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1. INTRODUCTION

Let N be a nonempty finite set, and let {eJ}jeN be the unit vectors

of the (#N)-dimensional Euclidean space RN; eg =1 and ei =0 for

every 1 # j. Denote by JV  the family of nonempty subsets of N (i.e.,
Jﬂf 1= ZN\{¢]). Given a subset X of RN, denote the convex hull of X

o
by co X, the interior of X by X, the relative interior of X by

ri X, and the affine hull of X by aff X. The faces of the unit simplex
are then given by AS t= co {e1 | i € 8] for every S g ¢4/ . The simplex
AN is endowed with the relativized Euclidean topology. For each § € '

. e . . i .
its characteristic vector is given by xS = L e, Given two vectors X

ies
and y in RN, x*y denotes the Euclidean inner product, and the closed

line segment joining the two (i.e., co {x, y}) is denoted by [x, y].

It was sixty years ago when Sperner [25] published the following:

i

Theorem 1.1 (Sperner [25]). Let (C }ieN be a closed covering of AN

such that AN\{I} nct = ¢ for every i € N. Then n ¢t £ ¢.
ieN

A year later, Knaster, Kuratowski and Mazurkiewicz [17] published the

following generalization of Theorem 1.1:



Theorem 1.2 (Knaster, Kuratowski and Mazurkiewicz [17]). Let {Cl}ieN

5 c u ¢t for every S g

ieS

be a family of closed subsets of AN such that A

N. Then n ¢l s
' ieN

Actually, each of Theorems 1.1 and 1.2 is easily shown to be equivalent to
Brouver’s fixed-point theorem, by using Browder’s [3] technique which
involves a partition of unity (see the independent work of Border [3) and
Dugundji and Granas [5] for the equivalence of Theorem 1.2 and the Brouwer
theorem). Fan [6] pointed out that Theorem 1.1 can be re-formulated as:

Theorem 1.3 (Sperner [25]). Let {Cl}ieN be a closed covering of AN

AN\{IJ c C1 for every i € N. Then n C1 £ ¢.

ieN

such that

(To show the equivalence of Theorems 1.1 and 1.3, use the Lebesgue number.)
Let K be a finite set such that K >N, and let 4 := ((aij))isN,jeK
and ¢ := (ci)ieN be a (#N) x (#K) real matrix and a (#N) x 1 real matrix

respectively such that

{ 1 if i =3 & N;
1 0 if i, j €N but i #3j;
ey 20 for every i € N;

>0 for some 1 € N.



Notice that ([x ¢ RE | Ax=c¢} # ¢ Theorem 1.3 is a special case of the

folloving Scarf’s theorem [20]:

Theorem 1.4 (Scarf [20]). Let {CJ}. be a closed covering of AN

JjeK

N\ {j} J - K
such that A € C- for every j £ N. Assume that the set (x ¢ R+ |

A X = c} 1is bounded. Then there exists x ¢ Rf such that A x =c¢ and

n{CJIjeK,xj>0}#¢.

Scarf [19, 20] used the "path-following technique" of Lemke and Howson [18]
to establish a theorem on primitive sets (Theorem 4.6 of this paper), and
then used the latter theorem to prove Theorem 1.4. An alternative proof of
Theorem 1.4 was made by Kannai [15]; he used the Brouwer fixed-point theorem
only.

A generalization of Theorem 1.2 was made by Shapley [21]. To formulate

Shapley’s result we need the following:

Definition 1.5. A subfamily aig of dﬂf is called balanced, if

A. =1 for every i &

there exists ESG,S‘:S3i g

{XS]SS.JT ¢ R such that

N.



Theorem 1.6 (Shapley [21])). Let {CS} be a family of closed
= Se N

subsets of &' such that &% c u ¢S for every T ¢ ,/N". Then there
ScT

exists a balanced family 527 such that n CS z ¢,

St 8

To see the relationship between the conclusions of Theorem 1.4 and of

Theorem 1.6, let ; be the (#N) x (#A") matrix vhose rows (columns,

resp.) are indexed by i e N (by S & J\f, resp.) such that column S is

precisely XS' The set {x € Rf\r | 4 x = xN} is nonempty and bounded.
Then the conclusion of Theorem 1.6 is re—formulated as: There exists x &

R:Ar such that
Ax = Xy and

nic | s e N, xg > 0} # ¢,

Actually, motivatied by Billera’s generalization [1, 2] of Scarf’s theorem
[19] for nonemptiness of the core (Theorem 4.4 in this paper), Shapley [21]

established a more general theorem (Theorem 1.6’ below). Define N :=

x
se N

Definition 1.5’. Choose any n := (uS)SaﬂN’ € . A subfamily ‘£5 of

AN is called n-balanced, if My €co (ng | S &8 ).



