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I INTRODUCTION

‘The nucleolus is a very important notion in classical cooperative game theory. I know
from private conversations that some scientists are thinking about an extension of this
notion to a game without side payments. The following is a way for performing this
extension. The notion of the nucleolus is based on the excess of a coalition. It is easy to
test that the excess v(S) — x(S) of the coalition S with respect to the vector x is propor-
tional to the distance from x to the hyperplane x(S) = v(8). The coefficient of propor-

tionality is equal to Jﬁ if x(S) < v(S) and to — m if x(§) > v(S). This circumstance
allows to extend the definition of the nucleolus for games without side payments. It is
proved that the nucleolus exists for each game and is unique for games with concave
boundaries of sets V(S) (complement of V(S) is convex). The last condition is not so
unfamiliar as it may seem because in this case the core is always convex.

2. Preliminaries
Let I'= <I,H,V> be a game without side payments where I = {I,...,n}, H is a compact
R

subset of R and V : 2% — 2™ is a set—valued function with the properties:

1) V(#)=19,
2) V(S)is closed ,
3) V(8)is comprehensive: f x € V(S) and y, < x;,1 €5,



then yevis).

Denote b(V(S)) the boundry of V(S) and 1nt(v(s)) the interior
of V(S). Te set of such games is denoted G.

Put v. = max x3

_ L V(A

Consider the subset of points undominating by coalition S:
. " . ] i
B(s)={z€R™: x;2 v; , 1€I} - nt(V(s)),
From conditions 2 and 3 H(S) is oclosed.

The core of | 18 C({)=BN ﬂ e H(S)

Derine the nnoleolus 'JI,E(Y) for YC‘R as usually but with
respect to an arbitrary exess function E(x,S}, xe-R "8cCl.
Let 9 (x)€ RQ' is a veetor of ordered exesses: Q(x)- B(x,8) 2

GE(::)" E(x,50) Z <. - 9 (x).—E(x. ) ut x>y irf
e (x)-(BE(y) 1.0, 9 (x) i.a lezioographioal amaller then 9 (y):
there exigts x< 2™ such the.te"(x)- 9 (v}, 1<k, 9 (x){e (y)-
The nucleolus UC..(Y) is the set of ma:ximal elements in Y (the
core in Y for relation > ).
Jegm = {z(—.t.E(xKBE(y) Vyer}

The initial nmotion of the moleolus for classical cooperative
gemes (Schmeidler (1969)) based on the exess-function E(x,S) =
= v(s) - ::(S) . Later the extended moleolus was. derined, for
example with E(x,S}= £(s}{v(s) = x(s)}( see Menshikova (19832)).

Gopsider the game [=({I,v) with side payments as a geme
without side payments {={I,V,H) where

v(s)= { xer™: x(s)<v(s)},
:A::{x&R“’: (1) =v(I), xp> vi{i}), 1€1} .
Denote G, the class of all such games.
Let the distance f’(x,y) i3 defined in B for instence ,the

_\

Fuclidean distance ﬁ(x.y) \FZZ (x- -¥: )9" .
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Put Sj,(x.x)_ min P(::,y) the distance from & point x o0 a set X
and 5'? (A,B)= ma:t( minﬁi;(x.n) m%,(z B)) the Hausdor? distance

| between the sets A and B,

Proposition I. For game reG the classical E(x,S) = v(S) -
- x(8) = 5' (x,b(V(S))2,(8) where rx(s) \I_l'ir x€V(S) and
f (S)"-\r_' otherwise. '

Proof. It follows from that((v(s) - x(S)) W is the distance
from -x . to hiperplane x(8)= v(8) 1f x(s)<v(s) and the distanos
multipliad by -I it =x(8) >v(s).

Proposition I allows us to extend the motion of the micleolus
to an arbitrary game Teaq. _

For any distence P define the exeas-function B : .

B, (x,8) = 8, (x,b(V(s)))e(s) 1r x€V(s),
éj;(x v(vis)))e(s) 1f x¢v(s),
where £(8) is arbitrary positive function independent from Xe

H {x,8)=-

The mucleolus of | with respect to the exess-function E Y.
1s denoted by 15‘(, (F).

