Incentive-compatible
cost-allocation schemes

David Schmeidler
Ohio State University and Tel Aviv University

and

Yair Tauman
SUNY at Stony Brook and Tel Aviv University

This paper was completed while one of the authors visited the Institute of
Mathematical Economics — IMW — University of Bielefeld. The authors wish

to thank Mark Walker and Timothy VanZandt for their very helpful remarks.



1 Introduction

"The need for incentive compatible cost-allocation schemes, or more
generally incentive compatible allocation schemes, stems from the
premise that there is no omniscient, omuipotent. and benevolent
central, planner. Implementation of efficient allocation is obtained
via Nash equilibria (or some of their refinements). The allocation
mechanism depends on the whole domain of agents’ conceivable
characteristics and not on the actual characteristics. The common
knowledge assumption implicit in the Nash equilibrium concept
implies that when the mechanism is employed the agents know,
in addition to their own characteristics, the actual characteristics
of others.

The research in this area began with a quest for revelation me-
chanismes in which truth is unconditionally a best-response strat-
egy. The fundamental result obtained in this area is the Gibbard-
Satterthwaite impossibility theorem. Gibbard (1973) extended
this result to more general allocation schemes (in which truth is
meaningless as a strategy). To capture the idea that the actions
of an agent are based on his characteristics only (and not on his
beliefs about the others’ characteristics) one is led to consider me-
chanisms that yield dominant strategies for every agent. Gibbard
(1973) obtained the impossibility result for general schemes by re-
ducing the problem to revelation mechanisms using (and introdu-
cing) the “revelation principle”. The introduction of the Bayesian
framework essentially did not change the conclusion. (In Bayesian
(Harsanyi-Nash) equilibria, common knowledge of the prior over
the agents’ characteristics is assumed). .

One can question the impossibility result when allocation sche-
mes are planned for a restricted family of agents’ characteristics..
For instance, “median” is a non-manipulable and efficient voting
rule for single peaked preferences, or truthful revelation is a do-
minant strategy in second-price private-value auctions. On the
other hand, the Clark-Groves mechanism for the financing of pu-
blic projects has been shown by Green and Laffont (1979) to be
either non-feasible or inefficient. Moreover, these latter authors
showed that there exists no efficient revelation mechanism for this

problem.

In the simple public project problem it is assumed that every
agent assigns a monetary value to the project. The project is built
if and only if the sum of the values exceeds its cost, and in this case

‘the question is how to allocate the cost among the agents. The

Green-Laffont result asserts that any scheme that succeeds in eli-
citing the true valuations generically results in collective revenues
that are either short of cost (non-feasibility) or exceed cost (inef-
ficiency). If the truth is not elicited, then inefficiency may arise,
in the sense that either the project will be built when it should
not or vice versa. Alternatively, the revelation principle implies
that it suffices to restrict attention to revelation mechanisms.

In the cost-allocation problems it is assumed that a set of
alternatives is given together with a cost function which assigns
a real number (the cost) to each alternative. The cost-allocation
scheme assigns to each alternative and every agent his share of
the cost of the alternative so that the total charges exactly cover
the cost of the alternative. Each agent is characterized by a true

signal not known to the center (or anyone else). The payoff to
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every agent depends on the selected alternative, his true signal and
his share in the total cost. A cost-allocation scheme is incentive
compatible if and only if, for every agent, sending the true signal
is a dominant strategy, i.e., it is his best strategy independently

of the others’ signals.

This note was motivated by a problem regarding a group of
public utilities located in relatively close proximity to each other.
In a certain period of time some of these utilities are confronted
by a shortage of capacity (or by an expensive production cost)
while others have excess capacity. The potential buyers cooperate
to purchase their needs from the potential sellers in the most effi-
cient way. The minimization of total cost involves the solution of

transportation problems.

The optimal solution is an outcome of an overall minimaza-
tion of costs which takes into account the whole system. Thus
it may yield distortions, whereby some agents subsidize others
(see Samet, Tauman and Zang (1984)). Hence transfer payments
should be used to provide the agents with the right incentive to
cooperate. In other words, the total (minimum) cost should be
allocated “properly”. But this is not sufficient. Since the needs of
the potential buyers are private information, a prespecified cost-
allocation rule may be manipulable in the sense that some buy-
ers may find it profitable not to reveal their true characteristics.
For instance, some may report demands lower than their true
ones and self-produce (at high cost) the remainder, while others
may ask to buy more than they actually need and dispose of the
excess if by doing so they will sufficiently reduce their per-unit
charge. Since misrepresentation of the true characteristics yields,

in general, non-efficient outcomes it is important to desigr non-
manipulable cost-allocation schemes which yields individually ra-

tional outcomes which are efficient, if such schemes exist.

