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Abstract

Suppose, a weighted majority simple n-person game is to be
specified by allotting weight 9 = 0 to kO players, weight

91 to the next k1 player,..., weight 9 to the last kr players;
here g, € N is increasing and k; € N. (i=0,...,r). A
coalition is winning if the total weight of its members is at -
Jeast A € N-. An algorithm is provided such that, given

(go, 91""’9r) and (ko, kl""’kr)’ every A is produced
which renders the resulting simple game to be homogeneous.




SEC. 1 The matrix of homogeneity
_ r+l .
Let k = (ko""’kr) €N, satisfy
(1) ko-i 0, kl""’kr > 13
r+l

a vector s =(s_s...,5.) € N is a feasible profile (for k)
2 F 0 r+l

if s < k. Next, Tet ¢ = (90, 91,...s9r) <N,

satisfy
(2) 0=9,<9;<9p --- <9, #0.
g 1induces the function

g: {s <k}~ NO
(3)

The function g as well as the pair M = (g,k) is called a measure.
A measure and a constant A € N such that g(k) > 1 generate a
characteristic function v = VT: {s < k} > {0,1} on the profiles
of k via

1 g(s) >
(4) v(s) = (s < k)
0 g(s) < A

The familiar framework of n-person cooperative game theory is easily

; r
obtained; put n= ¢ ki and @ = 1,...,n . Decompose
i=0

g =Ky + Ky +o.4 K. (+ = "disjoint union") such that

lK1 |= k; . @ is the "set of players" and any coalition S cq has

a profile s = ([SNK, |5.ees [SNKL[). Then (M;2) = (g,ks;n) induce
a c¢f. (in the familiar sense) say, by

W(S) = VI (IS N Kylsenns]S N KD) = ¥(s).



Thus, players in Ki have the same weight 95 and there are
k1 players with this property. Therefore, i€ {0,...,r} (or

Ki) is called a fellowship. A is the "majority level®.

A profile s < k is winning if v(s) =1 (Tosing otherwise) and
minimal winning if any winning profile t < s satisfies t =s.

Profiles will be ordered Texicographically (from right to left, i.e.,

i i
profile is the lexicographically first min-win profile (containing

the largest fellows)..

s preceeds s' if s > sg and s. = s:- (i > p)). The Tex-max

A pair M = (g,k) is said to be homogeneous w.r.t. x € N if
g(k) > x and

For any s < k , g(s) > x» there is
(5) t < s such that g(t) =2
We use the notation M hom x in order to indicate homogeneity;
M homOQL means that either M hom » or g(k) < A.

Assume that M hom » and let us construct the lex-max profile, say
sg , by collecting first the weights of the largest fellowship, then
those of the second largest fellowship etc. until we have the total
mass ) 1is combined. By homogeneity, the majority level is indeed
exactly hit by this procedure, i.e., there is 10 € {1,...,r} and

c €N, 1 <c<k; such that
0

. S

r
(6) Ao=cgs o+ 3
o i=i

+1

0
and

(7) A



The remaining players (fellowships) constitute a smaller measure
which is a projection of M = (g,k); this measure is (for c < ki )
o

cC .- . -
(8) Mio 1= (go, 91""’910’ ko, kl""’ki c)

or (if c=k;)
0
K
(9) M, © = My o 1= (Gs Gyo--es0i 15 Koo Kyseensky_q)
Ty 101 0> °1 101 p? "1 101
Now the remaining players may try to replace a member of the larger
fellowships (those already engaged in the Tex-max profile) in order
to enter a min-win coalition (profile); more precisely, the measure

M? and the weight gj (3 > 10) constitute a weighted majority
0
game which, as it turns out, is a homogeneous one. Indeed we have

Lemma 1.1. (The BASIC LEMMA, see [8])

Let M = (g,k) satisfy (1) and (2) and Tet x € N, g(k) >
Then M hom ) if and only if there is io £ {ly-sesF} - BNG

ceN,1<cc<k; such that (6) is satisfied and
0 .

c ) .
(10) Mi0 hom, g (igcd=<r)

holds true.
o . .
Note that M1.0 homo gi0 is equivalent to Mi-l hom0 94
0 0
Let us introduce the following notations

ro 2 (r+l)
e (= {(9.k) € Nj k satisfies (1)

and g satisfies (2)}



(11) (r>1)
e = ((0,k,) | ko € N2
wme =) e

r‘:

For any M ¢ " , m denotes "total mass", i.e.

and indices are carried accordingly, i.e.

=
I
Mo

ki g: + (ky =€) g
0 i=1 T To To

etc.

