Universität Bielefeld/IMW # Working Papers Institute of Mathematical Economics ## Arbeiten aus dem Institut für Mathematische Wirtschaftsforschung Nr. 156 Life-length of a process with elements of decreasing importance Axel Ostmann August 1987 H. G. Bergenthal Institut für Mathematische Wirtschaftsforschung an der an uçı Universität Bielefeld Adresse/Address: Universitätsstraße 4800 Bielefeld 1 Bundesrepublik Deutschland Federal Republic of Germany Life-length of a process with elements of decreasing importance Let (X_t) , $t=1,2,\ldots$ be a Bernoulli-process with $p(X_t=1)=p$ and q=1-p. Then for t< n+1 and a simple game (N,v), $N=\{1,2,\ldots,n\}$ a process (V_t) , $V_t=v(X_1,\ldots,X_t)$ is induced. The random variable $T=\min\{t,n+1;V_t=1\}$ is a stopping time called life-length of the corresponding game. The following paper deals with the distribution of the life-length of ordered games. For another interpretation consider a system with independent subsystems. Subsystems can be ordered according to their importance. Subsystem t is tested at time t. Then $X_t=1$ means an error at time t (or subsystem t faulty or etc.), and $V_t=0$ means that the system is still alife (works well) at time t. The distribution of life-length can be generated out of the family of Pascal-distributions. #### Contents - 1. Simple games - 2. Directed games - 3. Representing games - 4. Life-length of the game - 5. Characters - 6. Weighted majority games - 7. Construction #### Appendices - A. 4-person games - B. 5-person games - C. Fair games (n 6) References #### 1. Simple games, duality and constant sum #### (1.1) The simple game Definition: 1. A pair (N,v) with $N=\{1,\ldots,n\}$ or N being the set of the natural numbers, and a function v on the power set 2^N of N with values 0 and 1. fulfilling $v(\emptyset)=0$ is called **simple game**. The game is called finite if N is finite. The elements i of N are called players, and the subsets S of N are called coalitions. We often identify the subsets S with the vectors s (or indicatorfunctions 1:): $s_i = 1$ if $i \in S$ and $s_i = 0$ if $i \in N \setminus S$. Let us call $W=W(N,v)=\{S \in 2^N ; v(S)=1\}$ the set of winning coalitions and $L=L(N,v)=2^N \setminus W$ the set of losing coalitions. Let |S| resp. |s| denote the (cardinal) number of elements of S. A simple game (N,v) is called monotone if for all coalitions S, T the set-inclusion S⊂T induces v(S) (v(T). We write i instead of $\{i\}$, if this do not lead us to confusions; the corresponding vector is denoted by e(i). We denote the union of two coalitions S and T with empty intersection by S+T. - 3. A simple game (N,v) is superadditive if for all S, T (with an empty intersection) v(S+T) > v(S) + v(T). - 4. A simple game (N,v) has constant sum if $v(S)=1-v(N\setminus S)$ for all S. #### (1.2) The dual game Definition: Let .*: $V \rightarrow V$, (N, v)*:=(N, v*) and $v^*(S)=1-v(N\setminus S)$. $(N,v)^*$ is called the dual game with respect to (N,v). A simple game (N,v) is called **dual superadditive** if its dual game $(N,v)^*$ is superadditive. - Remarks. 1. Constant sum games are selfdual, superadditive and dual superadditive. - 2. * is idempotent $(v^**=v)$. - 3. There are games neither superadditive nor dual superadditive. An example is $N=\{1,2,3,4\}$, v(S)=1 if and only if $|S| \ge 3$ or $S=\{1,2\}$ or $S=\{3,4\}$. #### (1.3) Dummies Definition: Let (N,v) be a simple game. Player isN is called a **dummy** if v(i+S)=v(S) for all S. D=D(N,v) denotes the set (coalition) of all dummies of the game (N,v). Remark. The set of finite games on {1,...,n} can be embedded in the set of games on {1,...,n+1} by adding a dummy n+1. By adding infinitely many dummies we embed the set of finite games in the set of games on the natural numbers. Conversely we can identify an infinite game with finitely many non-dummies with the finite game defined by dropping dummies. Up from now N denotes the set of natural numbers. In case it does not lead to confusions, we write v instead of (N,v) and call the function v a game. Up from now a game is called **finite** if the set of non-dummies is finite. # (1.4) Basic sets and finite approximations Definition: An (open) basic set of order j is set $\{s \in 2^n ; s_i = s', for i \neq j\}$ denoted by the ternary representation $(s'_1, \ldots, s'_j, *, *, \ldots)$ or $[s'_1, \ldots, s'_j]$. Let *: $s \rightarrow (s_1, \ldots, s_{o(s)}, *, *, \ldots)$ with $o(s):=\max\{i; s_i=1\}$. #### Characteristic algebra and topology on the set of coalitions The intersection of basic sets are basic sets. Any sum of basis sets is called an open set (if you want, a topology is defined on the set 2^N of coalitions - this topology is the product topology on 2^N; the topological space is isomorphic to the Cantor discontinuum (Cantor ternary set). The complement of any open set is a closed set. Let ch be the algebra of clopen (= closed and open) sets. This algebra is called characteristic algebra (of the topological space of coalitions). ch is the unique (up to an isomorphism) countable atomless algebra (cf. Bell/Slomson 1969, ch.1). Remark. Assume that $W(N,v) \epsilon c \lambda$. Then for every coalition s exists a "time" i(s) such that we can decide whether s is winning or losing. Definition: A coalition s is said to be **finite** iff o(s) is finite. A coalition s is said to have a full tail (or to be