In this note it is shown that for a large class of problems there
are cost-allocation schemes which are incentive compatible and
yield individually rational and efficient outcomes. For example,
cost-allocation schemes which extract from every agent an average
of his marginal contribution to the cost of a random coalition
of agents are shown to be incentive compatible and individually
rational. In contrast, it is shown that the scheme which allocates
the cost via prices which are proportional to the marginal cost

prices is not incentive compatible.

2 The Model

The special features of our model are: a set N = {1,2,..., n} of
agents who operate as monopolists in n locations 4j, Az, ..., A,
(e.g., public utilities). Every i € N can produce any quantity z;
for a cost of fi(z;), where f; : Ry — Ry. In addition, there is
another production possibility located at Ao (the center). This
may be either an established plant (or a set of plants owned by
agents not in N) or a plant jointly built by the agents in N to
cut their local costs. Let fo(y1,...,yn) be the minimum cost
of producing ) ;cn Ui units at Ao and transporting y; units to
Ay, y2 units to Aj, etc., using the most efficient configuration.
It is assumed that for any i € N, f; is nondecreasing on R,
£i(0) = 0, and f; is continuous on R4 . This allows for fixed cost
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components to the local technologies. As for the joint technology,
it is assumed that fy is nondecreasing on RY, fo(0) = 0, and

fo(y) € lim fo(y™) whenever y™ — y. For example, suppose
W=

that fo(y) = S(Cien %) + Lien (i), where s(3°;¢n i) is the
joint production cost of ¥ ey ¥ units in Ao and ri(y) is the
transportation cost of shipping y; units from Ao to A;. Suppose
that s and 74, i € N, are nondecreasing on IR, continuous on
Ry, and 5(0) = r;(0) = 0. In this case fo(y) < im_ foly™)

whenever y™ — y.

Let F : R} — IR be the cost function of providing each agent

with his consumption level at his location in the most efficient

way. That is,
st. 6<uz, (1)
é e R}.

Let Fs : [T;en[0, ] — Ry be the function minimized in (1).
Namely
Fo(8) = folz = )+ 3 _ fi(8), (2)
iEN
and F(z) = mins F(6). Since F; is not necessarily continuous
on the boundary of its domain it is necessary to establish that

ming F;(6) is well defined.
Let M(z) be the set of minimizers of F;(4).

Lemma 1 For each z € R}, M(x) is nonempty end compact.

Proof of Lemma 1 Clearly F.(6) is bounded. Let a = infs Fz(6)
where 0 < 6; < z;, i € N. Let (6™)%_, be a sequence in the do-

main of Fe(*) 8.t. iMoo fo(§™) = a. Since (6™ )71 is a boun-
ded sequence (0 < 6™ < z) it has a subsequence which converges,

say to 6. W.l.o.g. assume that 6™ — 4 as m — co. Then

o= lim F(6™) = _lim [fo(z-6)+ M fi(6M)
> lim fo(z—6™)+ ) lim fi(]").
F M — 00 ».mza,!yoc

Since fo(z — §) < lim fo(z — 6™)

a > fole —8)+ D filli) = F=(8).

ieN

Consequently, Fz(8) < a. But a = infs Fz(6), therefore a =
F.(8) and thus § € M(z).

Let us next prove that M(z) is compact. Clearly M(z) is
bounded. Let (§™)%.; be a sequence in M(x). Suppose that
§m — § as m — oo. It is sufficient to prove that 5 € M(z). Let
0 < § < z. Since Fg(8) > Fz(8™) for any m,

Fo(8) 2 lim Fo(6™) 2 F(§).

M= 00




This implies that § € M(z).

0

For each z € IR} let 6(z) € M(x). For instance 6(x) can be
chosen to be the minimal element in M (z) w.r.t. the lexicographic
order. Since M(z) is nonempty and compact §(z) is well defined.
A joint production plan (or for short an alternative) is an element
z € wa An efficient production of @ involves the production of
S ien(zi — 6:(z)) units at Ao and the production of 6;(z) units at
A, i €N.

Suppose that the local demand in A; is fixed at the level of
z? units (e.g., due to a local price regulation). It is assumed that
the marginal benefit from the production of an extra unit in A;
exceeds its marginal cost, as long as z; < z?. This assumption

ensures that every i € N will supply the total demand z? in 4;.

The information structure of the model is as follows:

(i) Every agent i € N knows the demand z} in A;, his cost
function f;, and the cost function fo of the center.