3 An existence end uniquiness of the micleolus
!Eheorem I. Bvery game {" € ¢ has a nonempty nucleolus J\LH(”
for any distance P and any bounded positive function r.

Proof. The proof of Sthmeldler (1969) is easy extended on this
oase.let give the another proof based on the result of Kulakovska~-
'ja(1976) about the von Neumann-Morgemsterm solution for partial
order on ‘& ocompact set. Prove first that the relation %~ pre-
serve in the 1imit i.eddf X — X and xuﬂ\,—x then X X,

n ©

for some n. We'll prove for this that E}, }(x) is contimcus. Let J

and k, 3<1<x, be the rumber such that (:r.)> F)((x)".__— 1 (0=

_g (1)>8Pf(aq Pt &€= min( ;(x) "(x),e}}(x) "’“( x))
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end &= min S, where J, 1s defined frem oonditions: 1r

Lz vl Cthen | E 05 (2, 50)— Epy (4,90 )<

Denote S¢(sz): pr_(s) = ®(z,8; (s” then \ep* (x)- 6},& (g)l-

= | B(x,8¢ (xl) - I(y,S (y))\ 52, ir\x - y\< ©.

Gonsider now GH_ (xn). From X ot P Ea %0 18 follows that
9P+(3Cn,m\< epf@"-n) Since QH (ac) 1a contimous then 9%(1e)<
& ej; (X,). If em(x,y *(x,.\ then I yX, . 1 O (x.:)—e,,,,cxn)
then each 9 (x'bm -BH(:rﬂ) m=I,2,000s Consider (xh\ and 8o
_ on, Becauce X, X, then there exists k: EP* (:x:c)< e[’-f (Xp)
and X rXpe Therefore from theorem 2 Yulakovskaja (I976) it 1is
follows that BCos(TYFF q.eud.

Schmeidler (1969) proved that the micleolus of a classical
game consists of a unique imputation V(). This result is
extended in the followling theorem,

Denote G the class of games F & G with ell convex sets
H(S) , SCI, end H. Note that V(S), SCI, ere not convex,

This oconditions are not unnatural becauce any geme ‘ e 6" has
the convex core C{["}=Hn &IH(S) ir it 4a non-empty.

Any game € ¢" has other good properties. Define operation
max(q,\';z\‘—' v for games with the seme I as V(S}=Y, (S)Uvatsl
The olass G'(I,H) of games with the same I end H 1s closed with
respect to the operation ™max". If [ ,[; €6, then [=max((},;)
has & funotion v(3)= max(v,(8),v,(S)}, Pechorskij and Sobolev (1983)
prove that the characteristic properties of the classical mecleo~
 Jus is related with this operation. Probably this holds in a general
.. ogBe.

Lemma, If . CGCR"™ is convex and aL(IC)f—X(x)S;)(x,%(C))
where ¥(x)={ 1if I¢0 and ¥(X)=-~4 1ir x¢€C then
ot (AX+@A-M)Y ,C) & max ((X,C) Lo (yY,C)), 9<A<t, ::f.-y,
and if cL(I,C);d.(%,C) then mequalities are strong.




Proof. Consider first the case ¥ (x)= ¥(y)=I. Construct a
oylinder of rotation K with an axis fx,yland a radius pr= max{aL(x,C),
oL (y,0)), Iat X be the nearest to x point of b(c). and ¥
be the seme to y. For construotion K both X anﬂ y Dbelong
to K. Becauce of comrexity of K and C any N = AT +{I-N\)F
belongs to KNC for any Al 0<A<i and belonm to int(ENC) 1
ol (x,0)F o (y,C). Therefore each sphere with the radius r and
the center s{\) hes a nonempty {ntrsection with the set C. I¥
means EP (z(J\) b(c)lgr or %(z(&).b(c)ldr ir ol(x,0) +
4= ol(y,C) what is needed,

Nexst let ¥(x)= Z(y)=-I for x,y€C. Fut r..min(g(x,b(c)l.
5' (y,b(C})) and construct a cylinder K with the radiua r as above
Gonsider the set C'=R™-C. Note that the distance from any point
belonged to [X,¥] to bv(C) is equal to the distance %o T! Becauoce
of 5’ (x,b(C))>r &y point of the set Ey=1t: pix, t)< r}
belongs to C, The seme is true for Ky . The set C is convex
then XC O, Hence there are o point of K belongi.ng to ¢* » 1.0
Sp (z,5(c))zr or & (z,b(C))>r if (x,C) (y,C). Beoauce
of K(:x.\"‘-i we have the needed.