cofinite) iff $o'(s)=\max\{i:s_i=0\}$ is finite. Lemma: If there is an infinite element of W., then W is not clopen. Proof: Let $s \in W_*$, s infinite. Assume W clopen. In that case there is a full neighborhood of s contained in W. This implies that s is not minimal. Definition: For a given game (N,v) let $v^n(s):=\max \ v(s_1,\ldots,s_n)$ and $v(s):=\min \ v(s_1,\ldots,s_n)$ By these definitions the game can be transformed into finite games of length n. We get $v^n \ge v^n v$. Definition: Let Wⁿ and ⁿW denote the corresponding sets of winning coalitions. Correspondingly we get "WcWcW". If $s\epsilon^n W$, then s wins up to time n. "W is open, W" is closed. The interior int(W) of W is equal to the union of the finite inner approximations, the closure cl(W) of W is equal to the intersection of the finite outer approximations. The corresponding games are denoted by max "v resp. min v" in fact: seint(W) iff max "v(s) =1, etc. #### (1.5) Dual-equivalent and fair games Definition: Let (N,v) be a simple game, N finite. A game is called fair if |W| = |L|. Remark. Constant-sum games are fair. Example (1.2) 3. proves that "fair" does not imply constant-sum property. A game is called dual-equivalent if there is a permutation h of the players' set such that $v(h(s))=v^*(s)$ for all s. Remark. Finite dual-equivalent games are fair. Constantsum property is dual-equivalency for h=id. In (10.3) we shall give an example for a fair game that is not dual-equivalent. For infinite N the game is called fair if $(| ^{n}W| - | ^{n}L|)/2^{n}$ converges to zero. This is equivalent to $(| W(v)| - | W(v^*)|/2^n$ converges to zero $(| L(v)| = | W(v^*)|$. For a set A of coalitions let C(A) be the set of complements N\S, S ϵ A. Lemma: A open iff C(A) open, A closed iff C(A) closed. Proof: Consider neighbourhoods of sea resp. 1-seC(A): seA iff se[a₁,...,a_n] iff $1-se[1-a_1,...,1-a_n]$. Corrollary: W(N,v) closed iff W(N,v*) open. Proof: set $A=\{s:v(s)=0\}$ Corrollary: If v is constant-sum or finite dual-equivalent, and W is closed or open, then Weck. #### 2. Directed games and the desirability relation #### (2.1) The desirability relation Definition: Let $(N,v) \in V$. The relation $\geq = \geq \subseteq N^2$ is called **desirability relation**, with $i \geq j$ (i is more desirable than j) if $v(i+S) \neq v(j+S)$ for all S. The players i and j are symmetric (or of the same type) if $i \ge j$ and $j \ge i$; we write i = j and $i = \{j \in \mathbb{N}; i = j\}$. $N:=\{\tilde{i}, i \in N\}$ is called the set of **types**. Additionally let $>:=\geq\setminus^{\sim}$ be the strict desirability relation and $||:=\mathbb{N}^2\setminus(\succeq\cup\preceq)|$ be the relation of incomparability; players i and j with i||j are called incomparable. #### Remarks. - 1. Analogue to the finite case the desirability relation is reflexive and transitive (Maschler/Peleg, Theorem 9.2). - 2. There are games with an incomplete desirability relation (i.e. || is not empty). #### (2.2) Ordered games Definition: Let $(N,v) \in V$. (N,v) is an ordered game if its desirability relation is complete. #### (2.3) Directed games Definition: Let (N,v) be an ordered game on the natural numbers. It is called **directed** if $i \geq j$ for all j > i. #### Remarks. Directed games are ordered games with "decreasing strength" of the players, that can be indexed by the natural numbers. Ordering players by non-increasing strength defines an ordinal number. Those and only those ordered games with the specific ordinal number 'natural numbers' can be identified with directed games. If the game is directed and there is an infinite type, then this type is the smallest one and there are finitely many types. Finite approximations of ordered/directed games are ordered/directed. The desirability relation is a refinement of the finite desirability relations (or equal). Up from now we are dealing with directed games only. Every finite ordered game can be identified with a directed game. Sometime we call a player i "time i". In this sense "time has non-increasing importance". #### (2.4) Dual-equivalent directed games Theorem: In case game is directed dual-equivalency implies constant-sum property. Proof: Let h be the permutation named in definition (1.5). h(i) is more desirable than h(j) iff i is more desirable than j (see definition (2.1)). If the game is directed then there is a greatest type w.r.t. desirability. Thus, h(v)=v. #### 3. Representing games #### (3.1) Comparing coalitions Definition: Let $(N,v) \in V_*$, and fix coalitions S and T. S is **more weighty** than T, denoted S>T, if $|Sn\{1,...,t\}| > |Tn\{1,...,t\}|$ for all t. We write S||T if S and T are incomparable with respect to >. Example. Let $N=\{1,2,3,4\}$ and $i \ge i+1$ (i=1,2,3). (1,0,0,1) and (0,1,1,0) are incomparable. Lemma: v(S) > v(T) for all S > T. The proof is evident. (3.2) (Shift-)Minimal winning coalitions $W_{\bullet} = W_{\bullet}(N, v)$ be the set of minimal elements of W w.r.t. set-inclusion. Elements of W_{\bullet} are called minimal winning coalitions. Remark. If W is open, then W=g(W.). If s is minimal winning for max v, the it is minimal winning for v. Both sets may differ only in infinite coalitions. We say "s wins at time t" if $(s_1, ..., s_t)$ is minimal winning. (3.1) ensures the existence of an economical representation of the game: W* be the set of all minimal elements of W with respect to >; W* is called the set of **shift-minimal winning** coalitions. Write <W*> for (N,v). W* is a subset of W.. Remark. Finite games are uniquely determined be W_{\star} as well as by W^{\star} . #### (3.3) Aumanns ordered game Let $(N,v):=\langle\{(1,0,0,1,1,0,0,1),(0,1,1,0,0,1,1,0)\}.