(ii) The center knows fo, f1,..., fo. The demands z{, i € N,
are private information but it is common knowledge that
every agent will supply the full demand of his customers.

A (balanced) mechanism is a family of n sets ,,wr.m_m. e ey
(the strategy sets of the agents in N) and a function g : 5; x
Sy x +++x 8 — IR} x IR™ which associates with any :&:v_m of
_strategies s = (s1,...,8n) € S = [lien Si» @ pair (y,t) where
y € 7 is the joint production in the center and ¢ = (t1,...,1s)

is a vector of individual charges satisfying the balance condition
Yienti = fo(y). Givena mechanism (S, g) every agent i chooses
a strategy s; € S; and reports his choice to a coordinator. The
corresponding outcome is g(s) = (y,t). Every ieN 'is informed
of his outcome (u;, ;). Then he self-produces in A; the difference

between y; and z¥ provided that y; < zJ. Denote
z; = max(0, z{ — u;). (3)
That is, z; is the number of units which will be produced in A4;.
If i is of type z{ his payoff is defined to be his total cost with
negative sign
hi(y:, til2d) = —[fi(z) + til, (4)
where z; is defined in (3) and 3 ;¢ ti = fo(y)-

Let
h(-|z%) = (B (:ad), .-, h"CleR))-
Any mechanism (S, g) together with the n-tuple of payoff functi-
ons h(-|z°) induces a “game” between the agents in N. (To make
it a proper game of incomplete information (a la Harsanyi) a com-
mon prior over the set of possible types 20 should be associated).
We restrict the set of mechanisms and consider only mechanisms
that have a dominant strategy for every agent in N and every

vector of true demands.

Let 20 be the true type vector of the agents. We say that (§,1)
is an efficient outcome with respect o 20 if it is a cost minimizer,

namely

(7)€ grgmax YR tled) = pgmin |fo®) + 3 fi(max(0, 2} - )

i€EN : ieN

(5)




where the max and min range over all outcomes (y,t) € R} x R",
s.t. M..mz ti = fo(y)-

An outcome (y,t) is individuvally rational (LR.) with respect
tozlifforallie N

ti + fi(z) < fi(=29), (6)

where 2; is defined in (3). The left-hand side of (6 ) is the cost
to supply z{ units to the customers in A; under the joint project,
while the right-hand side of (6) is the production cost of this
quantity in A4;. )

Our goal is to find whether there are mechanisms (.5, g) which
would appear acceptable to all the agents before the game (indu-
ced by (S, g)) is actually played.

A mechanism is satisfactory if for any true type z° there exists
s’ € S and t% € R" s.t.

(i) The strategy s} € S; is a dominant strategy for agent i of
type zf, i€ N.

(i) g(s°) = (20 — 6(=?),1%).
(i) Ysen t? = fo(x® — 6(2%),1°).
(iv) The outcome (2° — §(2°),¢°) is individually rational.
Thus a satisfactory mechanism removes the game theoretic
aspect of the decision making procedure, at least as far as indi-

vidual behavior is concerned. No one can conceivably gain by
playing any other strategy than s° and no threats by individual

10

firms to deviate from their dominant strategy s® can be viable.
In addition, the dominant strategy s® dictates the cost minimiza-
tion outcome (2% — §(z°), %) and the total revenues of the center,
YieN 2, from this outcome will just cover the total joint cost
fo(z® — 8(=°)). Finally, no individual firm will regret her partici-
pation in the game since the outcome is individually rational.

The possibility of another dominant strategy s* # s in (5, 9)
is not ruled out. Obviously, the payoff to every agent under s*
must coincide with that under s°. Moreover, since we deal with a
balanced mechanism

F@) = 1+ A = 1 8+ £(EED) = FE),
i€n ieN
where (z* — §(z*),1*) is the outcome generated by s*. Therefore,
this outcome is efficient as well, and it is equivalent to (z® —
5(z°),1%).

The revelation principle allows us to restrict our attention to
(balanced) revelation mechanisms where the truth is a dominant
strategy for each player. A revelation mechenism is a pair (IR}, g).
Every agent i chooses a nonnegative number z; and reports his
choice to the coordinator. In a revelation mechanism, truth re-
vealing is a meaningful term. A revelation mechanism is incentive
compatible (I.C.) if for any type vextor z° it is a dominant strat-
egy for every agent i € N to submit his true type z{. To guarantee
that g generates efficient outcomes when the true type vector is

reported one is led to consider revelation mechanisms of the form
gi(z) = (z ~ §(x), t(2)),
where .y ti(z) = fo(z — 6(x)).