Theorem 1.6’ (Shapley {21]). Let {CS}Sedﬂf be a family of closed

subsets of &' such that &' ¢ U € for every T & JV. Choose any n ¢
5¢cT
. . s
M. Then there exists a n-balanced family ¢f{ such that n c” % 4.

Se 8

The additional assumption in Shapley [21] that =n € ri N is non-essential:
For an arbitrary n € II, choose a sequence in ri N which converges to =.

Theorem 1.6 is a special case of Theorem 1.6’ in which ng = XS/(#S).

Shapley [21] proved Theorem 1.6’ by using the "path-following technique" of
Lemke and Howson [18]. Todd [26, 27] has a proof of Theorem 1.6 which makes
use of the Brouwer fixed-point theorem and a sequence of simplicial
partitions. Shapley [22] has a shorter proof of Theorem 1.6 using
Kakutani’s fixed-point theorem. Ichiishi [12] has a yet shorter proof of
Theorem 1.6 using Fan’s [7] coincidence theorem; see also Ichiishi [13].
Recently Ichiishi [14] established the following theorem, which is dual
to Theorem 1.6 just as Theorem 1.3 is dual to Theorem 1.2, and which is also

a generalization of Theorem 1.3:

Theorem 1.7 (Ichiishi [14]). Let {CS}SSUA( be a family of closed

subsets of AN such that dT c U CS for every T ¢ d\P. Then there

SONAT

exists a balanced family ;25 such that n Cs # ¢,

Se o8




It was pointed out by David Schmeidler that Theorems 1.6 and 1.7 are
equivalent; Schmeidler’s argument is reproduced in Ichiishi [14]. Neither
of Theorems 1.4 and 1.7 includes the other.

The first purpose of the present paper is to establish general theorems
on closed coverings of a simplex in order to give a unified treatment of the
above theorems. We prove these general theorems by using a certain
geometric lemma and the following special case of Fan’s [7, 9] coincidence

theorem:

Theorem 1.8 (Fan [9]). Let X be a nonempty, compact and convex

subset of RN, and let F and G be upper semicontinuous correspondences

from X to the subsets of RN, such that both F(x) and G(x) are

nonempty, compact, and convex for each x £ X, and such that

(¥xeX): (¥Vpe RN: p'x = min p-X):
du e F(x): 4v e G(x): pru 2 p-v.

Then there exists x* € X such that F(x*) n G(x*) # ¢.

Other covering properties of convex sets were given, e.g., by Fan [6, 8, 10,
11} and Shih and Tan [23, 24].

The second purpose of the present paper is to clarify relationships
between the above theorems on closed coverings of a simplex and certain

theorems related to the core of a cooperative game without side-payments.



2. MAIN RESULTS

Let K, A, ¢ be given as in the paragraph that precedes the

statement of Theorem 1.4. Denote column j of the matrix A by al.

Theorem 2.1. Assume that ¢ ¢ AN and al & aff AN for every j e K.

J ; N
Let {C }jeK be a closed covering of A" such that

VT e M(N): ol cuqcd | j ek, af ¢al).

Then there exists a subset 1 of K such that ¢ € co {aJ | J €I} and

n ¢l ¢ 6.
jeI

Proof of Theorem 2.1, For each x ¢ AN define I(x) := {j €K | ¢l s

X}y, F(x) := {c¢}, and G(x) := co {aJ | j € I(x)}. Then the correspondeces
F and G from AN to the subsets of aff AN are upper semicontinuous
with nonempty compact and convex values. Choose x € AN and p ¢ RN such

that p:'x = min p-ﬁN. There exists a unique § © N such that x g ri AS.

Thus we have p'y = min p-AN for all y ¢ AS. If S = N, then for all u ¢

F(x) and all v € G(x), pru=p-v. If S #N, then by the assumption of

the present theorem there exists j € K such that al ¢ AS and x ¢ CJ.

For this j, al ¢ G(x) and p-aJ = min p-AN € p-c. All the assumptions of

Theorem 1.8 are now satisfied, so there exists x* ¢ bN such that F(x*) n

G(x*) # ¢. The set I(x*) is the required set I. Q.E.D.



A generalization of Theorem 2.1 is given by:

Theorem 2.2. Assume that ¢ £ AN and that the set ({x € Rf | A x = ¢}

is bounded. Let {CJ}je be a closed covering of aN such that

K

v e Nvig: alcu@d [j ek, al e al).