$ The property of the game, we are interested in for the moment, is: this game is neither superadditive nor dual superadditive. On one side the two shift-minimal coalitions are winning and partioning N (the game is not superadditive), and on the other side coalitions (1,1,0,0,0,0,1,1) and (0,0,1,1,1,1,0,0) are winning and partioning N in the dual game (the game is not dual superadditive). #### (3.4) Incidence matrix and interval matrix X=X(N,v) denotes the incidence matrix of the game, i.e. the rows are the minimal winning coalitions given in the lexicographic order. Thus the column index is a natural number, but the row index is an ordinal number, and the row index-set depends on the game. For finite games let X be the finite matrix given by deleting dummies. The *-transform of X(N,v) is denoted by Y=Y(N,v). This matrix is called the interval matrix of the game. #### (3.5) A further example Let $N=\{1,2,3,4\}$, v(S)=1 if and only if $(1\epsilon S)$ and $S\cap\{2,3\}$ not empty) or $\{2,3,4\}\subset S$. Then $1>2^3>4$. Now consider $(N,v)^*: v^*(S)=1$ if and only if $(1\epsilon S)$ and $S\cap\{2,3,4\}$ not empty) or $\{2,3\}\subset S$. Again we find $1>2^3>4$. According to (3,2) $(N,v)=\langle\{(1,0,1,0),(0,1,1,1)\}\rangle$ and $(N,v)^*=\langle\{(1,0,0,1),(0,1,1,0)\}\rangle$. According to (3,4) we get: $$X(N,v) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \qquad X(N,v^*) = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$ $$Y(N,v) = \begin{pmatrix} 1 & 1 & * & * \\ 1 & 0 & 1 & * \\ 0 & 1 & 1 & 1 \end{pmatrix} \qquad Y(N,v^*) = \begin{pmatrix} 1 & 1 & * & * \\ 1 & 0 & 1 & * \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & * \end{pmatrix}$$ #### (3.6) Desirability for the dual game Lemma: The dual game exhibits the same desirability relation. Proof: analogue to the finite case, see Ostmann 1985, 3.8 #### (3.7) f-vector and Banzhaf-value The following two vectors can be obtained by means of the matrices X and Y. Definition: Let $f=\Sigma\{e(o(s));s \in W_*\}$. This is a counter for exact winning time; f_t is the number of minimal winning coalitions at time t. (f_1, \ldots, f_n) is determined by "v - that is why f is fully determined by max" v. Definition: Let $1=\Sigma\{2^{-o(s)-1}(s+\max(*(s)));s\varepsilon W_*\}.$ Let us call $P=P(v)=\Sigma 2^{-i} f_i$ the performance of the game v. Remark. This corresponds to Lapidot's counting-vector and to the Chow-numbers. Definition: Now let $b=-1+21/\Sigma 2^{-1} f_1=-1+21/P$. This vector is called Banzhaf-value of the corresponding game. Remarks. This is a straight-forward generalization of the Banzhaf-value for directed games (the easy formula holds only for directed games). $P(v)=1-P(v^*)$. A game v is fair iff $P(v)=P(v^*)$. #### (3.8) Examples - 1. Let W=(1)+(011)+(00111)+...+(0...011...1)+... This game is not directed: time 3 is strictly more desirable than time 2. since (01011) are not winning. - 2. Let W=(111)+(11011)+(1101011...)+(10111)+(1011011...) +(01111). This game is not decidable: (1101011...) cannot be decided upon (in finite time). f=0010304, b=(11,10,10,7,5,1,1)/15. - 3. Let (N,v)=<(0101...01...)>. This game is directed: (2i-1)~2i>(2i+1). There is no lexicographically first minimal winning coalition. f is the zero-vector. - 4. Let (N,v)=<(01),(0011),(00001111),...> This game is not decidable. The empty coalition cannot be decided upon (in finite time). f=11010027. - 5. Let W be the set of cofinite coalitions. This game is ordered. There is only one type and consequently the game is directed. But: W. and W. are empty. f is the zero-vector. - 6. Let W=(1)+(01)+(001)+...+(0...01)+... This game is directed. W* is empty. f=1..., b is the zero-vector. - 7. W=(11)+(101...)+(1001...)+(011)+(0101...) #### (3.9) Constructivity of W Definition: For a set B of coalitions let g(B) resp. sh-g(B) be the set of all coalitions greater than some coalition of B w.r.t. set inclusion resp. shift inclusion (). What are the conditions for $W=g(W_*)$ and $W=sh-g(W^*)$? It is clear that $W=sh-g(W^*)$ implies $W=g(W_*)$. Theorem: $g({s})$ and $sh-g({s})$ are closed and - open iff s is finite, - finite iff s is cofinite, Proof: Up to time n there are only finitely many coalitions greater resp. shift-greater than s. Let us call this set A_n . Then $(sh-)g(\{s\})$ is the intersection of $U\{[a_1,\ldots a_n];a\epsilon A_n\}$. The union is finite, thus $(sh-)g(\{s\})$ is closed. Moreover if s is finite $(sh-)g(\{s\})$ is equal to the finite intersection $n\{o(s)$. If s is cofinite, then $a\epsilon(sh-)g\{(s\})$ iff $a_i=1$ for $i\geqslant o'(s)$. Thus $|(sh-)g(\{s\})|\leqslant 2^{o''(s)}$. - Lemma: 1. A minimal winning coalition is either finite or an element of the boundary 2W of W. - 2. The set of minimal elements w.r.t. set-inclusion M of an open set 0 generates g(0) (i.e. g(0)=g(M)). - 3. The set of minimal elements w.r.t. set-inclusion M' of a closed set A generates g(A) (i.e. g(A)=g(M')). Proof: 1. Suppose s is minimal winning and not finite. Then every neighbourhood of s contains a losing coalition. 