11




A functiont : RG — IR isa cost- allocation scheme if ) ;. y ti(2) =

Jo(z — 6(x)) for all € IRY. It is incentive compatible (I.C.) if
the revelation mechanism (R}, g;) is incentive compatible. That
is, for each #° € R} and every i € N

) € argmax h'(z; — 6;(z), ti(z)|=}).
zi20

Equivalently, (-) is I.C. iff for each z° € IR} and every i € N

s} € srgmin[ti(2) + (=) ")

where z; = max(0, ) — z; + 6;(z)).
Let #(-) be a cost-allocation scheme. By (6) the outcome (z°—
6(z°),#(z®)) is individually rational with respect to z0 iff

t:(2%) + fi(6:(2°)) < fi(=®), ieN. )

Thus a mechanism (IR}, g;), where #(-) is a cost-allocation scheme,
is satisfactory if for any z° € R} (7) and (8) hold.

Lemma 2 A necessary and sufficient condition for t(-) to be in-
centive compatible is that for all z° € R} and every i€ N

z{ € argmin [t;(Z) + fi(%)],
z;20

where & = (2%, 2;) and % = max(0,2? — z; + 6;(2)).

The lemma asserts that if for all ° € IR}, to report the true
types z° is a Nash equilibrium strategy, then for all z° and every

i € N, 20 is a dominant strategy for .
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Proof One direction is obvious. As for the other direction, sup-
pose that

) € argmin [t;(Z) + fi(%)],
z; 20 .

for all 2% € R}. In particular, this relation holds when z°; is
replaced by «_; for any z_; € EHL. In this case, condition (7)

O

Corollary 1 Let t(-) be a cosi-allocation scheme. The revelation

is satisfied, as required.

mechanism (IR}, g:) is satisfactory if for all 2° € R} and every
ieN

(i) t:(z°) + £i(6:(=°)) < t:(Z) + ful(%) and
(ii) 1:(=°) + fi(8:(=°)) < fil=]) ,
where # and Z are defined as in Lemma 2.

Proof Follows from Lemma 2 and (8) and from z; = 6;(z%) at
the point where z = z°.

The question under consideration is whether or not for any de-
mand z° = (29,...,29) and any cost configuration fo, f1,...,fn
there exists an incentive compatible cost-allocation scheme #(.) for

which (IR}, ¢:) is a satisfactory mechanism. The answer to this

question is negative, as the next proposition states.
Proposition 1 Suppose that

(i) fi is stricily convez for alii e N,

B 1




(ii) there ezists x° € R, s.t. 6(x°) =x" and

(iii) there ezists 2° € R and i € N s.t. 2° < x° and 6;(2]) <

0 %

&i.

Then there ezists no cost-allocation scheme 1(-) for which the me-

chanism (IR}, g:) is satisfactory.

By strict convexity we mean that for any #; > O and y; > 0
and forany 0 < A< 1

fOz 4+ (1= Ny) < Af(e) + (1 = V().

Condition (i) asserts that the local technologies exhibit de-
creasing returns to scale. Conditions (ii) and (iii) assert that the
joint technology is inefficient for large demands while it is efficient
for some smaller demands. This is for instance the case if the joint
production cost has only a small fixed cost component and as pro-
duction increases in Ap the technology turns from increasing to

relatively sharp decreasing returns to scale.

Proof Suppose that #(-) is a cost-allocation scheme and (IR, g)
is satisfactory. Since Y ;cnti(x?) = fo(x® — 6(x°)) and 6(x°) =
x we have 3 ;. ni(x°) = 0 and hence by individual rationality

(applied to the agents of type x°)
t;(x%) =0, i€N. (9)

Since 1(-) is incentive compatible then by Corrollary 1, for any
2% € R} st. 2l < x] and for all i € N,

t0O) + Fi(x]) < ti(2%) + fils] — =) + 8:(z°)) — f:(6:(z°)) .

14

This, together with (9) implies that
fi(x]) S t:=") + £ — 2f + 6:(")) . (10)
ww individual rationality (applied SV agents of type z0) ‘
ti(2°) + fi(8:(=°)) < fi(=l) -
Hence by (10)
£09) = il — 2 + 6:(2%)) < filal) - F(&(=%) . (1)

Since §;(2%) < z? inequality (11) contradicts the strict convexity

of f;.
]

3 The Main Result

We first show that if the local technologies exhibit constant returns
to scale then, irrespective of the joint technology, a satisfactory

mechanism does exist.