Then there exists x € Rf such that A x =¢ and N {CJ | xj > 0} # ¢.

We shall provide two proofs of this theorem. Both proofs make use of the

following claim:

Claim 2.3. Let n <k, let A be an n x k matrix whose first n

columns constitute the unit matrix, and let ¢ be an n x 1 ponnegative

matrix. Then the following two conditions (i) and (ii) are equivalent.

(i) Set fx ¢ RE | & x = c} is bounded; and

(ii) -~ 3 X g RE\{O}: A x =0.

Moreover, for any n x 1 nonnegative, nonzero matrix d, any of the

conditions (i) and (ii) implies the following condition (iii).

(1ii) - 2 x ¢ RE: A x = -d.

. K
Proof of Theorem 2.2, Using Theorem 2.1. Define D := (A x | x € R_.

EjsK xj -~ 1); it is a convex compact subset of RN. By Claim 1.3 (ii) and

(iii), D n (-RT) = ¢. There exists, therefore, a hyperplane H which
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stricly separates D and -RE, in particular O £ H. Then for each y ¢ D

there exists a unique vector y € [0, y] n H. Notice that ¢ €D, and a’

-

€ D, for every j (in particular, aN ¢ D). Define A5 .o {vy |y e AS},
and ¢ := {y | y £ ¢?). Under the assumption of Theorem 2.2,

vTe N i Al cuqcd |5 ek al e al).

. N7 . ~j .
By Theorem 2.1 applied to (&, {aJ]jeK’ ¢, {CJ]jeK)’ there exists I c K

such that ¢ g co {aJ | § €I} and n {C’ | 3 €I} # ¢. Ve can now choose
a suitable x ¢ RE such that xj =0 for j e KNI, Ax=c¢ and n {CJ |

xj > 0} # ¢. Q.E.D.

Proof of Theorem 2.2, Using Theorem 1.8. Define

a

VieK: al :- aj + (1 - ziEN aij) c.
Then, ;j e aff AN for every j £ K, and ;j = aj if aj e aff AN.
Define for each x ¢ AN,

F(x) := {c},

G(x) := co {;J I j K. Cj 3 x}.

As in the proof of Theorem 2.1, one can show that all the assumptions of
Theorem 1.8 are satigfied, so there exists x* g AN such that F(x*) n

G(x*) # ¢. Define I := {j £ K | ¢l 3 x*}. Then there exists {zj}jeI c R+

-

z, al. By substituting the definition of al’s and by

such that ¢ = zjel j

setting tj 2= 1 - zisN aij‘ one obtains
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¢c= I gz, (aJ + t, c).
jel J

To sum up, there exist zj € R+, j £ I, not all zero, such that

(1- ¢ z,t)ec= L z, a°.
jeI 3 J jel J
By Claim 2.3,
1- I z,1t,>»0,
jer 3

thus there exists zx g Rf such that
A zx = ¢, and

n{c? | z>0 > n C # ¢ Q.E.D.
J jel

Now we generalize Theorem 1.7. We need the following geometric lemma:

Lemma 2.4. Let C be a compact, convex subset of RN, and let F be_

a finite subset of 3C, the relative boundary of C. Choose any c €

ri co F. For each x € F choose x' £ 3C so that ¢ ¢ [%, x'], and
define F’ := {x’ | x € F}. Then c¢ € co F’.

Proof of Lemma 2.4. There exists {a } cR, I = 1, such

o
%  xeF + XxeF x

that ¢ = zxeF o X For each x £ F there exists Bx, 0 < Bx < 1, such

that ¢

Bx x + (1 - Bx) x’. Then ¢ = zxsF L (¢ - (1 - Bx) x’)/Bx, S0

- _ !
((2xeF ax/Bx) -1y ¢ = zxeF (ax/Bx “x) X', therefore ¢ € co F’. Q.E.D.
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Theorem 2.5. Assume that c & ri &Y and al £ aff &' for every j & K.

Assume alsco that for every j £ K for which al & BAN, there exists j’ € K

., . , .
such that al ¢ BAN and ¢ € [aJ, a’l 1. Let {CJ].