Definition 1.2. Let M= (g,k) € W and for 1<r<s

consider Mr = (go, TERRRTY M k0 kl""’kr)'

For 1 < 1'0 <r and 1 <c < k1. consider

0
54 c r
s = Ag (g,k) =cg: + I k. 9.
Ta Too¥ To 1'=1‘o+1 L
and
t o=t (g,k)=m1’n{c€]\lll<cik1.,Mrhomxg}
o o - 0 0

. _ .
(where min @ = ). Then C = (Ci)liris
1<i<s

(c: .= 0 for r < i) is called the matrix of homogeneity of M = (g.k).

Lemma 1.3. let Me TeS. For 1<i <r<s and 1<cc<ky
0

if and only if c > o



Proof: This follows from the BASIC LEMMA since M? homO gj for
0

3k iy implies M§+1 hom, g5 3 see Lemma 2.1. of [8]

0

Thus, we have now slightly changed our view point: Fix M ¢ 11{,5 and

consider any "projection” Mr c e’ (r <s). The numbers X = x? are
)
the only candidates such that (Mr, x? ) generates a "homogeneous" cf.
0

M

v 2 , i.e., sucht that Mr hom A? . Knowledge of the matrix C is

)\_i 0
0

sufficient in order to decide whether M hom A? holds true. Now,
0
Lemma 1.1. suggests that homogeneity is a property which is aquired

or disturbed by a recursive procedure.

As has been shown in [8], C also allows for a recursive computation.

Our present purpose is to exhibit reqularity properties of the matrix C.
This will provide faster algorithms for the actual computation of C.
Besides, as has been elaborated in [5], [8], [9] the recursive structure
allows for the definition of certain characters of players (as well as
fellowships and types) in a homogeneous game. These types are the
(familiar) dummy, the sum and the step. It will turn out that some
properties of C also reflect the "strength" of certain players (fellow-
ships) in the corresponding games in a way such that the character of a
fellowship may be decided upon by inspection of C.

Thus, the matrix C at once yields all homogeneous games that may result
from any projection Mr of M¢ Y¢S and shows something about the
strength of the playersin these games. Fast algorithms in order to
compute C are therefore considered to be desirable.



SEC. 2 Properties of C

Lemma 1.3 suggests that, given M = (g,k) € WS, it suffices to
know the matrix of homogeneity C in order to specify all "majority
levels", A€ N such that M hom i . Let us, therefore, exhibit
some properties of this matrix that will turn out to be useful for
a recursive computation. Parts of these arguments we shall quote
from [8], however, we want to use the fact that "many" entries of
the matrix C are not finite, thus providing eventua]ly a more
effective algorithm.

Lemma 2.1. (cf. 2.3. of [8])

Let Me S, Then, for 1 <i <r <s , we have

0 —
r : . -
(1) c1.o < » if and only if Mio’l hom0 9; (1—10,,..,r).
Proof: cg < » 1is equivalent to M. hom x? for some ¢, 1 < ¢ < k;
o 0 0
(Definition 1.2.) and by Lemma 1.3. this is equivalent
K.
1, r
Mr hom Ay oE T ki 9;
) =1,

My

61 homo 9 (i = ii,...,r)

Lemma 2.2. (cf. 2.3. of [8])
Let M e TWe>. Then

1 if M. hom, 9,

S otherwise.



-2- (2)

Proof: c% =1 follows from the definition of C. In order to
check (3), observe that Lemma 2.1. implies that

c? <« if and only if M._; hom g, . But M._; hom, 9,

“ . C
implies Mr hom0 9 forall ce N, 1<c i_kr s g.e.d.

Next, let us define the quantity

r s vc
(4) y; = min {c | 1 <c<kss My

hom_ g} ,
0 0 ) oY

then, using o Vv 8 in order to denote the maximum of reals o and
g, we have

Lemma 2.3. (cf. [8])

Let Me e and 2<r <s. For i, <r it follows

that
A -1 r
(5) VIR
To To To
Proof: Obvious, in view of Lemma 1.1. we have

c‘{o =min{c €N [ 1cc<k, Mﬁo hom g; (i=igs-..s1))
(6) =min{fc €N | 1<c< k_io, M‘;o homy g3 (i=1gs..-ur-1)3
vmin{c € N | 1<c<ks,M hom gl
0 0
R

Denote by [a] the largest integer less than or equal to o and put,
for 1 <ic<s

| L if gplgy or kg =9
(7) 11 .=

" 94 herw
1° [-a— ] otherwise .



Lemma 2.4. (cf. [8])

Let M ¢ }T{S and 1 <r <s . Then

r _ r-1 r
Proof: This follows from 2.3., since
r . c
yp = min {c | 1<c<kis My hom, g,

Corollary 2.5.

min {c | 1 <c

| A

ks 99 [ 9, or Kkggp < gd
r
I

Let M= (g,k) € TS and let

_ _ r
C—C(M)_(Cio)lf_iof_rf_s

denote the matrix of homogeneity of M.