Let A € R st. JienyAr = 1. Define an operator ¥ :
R} — R" by

¥ (2) = filw:) — @) = X\ | D fulzr) - F(z)] ,  (12)
kEN
for i € N. Observe that
S UMN) = F(z)~ Y fi(6i(2) = folz —6(2)) .
EEN keN ;

Hence, ¥ is a cost-allocation scheme.
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Suppose that the true demand is € R}. Then the term
Yoren Je(zi) — F(z) measures the total saving due to the use of
the joint technology in Ag. On the individual level, agent i saves
before charges fi(z;) — fi(6:(z)) due to the noov.mmwaou. Accor-
ding to the scheme ¥* every firm ¢ pays the center her individual
saving, fi(z:) — fi(6;(x)), and obtains from the center a fixed pro-
portion (A;) of the total saving. Notice that when §;(z) = =,
namely if the entire demand is produced in A; then the coopera-
tion leaves firm ¢ with a nonnegative amount, equal to her share in
the total saving. This is the case where i’s technology is relatively
efficient and thus subsidises non efficient firms that need to use
the center more.

Let us next relate ¥* to the cooperative game theory litera-
ture. Consider the following cost game v, defined by

Liesfilme) ,S#N,

ve(5) = F(z) ,S=N.

This game describes the situation where only the grand coalition
N can build the joint technology. The members of any other coali-
tion will have to self produce their demands. It is easy to verify
that —v, is a convex game for any cost configuration fy, fi, ..., fa.
Thus any extreme point of the inverse core of v, corresponds to a
certain order R of agents in N and it is defined by

CR = v:(Ri +1) — v (Ry)

where R; is the set of agents in N which preceed i in the order
R. That is, CR is the marginal contribution of i to the cost of
the agents which preceed i in the order R. By the definition of v,

16

for each R there exists i € N, the last firm in the order R, s. t.

Qﬂ« - \.QA&NV yJ ﬂ t
= F(e) = g fe(ze) ,i=1i.

Let A € EHMMme Ar = 1. Then G»Asv = Mun.mz V:.Q... If
A= (%,...,1) then ¥*(z) is the Shapley value of v,. Recently
Monderer, Samet and Shapley (1990) proved that the core of a
convex game coincides with its set of weighted Shapley values.
Hence ¥* can be interpreted also as a weighted Shapley value of

Vg

Theorem 1 Suppose that fi,..., fn are concave on R,. Then
the mechanism (IRY, ggr) is satisfactory.

Proof By Corollary 1 to lemima 2, it suffices to prove that for
each i € N, for each z° € R} and each z; > 0

(i) ¥M2®) + fi(6:(2")) < TNE) + fi(Z), (1.C.)
(ii) W= + fi(6:(=")) < fila)), (ILR.)

where Z.= (2%;, 2;) and % = max(0, z? — &; + 6;(%)).

First we prove (ii):

i}

W (2°) + fi(bi(2") =X | Y flzR) = F(2°)] + fi(=?)

kEN

fi(=]) .

IA
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Next we prove (i). Observe that

BE-8E) = X [FE) - PO+ 0 - D)) - o)

= [£:(&(@=") - fi(&(@)] |

Hence the I.C. condition is

X [F(z°) = F(&)] + (1= X)(fi(=?) — fi:)) < fi(%) - fil8:(2))
(*)
for all 2° RY and z; € Ry. To prove (*) we use the following

observation.

Lemma 3 Let fo, fi,..., [, be any cost configuration. Then for
any 2° € R}, anyi € N and any z; € Ry, .

F(z°) - F(2) < fi(%) - fi(6:(2)) .

Proof By the definition of F(°) as the minimum production
cost of z° .

F) <> fe (6% (22))+ fo(Z~ (%)) + fi(max(0, 20 - ;+6:(%))) .

ki
(13)
Observe that the righthandside of (13) is one feasible way to pro-
duce z°. Agent i may obtain more than & units if ©;—8;(%) > 20.
In this case the free &%Om& assumption is applied. By the defi-
nition of F'(%),

F(Z) =Y ful(6c(8)) + folE — 8(7)) . (14)

M keN
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st 2

By (13) and (14),

F(z°) - F(&) < fi(%) - fi(6:(7))

as claimed.

Let us complete now the proof of Theorem 1.

By Lemma 3 inequality (*) holds if
Fiwh) = filz:) < £(E) - f(6:(2)) . (++)

Since the f; are linear and nondecreasing on R, inequality
() is equivalent to z)—2; < 3 ~6;(Z) whenever f; # 0. But this
certainly can be written as o)~ @i +6:(Z) < max(0, z{ —z; +6:(%),
which certainly holds. [

Let us now show that the scheme which allocates cost via
prices which are proportional to marginal costs is not incentive
compatible, even if the individual cost functions are all linear.