2. An open set is the sum of basic sets. A basic set B has the shape $[b_1, \ldots, b_n]$ and $(b_1, \ldots, b_n, 0 \ldots)$ is the only minimal element in B. Moreover, the union of minimal elements of all these basic sets is the set M of minimal elements of the open set (all these coalitions are finite). 3. It is enough to prove that A is a subset of g(M'). Let $a \in A$. Define a^n by $a^0 = a$, $a^n = a^{n-1} - e(n)$ iff $a^{n-1} - e(n) \in A$, else $a^n = a^{n-1}$. A is closed and $\lim a^n$ is minimal (i.e element of M'). Theorem: Suppose W is the sum of a closed set A and an open set O (W=A+O). Then $W=g(W_*)$. Proof: W=g(W)=g(A+0)=g(M+M'). It is enough to prove $W_*=M+M'$. Let $s \in M$, $s' \in M'$. If there is a smaller one at all, then the smaller one has to be the finite one; but a finite one is element of int(W). Thus $s \nmid |s'|$ and all elements of M+M' are minimal winning. Similar arguments proof the following Theorem: Suppose W is closed. Then $W=sh-g(W^*)$. #### (3.10) Problem In what directed games there are at most finitely many minimal winning coalitions with a full tail? $W=g(W_*)$ iff ...? #### (3.11) Convergence Proposition: If we use the discrete topology on $\{0,1\}$ and pointwise convergence (i.e. $(\lim v_n)(s)=\lim (v_n(s))$ on the space of games the following equivalences hold: - 1. min $v_n = \lim v^n$ - 2. max "v=lim "v - 3. $\lim v^n = v$ iff W is closed - 4. lim "v = v iff W is open - 5. lim vⁿ = lim ⁿv iff WecA iff v continuous iff v finite Proof is simple. Consider the intersection of the decreasing sequence (W^n) and the union of the increasing sequence (n W). (These sets are the closure resp. the inner of W, cf.1.4). #### (3.12) Examples $W(N, \lim_{n \to \infty} v^n) = 2^N$ for the examples (3.8) 1.,4.-6. $W(N, \lim_{n \to \infty} v) = \emptyset$ for example (3.8) 5. #### (3.13) Remark Dual-equivalent games with an open or closed set of winning coalitions are finite constant-sum games ((1.5),(2.4),(3.11)). #### 4. Life-length of the game (4.1) Definition: Let (X_t) , $t=1,2,\ldots$ be a Bernoulli-process with $p(X_t=1)=p$ and q=1-p. Then the random process (V_t) induced by a game (N,v) - $V_t:=v(X_1,\ldots,X_t)$ - is called the game's value process. The random variable $T:=\min\{t;V_t=1\}$ is called life-length of the game. Let $p_t:=p(T=t)$ and $r:=\min\{t;p_t>0\}$. The processes and variable are called fair if p=q=1/2. Remarks. Product measure is also denoted by p, for example: $p(W) = E(V) = p(v(X) = 1) = p(X \epsilon W) - \text{if } W \text{ is a measurable set. } P \leqslant p(W). \text{ A set without inner point has measure zero (f. ex. the boundary of some set).}$ Sure win is defined by $P=\Sigma p_t=1$; Remark: Sure win implies p(W)=1 and p(winning at infinity)=0. Lemma: Fair processes fulfill $p_t = f_t 2^{-t}$. This follows from definition (3.7) and (4.1). (4.2) Process-equivalency Definition: v and v' are process-equivalent $(v \sim v')$ if $(p_t(v))=(p_t(v'))$ (for the the same p,q). Lemma: 1. v~v' iff the games have the same f-vector. 2. v~maxⁿ v. Proof. 1. The f-vector and p fully determine the process. 2. "v contains all information up to time n. (4.3) Lemma: If $W=g(W_*)$ or $W=sh-g(W^*)$ then: 1. $p(\bigcap W^n \setminus \bigcup^n W) = 0$ (i.e. max v=min v p-a.s.). 2. $\lim V^n = \lim V^n = \lim V_{t-1} V_{t-1}$ and 3. - if T" and "T are the corresponding life-lengths - $\lim_{n\to\infty} T^n = T = \lim_{n\to\infty} T p-a.s.$ Proof: The set $\bigcap W^n \setminus U^n W$ is a subset of the boundary. (4.4) A simple class of sure games Definition: Let $(N,v)^{(r)}$ the game "r players are minimal winning" ("r faults destroy the system"). T(r) denotes the corresponding life-length. Remark: P=p(W)=1. (4.5) Lemma: $T^{(r)}-r$ is Pascal-distributed with parameter r, $E(T^{(r)})=Var(T^{(r)})=2r$. Proof: Let $f_{t}(r) = (1:1)$ (f_t=0 for t(r), f_t counts the minimal winning coalitions at time t distributing t-r "zeros". By lemma (5.1) we get p_t (r). The moment generating function is $P(s)=\Sigma f_t$ (r) $2^{-t}s^t=2^{-r}\Sigma p(Pascal(r))s^t$. P(1)=1, P'(1)=2r, $P''(1)=4r^2-r$. $E(.)=P'(1). Var(.)=P'(1)+P''(1)-(P'(1))^2=2r.$ Remarks. 1. $\Delta f^{(r)} = f^{(r-1)}$. 2. $\lim (T^{(r)}/E(T^{(r)})) = Exponential (1) + 1$. The (binomial) coefficients f_{τ} are given in the following table: r\t 1 2 3 4 5 6 7 8 9 10 11 12 1 11111 1 1 1 1 1 1 1 2 01234 5 6 7 8 9 10 11 3 0 0 1 3 6 10 15 21 28 36 45 55 4 0 0 0 1 4 10 20 35 56 84 120 165 5 0 0 0 0 1 5 15 35 70 126 210 330 6 0 0 0 0 0 1 6 21 56 126 252 462 7 0 0 0 0 0 0 1 7 28 84 210 462 8 000000 0 0 1 8 36 120 330 (4.6) Definition: $f^*_{t} := \max\{f_{t}^{(r)}; r \in \mathbb{N}\}$. Theorem: $\Sigma f^* \cdot 2^{-t} = \infty$ Proof: Raabe-criterium. Remark: The set of f-vectors (numbers of wins at time ...) for all games F is not equal to $\{f; \Sigma f, 2^{-t} \in 1, 0 \in f, f^{t}, \}$ 10130... is not an element of F (see Appendix A). The increase of f is bounded by the history of "losses" related to the corresponding $f^{(r)}$. (4.7) Theorem: The distribution of the stopping time T of the game (N,v) up to time t is the same as that one of (N,max{'v,v''}). The game (N,max{'v,v''}) guarantees a sure win. Proof: Up to time t both value processes are equal. The probability of a losing coalition s with r members of the game $(N, {}^{t}v)$ is equal to the probability of the set of minimal winning coalitions starting in (s_1, \ldots, s_t) . The hitting time of this set is a shifted Pascal(t)-variable. (4.8) Corrollary: The maximal value of p_{t+1} is determined by the history ^tv. F can be generated this way. Especially the family of all distributions of directed games is generated out of Pascal(r)+r - distributions by repeating the following two operations: - deleting the r-coalitions smaller than some, and - filling in that part of another Pascal(r')+r', r'>r losing in the r-game.