Each column of C is monotone increasing. If
there are finite entries in a column at all,
then the first entry equals 1.

This is obvious since monotonicity follows from (8) and the shape of
the first entry (the diagonal element of C) is specified by (3).

Corollary 2.6.

(9)

let Mec W8 ° and 2 <r <s. Suppose that

cg > cg'l . Then

by monotonicity, c% = for j>r and 2 <1 <r).



Proof: 1f >, then 15 =40 > 15 q.e., in view of (7)
—_— 1 1 1 1

9; [ 9, and ky 9y > 9

It follows that, for any i, 2 <14 <

Mi 1 hémg 9y
0

That 1is, c? = » by Lemma 2.1., q.e.d.
0

Consider the matrix C = C(M). Given r, io we may say that the
entries c% s J>r o, 10+1 < i< r constitute the "south-east-stripe"
of c: . Thus, whenever there occurs a jump in the first column, then

0
the entries in the south-east-stripe are all = this suggests vaguely

the following form of C:

[ee]
°
.
°
°
o0 0 00 D
°
o
°
°
°
®
®

Now, it turns out, that the pﬁincip]e is a general one: whenever jumps

8 e

-oc* ocok*'nno;*\x_‘..-q—l

000 W Q
0 00 Eme—— 0

occur in any column, then the south-east-stripe is rendered «.

Theorem 2.7. Let M¢ S and C the matrix of homogeneity. Whenever,

for some 2 <i <r-l<r<s,

o]

then



-5 - (2)

(10) o= = =

Proof: Let ¢ = cg-l . Then we have

0

c i i
Mi0 hom, 9; (ipg2d=r- 1)

(see e.g. formula (6)). On the other hand, we have y? > ¢, thus
0

o
M1.0 h¢m0 9y -

Now, M? is a projection of M, and hence we have a fortiori
0 0

M. hgm_ g, »
¥y o ~r

which by Lemma 2.1. implies C:31 = » . Similarly, for any 1,

3 5 C . i %
ig<izr, M1.O is a projection of Mi and thus Mi h¢m0 9, 3

implying c: = w, g.e.d.

Remark 2.8. The computational procedure for obtaining the matrix C

is greatly simplified by the fact that frequently c? = ®
o
is implied by the "south-east-stripe" rule indicated via Theorem 2.7.

However, in some cases we actually need to compute c? given that the
0
1

entries cg, are already known for r' =r , i < 10 and for r' <r,

i <r'. To this end we proceed as follows.

2.8. A. i 4 io = r , then we know that c; =1 4f and only if

Mr-l homO 9y The matrix of homogeneity w.r.t. Mr-l is

. A r
(recursively) known; this is (Ci‘)ifjfr'ir-l ’



.'l

2.8 .B. Consider the case that 1 < 10 < r. We may assume c1.O =1
1 0
and c: <o (i< < r-1), for otherwise we have
5 .
c: = » by monotonicity. Thus we have
0
(11) M1 1 hom0 9;

0 0

(by Theorem 2.1.). Given this hypothesis, we have to compute

. C
(12) Y‘:i‘o = min {c € N l 1 <C=< k'|O 2 M'lo homO gY'} :

To this end we first apply a test in order to check whether

(13) M1.61 hom, g,.

holds true. (Again, the C-matrix for Mi 1 is already known)

0

2.8.B.a. If the answer is no and M. ; hgm g, then
0

) 0

2.8.B.b. If the answer is yes and M;_, hom g, then, by the same

0
reasoning we have y: <k, (i.e. c= ki is admitted

o~ o )

in (12); thus, in particular the “min" operation in (12) is
not taken w.r.t. the empty set). Our next test consists of
a check whether

(14) 954 ‘ 9

holds true.



-7 - (2)

2.8.B.b.q. If "yes", and g, \ 9y s then (13) implies M% hom, g,.
o 0

and hence

Foe
'Y_i = 1-
]

: 1 . . &

Indeed, if M1._1 hom 9; then Mi hom0 g, is trivial

0 0 0

. 1 . . .
and if mi61 < giO then Mi0 hom0 g, is a simple exercise.

2.8.B.b.8. If "no", and g, ! 9y then we call upon Lemma 3.4.
‘ 0
in [8] which tells us that, given the present conditions

o
M: hom_ g
iy o°r

is equivalent to

M, . hom (g, - (ki =c¢) g;
101 o( r i, 10)

if (k. =-c) g, <g. that is, if cg: >k; 95 -9 -
(" i 3 Ty 1 ?0 r

Now, for c = ki this is satisfied, indeed, we know already that

0
yr < k. . Hence, for c=k. -1, k; - 2,...,1 1let us check wether
1,— 1 1o 1
0 0 0
(15) (k, -c¢)g: <g
i, 15 r
and
(16) M;_q homy (9. - (ky - c) g )
0 0 0

are simultaneously satisfied. Again the c-matrix for M; ; is known.
0 -

Once for some c the answer is “no" we put Y? = ¢ + 1. If the answer
- o
is "yes" for all c, we put yoo=1.