Example Consider the cost-allocation scheme 7 which allocates
the total cost among the agents via prices which are proportional
to the marginal cost prices (wherever they exist). That is, let
o : R} = R be defined for each g € RL as the number a for
which c2VF(z) = F(z), where VF(z) is the gradient of F at z.
Let

, oF :
7i(z) = Q@ve..mlia. (z) - fi(i(z)), ieN,
: i
and let 7(z) = (ry(),. .., Ta(z}). Obviously 7 is a cost-allocation

scheme. Let us show that 7 may not be incentive compatible.
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Consider a model with two agents (n = 2) of types z° = (5,100).
Suppose that the joint project at Ap results in production cost of
$1 per unit for the first 100 units and $7 per E.; from there on.
The joint project involves a fixed cost, E, of $710. The per unit
transportation cost from Ag to Ay is 81 and it is zero from A to
As. The agents can self-produce an unlimited amount for a fixed
per unit cost of $20 and $8.1 respectively and with no fixed costs.
The cost configuration is depicted in the following table.

xPH >w
4 9 1 100
8 7 e
A 20 00 oo FE =710
A, - 8.1 0o
5 100

An optimal solution is to send the first 100 units to A, and
the next 5 units to A;. The total cost is then F(5,100) = 850.
If, however, the agents do not use the center and self-produce
their entire needs they will pay a total of 20-5+8.1- 100 = 910.
Hence, it pays them to jointly build the plant at Ay, while it
does not pay anyone individually to do so. Let us examine now
the cost-allocation scheme, 7. Observe that here m..?.v = 0 for
all z hence F(z) = fo(z) and n(z) = a(z) - 22 o 8fo(z). Since
V fo(5,100) = (8,7), we have a = ¢ mwwwe - = 523, Hence

= a-7-100 = 804.05 .

Suppose next that agent 1 truly reports his type z, = 5 while

the second agent reports 2z = 94 and self-produces the remaining

20

6 units. Now F'(5,94) = 710+2-5+1-94 = 814, V fo(5,94) = (2,1)
and ¢ = 84, Thus 1, = 84.1.94 = 735.73. In addition 2
spends 48.6 to m&m.w«o%am the remaining 6 units. His total cost
is therefore 784.33, which is below his cost under a true report.
Consequently, 7 is not incentive compatible.

Consider next the allocation scheme, ¥* for A = (1, 1). Since

fo(5,0) =100, fo(0,100) =810 and fo(5, 100) = 850 ,

we have

1
U = 5 100+ wag —-810) =

1 1
W) = 5 (850 — 100) + 5-810="780.

If agent 2 misrepresents his true demand and rather reports

zy = 94, then the corresponding costs are

fo(5,0) =100, 7o(0,94) =761.4 and fo(5,94) = 814 .

Thus
5 1 1
¥ = 5" 100 + mAmK - 761.4) = 76.3 ,

H H
U = 5 7614+ maz —100) = 737.7 .

In addition, 2 self-produces the remaining 6 units for the cost
of 48.6. His total cost is therefore 786.3 and he is worse off relative
to the case Srmnm he reports his true type. Observe that since
fi(z1) = 20z, and fo(zs) = 8.1z are linear, Theorem 1 can be
applied to conclude that for the cost structure of this example
U*(z) is satisfactory for each Ay > 0, Ay > 0s.t. A + Ay = y
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In practice cooperation between firms often happens when the
firms posses decreasing returns to scale technology. We could ex-
tend Theorem 1 to deal with cost functions which are subadditive.
mscm&a_sﬁﬁ and convexity of a function f are not inconsistent
properties unless f(0) = 0 and f is continuous at zero. Sub-
additivity of a cost function can be the result of a significant
fixed cost component even if the technology exhibits decreasing
returns to scale. For f; to be subadditive it is sufficient that
fi(z:) — £:(0%) < £:(0%). Although we will state the assumption
that the f; are subadditive everywhere it will be enough to as-
sume it on an interval which contains the true demand zJ. If it is
common wsoimmmm that 2{ is bounded above by ¢; then it is suf-
ficient to assume subadditivity on [0,a;] only (e.g. fi(z:) = z? 42
is subadditive on [0, 1]). Public utilities often do not operate an
additional turbine, even if they have one installed, largely because
of a high fixed cost associated with its operation. In this case they
prefer to buy their excess dernand from other ressources that have

excess capacity.