(This is an apropriate sum of shifted Pascal(r'')-distributions, $0 \le r'' \le r'$.) - (4.9) The corresponding results can be obtained for non-fair processes substituting the negative binomial distribution for Pascal's. (4.10) An example Consider the game $max(<0.0111>, v^{(7)})$. f=(0.0.1,3.6,0.1,6.22,63,...). | Ones up to | Number | Time | е | | | | |------------|-----------|------|---|---|----|----| | time 5 | of events | 6 | 7 | 8 | 9 | 10 | | | | | | | | | | 3 | 10 | 0 . | 0 | 0 | 0 | 0 | | 2 | 10 | 0 | 1 | 5 | 15 | 35 | | 1 | 5 | 0 | 0 | 1 | 6 | 21 | | 0 | 1 | 0 | 0 | 0 | 1 | 7 | | | | | | | | | | sum | | 0 | 1 | 6 | 22 | 63 | (4.11) A formula for $v=\langle s,s'\rangle$ Let f and f' be the f-vectors of $\langle s \rangle$ resp. $\langle s' \rangle$, and r, r' the length of the corresponding lexicographically first coalition. Then we get f_t up to time r'-1 and after that time $g_t - \Sigma\{f_j; j=1,...,r'-r\}$. #### (4.12) Pascal-type Definition: $\{i \in N; i = |s|, s \in W_*\}$ is called Pascal-type of the corresponding game. In the appendices the Pascal-type is denoted by a corresponding letter-combination, f.ex. AB, BDE or CG (example (4.10)). #### (4.13) An f-vector does not determine the game (even in the finite case). The smallest example is f=0.111 (see Appendix A.). It is easy to construct all (process-equivalent) games for a given f-vector by successive construction of "W (with (f_1, \ldots, f_n)). #### 5. Characters #### (5.1) Structure of X(N,v) Lemma: If there is a positive probability of stopping in finite time then there is a lexicographically first coalition s° in W_{\bullet} . Proof: If there is a finite coalition s of order o(s)=j in W, then the coalition 1+...+j is more weighty and winning too. By successively deleting the last element we find a minimal winning coalition. This coalition is the lexicographically first in W.. #### (5.2) Characters for the players Definition: 1. i is called dummy (iεD) iff i is not a member of any minimal winning coalition; 2. i is called sum (iεΣ) iff there are minimal winning coalitions s and t coincident up to time i-1 fulfilling s_i =t_{i+1}=1, s_{i+1}=t_i=0 and t_i>s_i for all j>i. In this case t-s+(i+1) is called the substitute of i. The sum is called **proper** iff there is a finite substitute (= that does not contain a full tail). 3. i is called **step** if it is neither a dummy nor a sum. A step is called **improper** if it is not a member of a finite minimal winning coalition. #### (5.3) Lemma: Any game is process-equivalent to a game without improper characters. Proof: consider the 'inner game' lim'v. #### 6. Weighted majority games and homogeneous games #### (6.1) Weighted majority games Definition: $(N,v) \in V$ is a weighted majority game (w.m.g) if there exist a natural number μ and a nonnegative integral measure $m=(m_1,\ldots,m_n)$ fulfilling $v=1_{L,\mu}, m_1 \in M_1 \ni 0$ m. Write m(S) for $\Sigma\{m_i; i \in S\}=1_8 m$. Definition: $(N,v) \in V$ is a rational weighted majority game (r.w.m.g) if there exist a natural number μ and a nonnegative rational measure $m=(m_1,\ldots,m_n)$ fulfilling $v=1_{\Gamma,\mu,\ldots,\mu}>0$ m, and m(N) finite. A coalition S is winning if and only if $m(S) \neq \mu$. (μ, m) is called representation of (N, v). Write $\langle \mu, m \rangle$ for (N, v). The set of all w.m.g. is denoted by V_m resp. by $V_{r\,m}$. #### (6.2) Homogeneous games Definition: A (r.)w.m.g. (N,v) is called **homogeneous** if there is a representation (μ,m) of this game fulfilling $m(S)=\mu$ for all minimal winning coalitions. The set of all homogeneous games is denoted by V_h resp. by V_{rh} . #### (6.3) Characters are not revealed Rational (homogeneous) games (their characters and representations are introduced in Rosenmüller 1987. (Integer) w.m.g. without dummies are sure games. In many processes characters are not revealed by the lifelength distribution. We give an example: Both of the games given by the representations (13;7,6,3,3,1,1) and (11;7,4,3,1,1,1) generate the f-vector (0,1,0,1,1,1) - they are process-equivalent; but in the first game time 1 is a sum while it is a step in the second. #### (6.4) Fellowship representation The pair (k,g) of an integer 1-vector and a decreasing rational 1-vector can be identified with the measure having k_i 'fellows' of weight g_i . #### (6.5) Cantor games Games generated by (k,g)=(1,2,3,...;1/2!,1/3!,1/4!,...) are called Cantor games. Every finite coalition has a rational weight. Coalitions can be identified with the unit interval doubleing up the rationals - m(N)=1. The game is homogeneous for $\mu=m(s)$, s=(1,...,1,0,...). (6.6) Lemma: If (N,v) is a (r.)w.m.g., then W is closed and $W=q(W_*)$. Proof: m is continuous. Remark. See (3.9). Conclusions: 1. P=p(W) - 2. If a game and its dual are r.w.m.g., then the game is finite. - (6.7) Theorem: 1. Fair w.m.games are p-a.s. constant-sum games.2. Constant-sum games are finite. Proof: 1. The symmetric difference $W(v)\Delta W(v^*)$ is a subset of $\partial W(v)\cup \partial W(v^*)$, (4.1). 