘~] (3g,...) — [;q—_q— 3q, 4q]
_2,
qQ=x:
48 8, 6 8 48 6 8
Calh A\ 23 /hndC ol BY )
22420
— 5 (" + (7+3q)
q=0

(7.1), (1,1) — (7,1,1)



1
1
(Fig.18) z923

Fig. 18 indicates the implementations for varying q and Fig. 19 shows the movement of

4in VT
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(Fig.19)
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The reader should judge for himself how far he is satisfied with the value suggested by
the procedure presented. It seems to be an advantage that the value for small or large q
coincides with the Nash value in the ez post situations. Whether this coincidence is
already justified for q > %-is of course questionable. Another slightly puzzling property

is the lacking ez post monotonicity w.r.t. the "bottom"-state of nature, which ist exhi-
bited by studying the situation at q = %, q= 127, q=0.
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