&K be a closed covering

of AN such that

vTe N vy ol cuged | ek &) e}

Then there exists a subset I of K such that ¢ € co [aJ | j €I} and

n ¢l oz
jel

Proof of Theorem 2.5. Define D3 := ¢3 for every j for which al ¢

8AN, and DJ i= ¢ for all other j. All the assumptions of Theorem 2.1 are

satisfied for (AN, {aJ}.

j K c, {DJ]jsK)’ 50 there exists a subset I of K

such that ¢ £co fal | j €I} and n D) # ¢. Define I’ := {j’' | j ¢ I}.

jel
By Lemma 2.4, ¢ £ co {a:J | j € I'}. Moreover, n ¢l = n D’ £ ¢
jeT! jel
Q.E.D.

Using the same method and Theorem 2.2, we can prove:

Theorem 2.6. Assume that ¢ £ ri AN and that the set {x ¢ RE | & x =

¢} is bounded. Assume also that for every j € K for which al ¢ BAN,




., ; .,
there exists j’ € K such that aJ ¢ BAN and ¢ ¢ [aJ, al I+ Let

[CJ}jeK be a closed covering of AN such that

VT e M\(IN}: AT cugcd | j ek, al ¢ aly.

Then there exists x ¢ Rf such that A x = ¢ and n {CJ ] xj > 0} # ¢.

i3



3. REMARKS'

The K-K-M theorem (Theaorem 1.2) follows from Theorem 2.1 if we take K =
. N , N
N and c¢ £ ri A'. Scarf’s theorem (Theorem 1.4) for the case ¢ £ ri A

follows from Theorem 2.6 if we introduce new columns {as | S e J\f\{N}, #5
2} (so that if #N > 2, the new matrix consists of (#K + ¥/ - 1 - #N)

NAS 5

], and take C" = n ct
ig§

columns) defined by aS € AS and ¢ € [as, a

for each S ¢ JN[ (Theorem 1.4 would be trivial if c € BAN). Shapley’s

theorem (Theorem 1.6') follows from Theorem 2.2 if we take K = Jﬂf, aS (:=

column S of the matrix A) = o € AS, and ¢ = Ty Ichiishi’s theorem

(Theorem 1.7) follows from Theorem 2.6 if we take K = JNf, aS = XS’ and ¢

= Xy
All the results in Section 2 are valid for an arbitrary real matrix A
of dimension (#N) x (#K), N < K, in which there are #N linearly
independent columns, and ¢ (# 0) 1is a nonnegative linear combination of
those colunmns.
Theorems similar to those of Section 2 can be proved for a compact

polyhedron instead of a simplex.

14
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4. CORE

The finite set N is now interpreted as the set of players,

and N as the family of nonempty coalitions.

Definition 4.1. A non-side-payment game is a function V from 4

to the subsets of RN such that for every § ¢ u\f , V(S8) 1is a
cylinder, i.e., {u, v ¢ RN, Vies: v, = vi] implies [u € V(S) iff v
e V(S)].

The set V(S), or rather its projection to RS, is interpreted as the set
of utility allocations within §, each is made feasible by some

coordination of strategies of the members of &.

Definition 4.2. The core of a non-side-payment game V is the set

C(V) of all u ¢ RN such that (a) u £ V(N) and (b) it is not true that

there exist 5§ g JV’ and u’ € V(5) such that ug < ui for every i e 5.

The core is a typical solution concept; condition (a) says that the utility
allocation u is feasible within the grand coalition N, and condition

(b) says that no coalition can improve upon u.

Definition 4.3 A non-side-payment game V is called balanced if for

every balanced subfamily o8  of dﬂf, nSs.R? V(S) < V(N).

15



See, e.g., Ichiishi [13, Chapter 5] for further discussions of Definitions
4.1, 4.2 and 4,3, Scarf’s [19] fundamental theorem for nonemptiness of the

core:

N
Theorem 4.4 (Scarf [19]). Let V : JV » ZR be a non-side-payment

game, and define b e R' by b, i= sup fu, € R | u e V({i})) for each i ¢

. . . N
N. The core of V is nonempty if (i) V(S) - R+ = V(S) for every 5 ¢

A3 (ii) there exists M £ R such that for every S e JV, [u e V(S)n

[(b) « K']] implies [u, <M for every i eS); (iii) V(S) is closed in

R for every S ¢ AN and (iv) V is balanced.

Scarf [19] established the following Theorem 4.6, and then derived from

it Theorem 4.4, Let K, A, ¢ be given as in the paragraph that precedes
the statement of Theorem 1.4. Choose vectors P := {"J)jeK in RN such

that

n’ = (R.,..., R,y O, R.,..., R,) if i € N;
e (o - R n Rf if § €K\N,

wvhere Ri > 1 for each i & N.