2. (3.13) + (6.6) Remark. It is well known that a finite w.m.g. is either superadditive or dual superadditive or both (cf. Ostmann 1985). #### 7. Construction (7.1) In Aumann/Peleg/Rabinowitz 1965 and Kopelowitz 1967 tables of w.m.g. (n<9) are found. Rosenmüller 1986 an recursive procedure is given to construct all homogeneous w.m.g.. The following table gives the number of w.m.g.. #### Number of ... | players | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |--------------------|---|---|---|----|-----|-----|-----| | games | 1 | 3 | 8 | 25 | 117 | 927 | | | constant-sum games | 1 | 1 | 2 | 3 | 7 | 21 | 135 | (7.2) Theorem: Up to 5 players all ordered games are w.m.g.; n=6 is the first number at which both classes of games differ. Proof: The first part is proven by explicit construction according to 'W and to the Pascal-type (see Appendix B.). The second part is proven by examples in (7.3). - (7.3) In Ostmann 1985 there are two crucial examples reported: Aumann's game <10011001,01100110> stands for an ordered non-w.m.g. and Ostmann's game is a 13-person ordered non-w.m.g. with constant sum. Here we list some 6-person ordered non-w.m.g.: - 1. The following game is a fair one: $\langle 100101,011001 \rangle$, f=001344. There are four types. (101000) and (010111) are losing, (100101) and (011010) are winning coalitions. Assume that the game is w.m. then the two losing coalitions together have the same weight than the two winning ones - namely the total weight - this is impossible. Arguments of the same type can be given for the following examples: - 2. <100011,010101>, f=001356 - 3. <010011>, f=001357 This example is called "the parents and their four children" - for it can be seen as corresponding decision rule. - 4. <011001,010110>, f=001334 - 5. The games dual to 1.-4. Appendix A. Four-person games The following list uses the reference letters of Straffin, pp.310ff | f-vector | game | ₩* | 16 p(W) | Pascal-type | |--------------|----------|-----------|---------|-------------| | 1111 | f* | 0001 | 15 | A | | 1110 | c* | 0010 | 1 4 | λ | | 1101 | g* | 0100,0011 | 13 | AB | | 1100 | b* | 0100 | 12 | A | | 4042 | | 1000,0011 | 12 | AB | | 1012
1011 | n"
j* | 1000,0011 | 11 | AB | | 1010 | d* | 1000,0110 | 10 | AB | | 1001 | m* | 1000,0111 | 9 | AC | | 1000 | a | 1000 | 8 | A | | 0123 | i* | 0011 |
11 | В | | 0123 | k* | 0101 | 10 | В | | 0121 | 1* | 1001,0110 | 9 | В | | 0120 | e | 0110 | 8 | В | | f-vector | game | ₩* | 16 p(W) | Pascal-type | |----------|------|-----------|---------|-------------| | 0112 | n | 1001,0111 | 8 | BC | | 0111 | 1 | 1010,0111 | 7 | ВС | | | m | 1001 | 7 | В | | 0110 | đ | 1010 | 6 | В | | 0102 | k | 1100,0111 | 6 | BC | | 0101 | j | 1100,1011 | 5 | ВС | | 0100 | р | 1100 | 4 | В | | | | | | | | 0013 | i | 0111 | 5 | С | | 0012 | h | 1011 | 4 | С | | 0011 | à | 1101 | 3 | С | | 0010 | С | 1110 | 2 | С | | 0001 | f | 1111 | 1 | D | Remarks: The games o, o* and the fair game p (example (1.2) 3.) (cf. Straffin's list) are not ordered. #### Appendix B. 5-person games According to their Pascal-type for n=4 we got the following number of games (App.A.): A:4 B:7 AB:4 C:4 BC:4 AC:1 D:1 For n=5 we can construct the following: A: 5 B:15 AB:11 C:15 BC:35 AC:5 ABC:4 D: 5 CD:11 BD:5 BCD:4 AD:1 E: 1 The following list uses the reference numbers of Aumann/Peleg/Rabinowitz. | Pascal-type | ,no. | W* | f | 32P | dual r | ref. | |-------------|-----------|-------|----|---------|---------|--------| | λ | 1 | 1 | 1 | 16 | | i 1-1 | | Α | 2 | 01 | 1: | 1 24 | 6 | 5 2-2 | | A | 3 | 001 | 1: | 11 28 | 32 | 2 3-4 | | A | 4 | 0001 | 1: | 111 30 | 91 | 4-13 | | A | 5 | 00001 | 1: | 1111 31 | 117 | 7 5-76 | | В | - | 11 | 0: | | 2 | 2 2-1 | | В | 7 | 101 | 0: | 11 12 | 21 | 3-2 | | В | 8 | 1001 | 0: | 111 14 | 82 | 2 4-3 | | В | 9 | 10001 | 0: | 1111 15 | 116 | 5 - 4 | | В | 10 | 011 | 0: | 12 16 | 10 | 3-3 | | В | 11 | 0101 | 01 | 122 20 | 50 | 3 4-11 | | В | 12 | 01001 | 0: | 1222 22 | 108 | 3 5-52 | | В | 13 | 0011 | 0: | 123 22 | 38 | 3 4-10 | | В | 14 | 00101 | 0: | 1233 25 | 100 | 5-55 | | Pascal-type | no. | W• | f | 32P | dual re | f. | |-------------|-----|--------------|-------|-----|---------|------| | В | 15 | 00011 | 01234 | 26 | 95 | 5-49 | | В | 16 | 01001,0011 | 01232 | 24 | 101 | 5-68 | | В | 17 | 10001,0011 | 01231 | 23 | 103 | 5-65 | | В | 18 | 10001,0101 | 01221 | 21 | 112 | 5-72 | | В | 19 | 10001,011 | 01211 | 19 | 109 | 5-60 | | В | 20 | 1001,011 | 0121 | 18 | 58 | 4-12 | | AB | 21 | 1,011 | 101 | 20 | 7 | 3-5 | | AB | 22 | 1,0101 | 1011 | 22 | 47 | 4-17 | | AB | 23 | 1,01001 | 10111 | 23 | 107 | 5-84 | | AB | 24 | 1,0011 | 1012 | 24 | 35 | 4-14 | | AB | 25 | 1,00101 | 10122 | 26 | 97 | 5-86 | | AB | 26 | 1,00011 | 10123 | 27 | 94 | 5-77 | | AB | 27 | 1,01001,0011 | 10121 | 25 | 98 | 5-91 | | AB | 28 | 01,0011 | 1101 | 26 | 33 | 4-16 | | AB | 29 | 01,00101 | 11011 | 27 | 96 | 5-89 | | AB | 30 | 01,00011 | 11012 | 28 | 93 | 5-80 | | AB | 31 | 001,00011 | 11101 | 29 | 92 | 5-85 | | C | 32 | 111 | 001 | 4 | 3 | 3-1 | | С | 33 | 1101 | 0011 | 6 | 28 | 4-4 | | С | 34 | 11001 | 00111 | 7 | 86 | 5-6 | | С | 35 | 1011 | 0012 | 8 | 24 | 4-2 | | С | 36 | 10101 | 00122 | 10 | 88 | 5-12 | | С | 37 | 10011 | 00123 | 11 | 85 | 5-3 | | С | 38 | 0111 | 0013 | 