Ir §(x)=1, Fy)=—41 then consider a point y* of an inter-
section of tx,y] and b(C). As\z%n’.ave been proved the conclusion of
lemma holds for [x,y'] and [¥',y}. Note that o (y',b(C})=0
So lemma holds for all cases.

Theorem 2, The micleolus RP*(f ) of any game U € ¥ consists
of a unique point for awy distance P and any bounded positive .
function f.

Proof. nﬂ.lr)#¢ from theorem I, Let !!C-YGTLHG') and x<y.
Consider Z=AX-+({-)y with the fixed l Q 4)~<.1 We'll

prove that z%x or EPYe Note that QP&LI) eﬁ(ﬂ),b-‘-'-f,l,...
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_end put 9;£$)= e;:; (»)= QL. Consider 9;* () and
let 6;5_ (2).—.5’,}(5,80. Becance of EH(x.Sil.d_a and
EP_}(y,S‘)sa then BH(z',S‘)éa from lemma, If nﬁ(z,sil <a
then z%x and syy. It remains e;éa)-‘-a,n e;fe).-:..ﬁe;(z)f—o.
then from lemme all corresponding Epjx,sj):'- Eﬂgy.sslza therefore
also G, ()=...=6p (=0 end e;*(s)=...=e§ =2
Consider the riduoedAvecESrg gﬁu,,(e:;'(x),...,eﬁ’; ()
and similar %(3‘) and Qﬁ_ (2), Repeat the above consideration.
And so on. Becauce x#y then 5, exists that Ep}?:,so):#l‘h(y,so)
so we'll obtain syx end sy what is impossible. Therefore
theorem is proved. .. _
Corollary. The muoleolus of a side-payment game is non-empty
and consists of a nniqlie point for any @ and any £ specifically
for E(x,S)=v(8) - x(S) (see Soimeidler (1969}) and

B{x,8)= V(i{)"('s‘-i)t(S) “( see MenshiXova (I983)).

Pfoof. It follows from prbposition I, theorems I and 2.

4 DProperties of 'the' extended nmucleolus

In Pecherskij, Sobolev (I1983) the characteristic properties of
the classical mcl_eoius is investigated. The extended mucleolus
satisries the similar properties. }

Proposition 2. TLP;U")CC(F) for eny p and positive f.
Proof. If £(S)> 0 then from definition all s,,lx,s)so for
xec{ir)e. Ir y¢ ¢(C) then such S, exlsts that EP_,._(y,So }>0. Hence

x$+y, XEC(F) and ¥y éRH(F). Therefore Rl,f(r)ccﬂ") QeCele
Proposition 3. TC?_&U") < P(H) where P(E) is the Pareto .
boundry of H. _
Proof., 7e'll prove that if xz,yz,iel, end x ¢y *then :}-j.
Becauce V(S) is closed there exists foreach S<I such x5ev(s)
that p (x,x51=5;,(x.b(v(sll). Pt yS=xS- (x - yle x5,




From the property 3 of V(S8) we have y‘séﬂ S). From definition
y5 we have P(y,ys)'::p(x,xsl. Therefore SP (y,b(v(s))) &
€8x, b(V(s))) 1r y¢v(s) ana & ly,b(V(S)))> 8p (x,b(V(3M,veV
In any case EP;y,S)?, Ef,’(;,S), ScI, and xyy becauce of X3y
and proof is over. ,

Proposition 4, If v! 1is received from V with the maping of
equivivalence xi:ox:’-ba;,iﬂ,....n. then if \)en?,,u') then
Ve Kﬂ(r‘) where \)E'=C\7‘:+Q5,1=I,..un.

Proof follows from properties of a distance P .
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