To



Presumably, it is preferable to check for t = 1,2,...,k; -1

(i.e. t = ki - ¢) whether

(17)

(18)

M; _, hom (g, - t 9:)
101 oNr i

If, for some t the answer is "no" put

(19)

r - -
'Y_i —k_l t+1
0 0

and if the answer is "yes" always, put

Remark 2.9.

v; =1
0

Any test for homogeneity, given that the matrix C
is known, takes place according to Lemma 1.3. That
is, given Mr and 1 , check first whether there
is 1, 1 5_10 <r and c, l<c i.ki such

r

0
0
that A = A% . Then check whether ¢ > c.

0 0



SEG: 3 The algorithm

Collecting the pieces we now want to describe an algorithm for
the matrix of homogeneity of a given measure M = (g,k).

Now, for the sake of a consistent representation it is useful

to carry a fellowship with players having weight 0; i.e. to consider
k and g as specified by (1) and (2) of SEC. 1, where By = 0.
However, for the present algorithm this is not necessary; thus

we deal with g = (gq5...,9.) € N and k= (kp,...5k) € N .

The algorithm is described in terms of "functions" defined on
vectors of integers. The essential one is the last function,

called CE, which yields the matrix C. However, the functions

defined by I, II, III are necessary because of the recursive

nature of our procedure. '

I. Function IOC (g; k; a).

Entries : g = (gl,...,g;)e N k= (kl""’kr) e N'; A e N.

Output: (10, c) ¢ NO X NO :

Task: Determines io’ ¢ such that 2 = x? or otherwise
0
reports failure if no such quantities exist.

Procedure:

1. Choose 10 € N such that



- F - (3)

3. If g, | o , then = 4; otherwise = 5
0
4. Put c:= Y/ g 3 put 10C (g5 ks A) = (igs €) =6
0
5. Put I0C (g; k; ») = (0, 0) =6
6. END.
II. Function HOMN (g; ki a5 C )
Entries: g = (gl,...,gr) ¢ N
K = (kyseeerki) € N
» €N

_ r
c = (Cl""’cr) € N

Output: + or = (HOMN is a "Boolean function")

Task: Given (the last row of the matrix C) ¢ , HOMN decides

whether M = (g,k) homj X or not.

Procedure:

1.

If

oS

ki 95 < A, then put HOMN (e505°s°)

i=1

=+ and = 4. Otherwise = 2.
If 10C (g; k; A) = (0,0), then put HOMN (e,e5°,°)

= - and =4.

Otherwise put (i, ¢) := I0C (g3 k; ) and = 3.



3. If c>c. then put HOMN (e,°,°5°)
0
+ and = 4. Otherwise, put HOMN (°,*5°5°)

- and =4

4, END.

III. Function GAM (g3 k3 9; 5 9.3 c)
g}

\%4

10-1
Entries: g = (91""’91-1) € N
0 i-1
k = (kl""’ki-l) € N
0
91- > 9p €N
o .
10—1
c = (Cl""’ci-l) € N
0
Output: y? € N U {=}
0
Task: Computes yg given row io of G
o}
Procedure:
1. If HOMN (g; k3 g3 c ) =-, then put GAM (eses05050) = @

and = 9. Otherwise = 2.

2. If g, | g, then put GAM (e,e5°5%5°) = 1 and =9 .
0

Otherwise = 3.
3. Let t=1 and > 4.
4. If tg; <g. and HOMN (95 k3 g,-tg; 5 ¢) =+
0 0

then = 5. Otherwise = 7.

5. t>t+1;=6.



-4 - (3)

6. If t i.k1 - 1 then = 4. Otherwise = 7
0

7. Put GAM (e,°s°s°s° 1 and = 9.

i

k. - t+1 and = 9 .
To

8. Put GAM ('3'9'9'9')

9. END.

1V. Function CE (g, k)

Entries: g = (gl,...,gs) ¢ N°
k = (kl’..-QkS) € Ns

Output: Matrix € = (C50)i.pel,... s © NS
Cip = 0 (i>r) (or C triangular and

Cip not defined for 1> r)

Procedure:
1. Put c: =0 for all i and r.
1

2. Put ¢y = 1

3. For j=1s...58 put 1% =gl if kg 97 <95 or 9y l 95 -
. i _ _ -9
Otherwise, put 11 = k1 [91

2 2
4. If kg 9y < 92 or 9y | g,, then put ¢y = 1 and ¢, = 1.
Otherwise put c% = 1% and c% = ® .,

5. Put r =3 and io =1.

6. If c? = », then = 12. Otherwise = 7.
0
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