10 | 13 | 4-6 | | С | 39 | 01101 | 00133 | 13 | 74 | 5-27 | | С | 40 | 01011 | 00135 | 15 | 53 | 5-25 | | С | 41 | 00111 | 00136 | 16 | 41 | 5-18 | | С | 42 | 11001,1011 | 00121 | 9 | 89 | 5-17 | | С | 43 | 11001,0111 | 00131 | 11 | 75 | 5-41 | | С | 44 | 10101,0111 | 00132 | 12 | 78 | 5-46 | | Pascal-type | no. | W* | f | 32P | dual re | £. | |-------------|------------|----------------|-------|---------|---------|------| | С | 45 | 10011,0111 | 00133 | 13 | 67 | 5-38 | | C | 46 | 10011,01101 | 00134 | 1 4 | 61 | 5-34 | | ВС | 47 | 11,1011 | 0101 | 10 | 22 | 4-5 | | BC | 48 | 11,10101 | 01011 | 11 | 87 | 5-15 | | ВС | 49 | 11,10011 | 01012 | 12 | 85 | 5-8 | | ВС | 50 | 11,0111 | 0102 | 12 | 11 | 4-8 | | ВС | 51 | 11,01101 | 01022 | 1 4 | 73 | 5-35 | | BC | 52 | 11,01011 | 01024 | 16 | 52 | 5-22 | | BC | 53 | 11,00111 | 01025 | 17 | 40 | 5-53 | | ВС | 5 4 | 11,10101,0111 | 01021 | 13 | 77 | 5-48 | | BC | 55 | 11,10011,0111 | 01022 | 1 4 | 66 | 5-43 | | BC | 56 | 11,10011,01101 | 01023 | 15 | 60 | 5-37 | | BC | 57 | 101,10011 | 01101 | 13 | 83 | 5-13 | | вс | 58 | 101,0111 | 0111 | 14 | 20 | 4-9 | | BC | 59 | 101,01101 | 01111 | 15 | 72 | 5-32 | | BC | 60 | 101,01011 | 01113 | 17 | 56 | 5-64 | | вс | 61 | 101,00111 | 01114 | 18 | 46 | 5-61 | | BC | 62 | 101,10011,0111 | 01111 | 15 | 65 | 5-47 | | ВС | 63 | 101,10011,0110 | 01112 | 16 | 63 | 5-29 | | BC | 64 | 1001,0111 | 0112 |
16 | 64 | 4-7 | | ВС | 65 | 1001,01101 | 01121 | 17 | 62 | 5-74 | | вс | 66 | 1001,01011 | 01122 | 18 | 55 | 5-71 | | ВС | 67 | · | 01123 | | 45 | 5-66 | | BC |
68 | 10001,0111 | 01121 | 17 | 110 | 5-67 | | BC | 69 | 10001,01101 | | 18 | 115 | 5-58 | | ВС | 70 | 10001,01011 | 01123 | | 114 | 5-54 | | ВС | 71 | · | | | 105 | 5-50 | | | | | | | | | | Pascal-type | no. | W* | f | 32P | dual re | f. | |-------------|------------|---------------------|-------|-----|---------|-------| | ВС | 72 | 011,10011 | 01201 | 17 | 59 | 5-59 | | BC | 7 3 | 011,01011 | 01202 | 18 | 51 | 5-62 | | BC | 74 | 011,00111 | 01203 | 19 | 39 | 5-56 | | BC | 75 | 0101,00111 | 01221 | 21 | 43 | 5-69 | | BC | 76 | 01001,00111 | 01223 | 23 | 102 | 5-51 | | ВС | 77 | 1001,011,01011 | 01211 | 19 | 5 4 | 5-75 | | ВС | 78 | 1001,011,00111 | 01212 | 20 | 44 | 5-73 | | ВС | 79 | 10001,011,01011 | 01212 | 20 | 113 | 5-63 | | BC | 80 | 10001,011,00111 | 01213 | 21 | 104 | 5-57 | | BC | 81 | 10001,0101,00111 | 01222 | 22 | 106 | 5-70 | | AC | 82 | 1,0111 | 1001 | 18 | 8 | 4-15 | | AC | 83 | 1,01101 | 10011 | 19 | 57 | 5-88 | | AC | 84 | 1,01011 | 10012 | 20 | 49 | 5-83 | | AC | 85 | 1,00111 | 10013 | 21 | 37 | 5-78 | | AC | 86 | 01,00111 | 11001 | 28 | 34 | 5-81 | | ABC | 87 | 1,011,01011 | 10101 | 21 | 48 | 5-90 | | ABC | 88 | 1,011,00111 | 10102 | 22 | 36 | 5-87 | | ABC | 89 | 1,0101,00111 | 10111 | 23 | 42 | 5-92 | | ABC | 90 | 1,01001,00111 | 10112 | 24 | 99 | 5-82 | | D | 91 |
1111 | 0001 | 2 | 4 | 4 – 1 | | D | 92 | 11101 | 00011 | 3 | 31 | 5-10 | | D | 93 | 11011 | 00012 | 4 | 30 | 5-5 | | D | 94 | 10111 | 00013 | 5 | 26 | 5-2 | | D | 95 | 01111 | 00014 | 6 | 15 | 5-19 | | | | | | | | | | Pascal-type | no. | W* | f | 32P | dual re | f. | |-------------|-----|------------------|-------|-----|---------|---------| | CD | 96 | 111,11011 | 00101 | 5 | 29 | 5-14 | | CD | 97 | 111,10111 | 00102 | 6 | 25 | 5-11 | | CD | 98 | 1101,10111 | 00111 | 7 | 27 | 5-16 | | CD | 99 | 11001,10111 | 00112 | 8 | 90 | 5-7 | | CD | 100 | 111,01111 | 00101 | 7 | 14 | 5-28 | | CD | 101 | 1101,01111 | 00112 | 8 | 16 | 5-42 | | CD | 102 | 11001,01111 | 00113 | 9 | 76 | 5-23 | | CD | 103 | 1011,01111 | 00121 | 9 | 17 | 5-39 | | CD | 104 | 10101,01111 | 00123 | 11 | 80 | 5-30 | | CD | 105 | 10011,01111 | 00121 | 12 | 71 | 5-20 | | CD | 106 | 11001,1011,01111 | 00122 | 10 | 81 | 5 – 4 4 | | BD | 107 | 11,10111 | 01001 | 9 | 23 | 5-9 | | BD | 108 | 11,01111 | 01002 | 10 | 12 | 5-24 | | BD | 109 | 101,01111 | 01101 | 13 | 19 | 5-33 | | BD | 110 | 1001,01111 | 01111 | 15 | 68 | 5-40 | | BD | 111 | 10001,01111 | | | 111 | 5-21 | | BCD | 112 | | | 11 | 18 | 5-45 | | BCD | 113 | 11,10101,01111 | 01012 | 12 | 79 | 5-36 | | BCD | 114 | 11,10011,01111 | 01013 | 13 | 70 | 5-26 | | BCD | 115 | , | 01102 | 14 | 69 | 5-31 | | AD | 116 | 1,01111 | 10001 | 17 | 9 | 5-79 | | E | 117 | 11111 | 00001 | 1 | 5 | 5-1 | The list according to ref. | Pascal | no. | f | W | dual | ref. | |--|---|--|---|--|--| | λ | 1 1 | 1 | 16 | 1 | 1 – 1 | | B
A | 6 11
2 01 | 01
11 | 8
24 | 2
6 | 2-1
2-2 | | C
B
B
A | 32 111
7 101
10 011
3 001
21 1,011 | 001
011
012
111
101 | 4
12
16
28
20 | 3
21
10
32
7 | 3-1
3-2
3-3
3-4
3-5 | | D C B C BC BC BC BC BC AB A AB AB AB | 91 1111
35 1011
8 1001
33 1101
47 11,1011
38 0111
64 1001,0111
50 11,0111
58 101,0111
13 0011
11 0101
20 1001,011
4 0001
24 1,0011
82 1,0111
28 01,0011
22 1,0101 | 0001
0012
0111
0011
0101
0103
0112
0102
0111
0123
0122
0121
1111
1012
1001
1101 | 2
8
14
6
10
10
16
12
14
22
20
18
30
24
18
26
22 | 4
24
82
28
22
13
64
11
20
38
50
58
91
35
8
33
47 | 4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-10
4-11
4-13
4-13
4-14
4-15
4-17 | | E
D
C
B
D
C
CD
BC
BD | 117 11111
94 10111
37 10011
9 10001
93 11011
34 11001
99 11001,10111
49 11,10011 | 00001
00013
00123
01111
00012
00111
00112
01012 | 1
5
11
15
4
7
8
12 | 5
26
85
116
30
86
90
85
23 | 5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9 | | D
CD
C
BC
CD
BC
CD | 92 11101
97 111,10111
36 10101