Definition 4.5. A subset of P, {nJ}.

jer» 1is called a primitive set,

if there does not exist n € P such that

16



¥ieN: m >min {ni | j ¢ I).

Theorem 4.6 (Scarf [19, 20]). If the set (x eR. | A x = c] is

bounded, then there exists x € Rf such that A x = ¢ and {nJ |l j €K, xj

» 0} is a primitive set.

Remark that the vectors nJ, j & K\N, can actually be chosen arbitrarily
from Rf, provided that the Ri, i € N, are suitably re-defined. Due to

arbitrariness of the finite set K (provided that it contains N), and

-

hence the generality of matrix A compared with K (the matrix A wvas
introduced in a paragraph between the statement of Theorem 1.6 and
Definition 1.5’), Theorem 4.6 together with a certain nondegeneracy
assumption summarizes an analytical feature of Scarf’s algorithm to compute
a member of the core.

It vas pointed out earlier that Scarf [20] derived Theorem 1.4 from
Theorem 4.6. Conversely, Theorem 4.6 can be derived from Theorem 1.4; the

proof is based on the idea in Vohra {28]:

Derivation of Theorem 4.6 from Theorem 1.4. Define Ci t= {nJ} - Rf.

Denote by F the boundary of UjsK Ci, and define for each j & K,

Jiczed | syecdar z-y/1

1 eN Vil

17



°N
If n ¢ R+ for any n € P, then the assertion of Theorem 4.6 is trivial.
°N
Assume, therefore, that there exists n € P N R+. Then 0 is in the

interior of U, ¢l s0 {CJ}. is a closed covering of AN. Observe

ek -1’ jeK

and Y4 ? Ri for some 1 & N. By this

. J
that y ¢ F, if y e UjeK C1

observation, it is easy to check AN\{J} c CJ. Thus {CJ satisfies the

assumption of Theorem 1.4, so there exists =x* g RE such that A x* = ¢
and n {c) | j eK, xt >0} #¢. Set I:=({jeK|[xt>0}, choose z*e¢

*. Then n’ 2

¢!, and consider y* € F defined by z* = y* / zieN %

61

y* for all j eI, so {nJ}jeI is the required primitive set. Q.E.D.

Many alternative proofs of Theorem 4.4 have appeared in the literature:
Shapley [21] derived Theorem 4.4 from Theorem 1.6. Keiding and Thorlund-
Petersen [16] and Vohra [28] proved Theorem 4.4, using Theorem 1.2 and
Kakutani’s fixed-point theorem, respectively. Ichiishi [14] pointed out
that the geometric insights of Keiding and Thorlund-Petersen and of Vohra
can be re-formulated as Theorem 1.7. It will be shown here that Theorem 4.4
follows simply from a theorem which is weaker than Theorem 1.4 and veaker

than Theorem 1.7; the proof is based on the idea in Vohra [28]:

Derivation of Theorem 4.4 either from Theorem 1.4 or from Theorem 1.7.

The special case of Theorem 1.4 and of Theorem 1.7, in which K = Jﬂ/, A =

A and ¢ = xN’ will be used here. Assume without loss of generality that

18



-]
b=0. TIf 0£V(S) for every S ¢ JV, then there is nothing to prove

]
(indeed, in this case, 0 ¢ C(V)). Assume, therefore, that 0 ¢ V(S) for

some S g d\f . Choose two real numbers Ml and M2 such that Ml > H2 >

M, and denote by F the boundary of the set,

U {u e V({i}) | ¥ k € N\{i}: u, < M)
ieN
U U fu e V(S) | ¥ k & N\§: u, < My}
SeJV 4532

For each n ¢ AN, consider the unique point £(n) € F n Rf defined by n =

£(n) / I, o £.(0). Define ¢° := {n e & | £(n) € V(S)} for every § ¢

N, The family {CS]ng\f is a closed covering of AN, and it is easy to

check AN\{J} = C{J} for every j € N. All the assumptions of Theorem 1.4

and of Theorem 1.7 are satisfied, so there exist x* g R+ and n* ¢ AN

such that A x*x = Xy and n* € n {CS | S e d\f, xg > 0}. The point f(n*)
will be shown to be a member of C(V). The family ,;5 = {S & dﬂf i x§ >
0} 1is balanced and f(n*) ¢ nSe,E V(5). 5o by the balancedness assumption

on V, f(m*) £ V(N). Consequently, f(n*) e {(ueF | ¥ i eN: u; < M},

wvhich implies that the utility allocation f(m*) cannot be improved upon by

any coalition. Q.E.D.
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