For any z € IR" and any S C N let 2% € R" be defined by
2 = foricSanda; =0for ¢ ¢S.

Theorem 2 Suppose thal
(i) fi is subadditive fori€e N,
(ii) M(z)n{zS | SC N} #0, forany z € RY.

Let§(z) € Eﬁsvjﬁnm | SC N} foranyz € Nmn.. Then (IRY, g)

is a satisfactory mechanism.
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The second condition in Theorem 2 requires that for any i €
N, the optimal production in A; is either §;(z) = z; or else it is
6;(z) = 0. As an illustration consider the case discussed on page
5, where fy has the form -

Folsentm) =8| 3w |+ D mlm),

ieN ieN
where s : IRy — IR, is the joint production cost and »; : Ry —
R, is the transportation cost from Ap to A;. Both s and r;,
i € N, are nondecreasing on R and continuous on R4 and may
include fixed cost components. Suppose that for any y; > 0 the
marginal production and transportation cost to provide A; with
an extra unit from Ay is smaller than the marginal production cost
of this unit in A;. Then either é;(z) = 0 or §;(z;) = x;, depending
on the magnitude of the fixed costs of s and »;. This scenario
is described in Corollary 1 to this theorem. Another scenario is
described in Corollary 2.

Proofof Theorem 2 As in the proof of Theorem 1 it is sufficient
to prove inequality (+#), which is

F(=d) = filzs) < fil2) — £i(6:(7)) -

By our assumption for any z € R} 35 C N s.t. 6(z) = x5
Hence 6;(Z) € {0, z;}. If 6;(8) = z; then (++) stands as equality. If

~ 6:(%) = 0 then (+x) is equivalent to fi(2?)—fi(z:) < fi(max(0, 20—

;)) which hold by the monotonicity and subadditivity of f;.

O

Corollary 2 Suppose that
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(i) fi is subadditive for alli€ N,

(ii) For allz € R} F, is concave, where F; is defined in (2).
Then (IRY.,gg>) is a satisfactory mechanism.

Proof A concave function on a box attains its minimum on one of
the edges. The set of edges of the domain of F, is {z° | § C N}.
Hence M(z)N{z® | S C N} # 0 and Theorem 2 can be applied.

O

Corollary 3 Suppose that

(i) f; is subadditive for alli € N,

(ii) for allz € RY, F. is nonincreasing.
Then (IR}, ger) is salisfactory.

Proof Follows from the fact that either z or 0 is a minimizer of
F., depending on the magnitude of the fixed cost of fp relative to

that of the fi’s.
[

It can be easily verified that F, in the example above is no-

nincreasing but convex.

We have shown that whenever ¥? is incentive compatible it
generates an outcome which is individually rational and efficient.
The question is whether this outcome is also group ammoawr or
else, is there a coalition S of agents that can improve their payoffs
by establishing a center by their own (if they can). It turns out
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that whenever ¥* is incentive compatible it generates a group
rational outcome. Furthermore, if U2 is applied to allocate the
joint costs AOm S, then no agent in S will be made better off relative
to his payoff under the mmmﬁm coalition.

muwovcmm_ﬁomp 2 Suppose that W™ is incentive compatible. Let z°
be the true demand and let S C N. Then

UH() + F(5:(2%) < TNEOS) + fi(6:(>)

for alli € 5. In particular the outcome (z° — 6(x9), ¥ (z?)) is |
group rational.

Proof By the definition off ¥*, for any i € S

)+ Fi(6i(e) — [B2"%) + 56 ()]

= F(2°) - F(z%) - Mubn?.cv <0

kgs

This follows from the observation that F(z%5)+ ¥, g5 fi(z°)
is the production cost of z° under one feasible way, while F(z°)
is the minimal production cost of z°.

Finally, consider a situation where each firm i has virtually
limited capacity Q;, and capacity expansion is expensive. The
technology f; is more efficient than fy up to Q; (due, for exam-
ple, to significant transportation costs) but beyond this level it
is cheaper to produce and to transport the remaining units from
the center. In this case §;(z) = min(z;, Q;). The center in aEm.

scenario can be interpreted as a group of public utilities that wish
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to sell their excess capacity to a group of regional public utilities
that are temporarily short of capacity. The buyers who cooperate
to minimize total cost find for each € IR}, the optimal transpor-
tation configuration which provides every i € N with z; ...0,. units
in A; (provided that #; > @Q;). Then the total cost is allocated

according to a prespecified scheme.