57 101,10011
96 111,11011
48 11,10101
98 1101,10111
42 11001,1011 | 00011
00102
00122
01101
00101
01011
00111 | 3
6
10
13
5
11
7 | 31
25
88
83
29
87
27 | 5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17 | | Pascal | no. | f | W | dual | ref. | |---|--|---|--|---|--| | C
D | 41 00111
95 01111 | 00136
00014 | 16
6 | 41
15 | 5-18
5-19 | | CD BD CC BCD C CD BCD C CD BCD | 105 10011,01111
111 10001,01111
52 11,01011
102 11001,01111
108 11,01111
40 01011
114 11,10011,01111
39 01101
100 111,01111
63 101,10011,0110 | 00133
00101 | 12
16
16
9
10
15
13
13 | 71
111
52
76
12
53
70
74
14
63 | 5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29 | | CD BCD BC BC BC BC BCC CC CD | 104 10101,01111
115 101,10011,01111
59 101,01101
109 101,01111
46 10011,01101
51 11,01101
113 11,10101,01111
56 11,10011,01101
45 10011,01111 | 01111
01101
00134
01022
01012 | 11
14
15
13
14
14
12
15
13 | 80
69
72
19
61
73
79
60
67 | 5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39 | | BD
C
CD
BC
CD
BCD
C
BC
BC
BC | 110 1001,01111
43 11001,0111
101 1101,01111
55 11,10011,0111
106 11001,1011,01111
112 11,1011,01111
44 10101,0111
62 101,10011,0111
54 11,10101,0111 | 01111
00131
00112
01022
01022
01012
01011
00132
01111
01021
01234 | 15
11
8
14
10
11
12
15
13
26 | 68
75
16
66
81
18
78
65
77
95 | 5-40
5-41
5-42
5-43
5-44
5-45
5-46
5-47
5-48
5-49 | | BC
BC
BC
BC
BC
BC
BC
BC
BC | 71 10001,00111
76 01001,00111
12 01001
53 11,00111
70 10001,01011
14 00101
74 011,00111
80 10001,011,00111
69 10001,01101
72 011,10011 | 01124
01223
01222
01025
01123
01233
01203
01213
01122
01201 | 20
23
22
17
19
25
19
21
18
17 | 105
102
108
40
114
100
39
104
115 | 5-50
5-51
5-52
5-53
5-54
5-55
5-56
5-57
5-58
5-59 | | B
BC | 19 10001,011
61 101,00111 | 01211
01114 | 19
18 | 109
4 6 | 5-60
5-61 | | Pascal | no. | f | W | dual | ref. | |---|---|---|--|---|--| | BC
BC
BC
B
BC
BC
BC
B | 73 011,01011
79 10001,011,01011
60 101,01011
17 10001,0011
67 1001,00111
68 10001,0111
16 01001,0011
75 0101,00111 | 01202
01212
01113
01231
01123
01121
01232
01221 | 18
20
17
23
19
17
24
21 | 51
113
56
103
45
110
101
43 | 5-62
5-63
5-64
5-65
5-66
5-67
5-68
5-69 | | BC
BC
BC
BC
BC
A
AB
AC | 81 10001,0101,00111
66 1001,01011
18 10001,0101
78 1001,011,00111
65 1001,01101
77 1001,011,01011
5 00001
26 1,00011
85 1,00111 | 01222
01122
01221
01212
01212
01121
01211
11111
10123
10013
10001 | 22
18
21
20
17
19
31
27
21 | 106
55
112
44
62
54
117
94
37 | 5-70
5-71
5-72
5-73
5-74
5-75
5-76
5-77
5-78
5-79 | | AB AC ABC AB AB AB AB AB AB ABC AC | 30 01,00011
86 01,00111
90 1,01001,00111
84 1,01011
23 1,01001
31 001,00011
25 1,00101
88 1,011,00111
83 1,01101
29 01,00101 | 11012
11001
10112
10012
10011
10111
11101
10122
10102
10011
11011 | 28
28
24
20
23
29
26
22
19
27 | 93
34
99
49
107
92
97
36
57 | 5-80
5-81
5-82
5-83
5-84
5-85
5-86
5-87
5-88 | | ABC
AB
ABC | 87 1,011,01011
27 1,01001,0011
89 1,0101,00111 | 10101
10121
10111 | 21
25
23 | 48
98
42 | 5-90
5-91
5-92 | #### Appendix C. Fair ordered games (n(6) The following list gives fair n-person-games without dummies according to their f-vector. Up to n=5 all games are constant-sum w.m.games. If a game is w.m. (and therefore constant-sum) we give its minimal representation, else W^* is listed. n<6 | f-vector | no. | (μ, m) | |----------|-----|-------------| | | | | | 1 | 1. | 1;1 | | 012 | 2. | 2;1,1,1 | | 0112 | 3. | 3;2,1,1,1 | | 01112 | 4.1 | 4;3,1,1,1,1 | | | 4.2 | 5;3,2,2,1,1 | | 01024 | 5. | 4;2,2,1,1,1 | | 00136 | 6. | 3;1,1,1,1,1 | The following list uses the reference symbols (ref.) of Kopelowitz. n=6 | f-vector | no. | (μ,m) | W* / ref. | | |----------|-----|---------------|-------------------|--------------| | 011112 | 7.1 | 5;4,1,1,1,1,1 | 6-WZ-2 | | | | 7.2 | 7;4,3,3,1,1,1 | 6-WZ-6 | | | | 7.3 | 7;5,2,2,2,1,1 | 6-W2-8 | | | | 7.4 | 8;5,3,3,2,1,1 | 6-WZ-11 | | | | 7.5 | not c.s. 101, | 10011,0111,010111 | dual to 10.3 | | | 7.6 | not c.s. | 101,01101,010111 | dual to 10.2 | | f-vector | | (p.) / | W* | |----------|------------------------------|---|---| | 011104 | 8. | not c.s. | 101,0111,001111 dual to 15.3 | | 011024 | 9.1
9.2 | 6;4,2,2,1,1,1
not c.s. | 6-WZ-5 | | 010232 | 10.1
10.2
10.3
10.4 | 9;5,4,3,2,2,1
not c.s.
not c.s.
not c.s. 11, | 6-WZ-14 | | 010224 | 11.1
11.2 | 6;3,3,2,1,1,1
7;4,3,2,2,1,1 | 6-WZ-7 | | 010136 | 12. | 5;3,2,1,1,1,1 | | | 001436 | 13. | 6;3,2,2,2,1,1 | | | 001352 | 14.1
14.2 | 7;3,3,2,2,2,1
not c.s. | | | | 15.1
15.2 | 8;4,3,3,2,2,1
not c.s.
not c.s. | 6-WZ-13
100011,01101 dual to 9.2
100101,011001 dual to 8. | | 001336 | 16. | 5;2,2,2,1,1,1 | | | 001248 | 17. | 4;2,1,1,1,1,1 | | #### References - Aumann, R.J., B. Peleg and P. Rabinowitz: A method for computing the kernel of n-person games, Math. Computation 19, 1965, 531-51 - Isbell, J.R.: On the enumeration of majority games, - Math. Tables Aids Comput. 13, 1951, 21-8 - Kopelowitz, A.: Computation of the kernel of simple games and the nucleolus of n-person games, Res.Memo.31, Dept. of Math., Hebrew Univ. of Jerusalem 1967 - Ostmann, A.: Decisions by players of comparable strength, Z.f.Nat.ök. 45, 1985, 267-84 - Rosenmüller, J.: Homogeneous games with countably many players, IMW WP 143, Universität Bielefeld 1985 - : An algorithm for the construction of homogeneous games, IMW WP 148, Universität Bielefeld 1986 - Straffin, Ph.D.: Power indices in politics, in: Brams et al.: Modules in Appl.Math.2 Political and Related Models, NY 1983