It will be shown below that if the cost configuration is such
that §;(z) depends on z; only (as it is when & (z) = min(z;, Q;))
then there exists a satisfactory mechanism. This also applies to
the case where F(z) = fo(z). That is, cost minimization is achie-
ved when total production is taken place in the center only, and
6i(z) =0, i € N. This is the case of the example above. The two
agents may have incentive to misreport their true demand and to

self-produce the incremental quantity locally.

Let R be an order of N. Recall that R; is the set of agents that
preceed i in the order of R. Let A be a probability distribution
over the set of n! permutations of N. Define ¢ : R} — R by

P} z) = Y MR) [F(a®H) = F(a™)] ~ fi(6iz)) -
R

That is, the cost to i is 2 (z) + fi(6i(z)) which is an average
of his marginal contribution to a random coalition. If A(R) = &
for all R then ¢ (z) + f:(6:(z)) is the Shapley value of agent i in
the game W,. This game is defined by

We(S) = F(z°),

where F(z5) is the minimum cost to provide every i € S with z;

units in A; when S owns the joint technology in Ag.
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Theorem 3 Let fy, fi, .. -, Jn be any cost configuration such that
bi(x) depends on z; only. Then the mechanism (RY,g,0) is sa-
tisfaciory.

The statement “6;(z) depends on z; only” formally means
that if 2 and ' are in R? and if 2; = i then §;(z) = &;(2'). It
is interesting to note that the mechanism (RY, gg») where ¥ is
defined in (12) is in general not satisfactory under this condition.
To see this consider the case where fo(z) = 0 and fi(z;) > 0 for
all z; > 0. Then 6;(z) = 0 whenever z; > 0 and F(z) = 0. The
incentive compatibility condition (*) (see the proof of Theorem 1)

is then

(1= X)(fi(=]) = fi(=:)) < filad — 23)

for #; < x]. Suppose that ); = w. For this inequality to hold for
all n it must be that f;(z9) < fi(x;) + fi(%) — ;). Hence, f; must
be mﬁga&za\m. but this is not assumed in Theorem 3.

Proofof Theorem 3 (1) Let us first prove that, for any z° € R,

(2° = 8(z°), ©*(2°)) is an individually rational outcome. By the
definition of F', for each $ C N and every i € .S

F(z%%) + fi(zh > F(ghSty

where 25 is given by s.w,.w =2} if j € S and s..w:m. =0ifj¢gs.
Thus .

P} ") + fi(6(x%) = D A [F(zORet) _ p(z0Rs)]
R
< fi(a)) D dw = £i(2)) . (15)
R
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(ii) Let us prove now that for any type z°, ¢* is incentive
compatible. By Lemma (2) it is sufficient to prove that for all
z° € R} and z; € Ry

P (2%) — e} (E) < fils) = £i(6:(")), (*)
where Z = (2, %;) and % = max(0, 2] — z; + 8i(%)).
For every t € N
P - p}E) = Y Ar [FEORH) = P + iei)]
R
= [£:(6:(=") - fi(&i(@))] - (16)

By (16) and (%) it is sufficient that for all 2° € R}, z; 2 0
and SCN

F(z%5%) — F(2"° + mies) < fi(7) — fi(8i(2)).  (+#)

Let z° € R}, «; > 0 and § C N. Denote Br = 8p(z®5t),
o = bp(2%° + zie;) and @i = 6x(Z). Then '
F(z%5 + zie;) = fo(a™® + ziei ~ oSty 4 MU fe(or), (17)
keS+i

and

Fa5*) = o5 - 855+ 3 fal(Br), (18)

kES+H
where o = (a1,...,04) and f = (Bi,. -1 Bn).

By (17), (18) and (x#) it is sufficient to prove that
\cASo.m.ﬁ - Qm.?.v " .\oﬁﬂo.m +zie; — Q.w.+—.v

+ 3 [r(Be) = fele)] < fil®) = fi(Be)) - (v4x)

keS+i
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Next observe that

Fo(a™$H — g5 4+ 5™ 1(8) (19)

keS+s

]

%Auuo:miv
< fo(2%® + zie; — ST

+ D Felor) + fi(max(0, of - 2 + o)) . (20)

kes

The right-hand side of (19) is a feasible way to produce z05+,
By (19) and (* * ) it is sufficient to prove that

fi(a) = filew) < £i(z) - filz),

where z; = max(0, 2? — z; +a;). Now we use the assumption that
6:(y) depends on y; for any y € R to obtain

a; = m.A.‘mv = m-.A&P.m -+ P...mmv = @;
Hence also z; = %; and the last inequality holds as an equality.

]
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