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0. Introduction

This paper presents a method to calculate recursively the value of a finitely re-
peated zero—sum game with incomplete information on one side. The analysis is
not done directly by the recursive formula, which may be regarded as the in-
formed player’s view of the problem, but we rather take the uninformed player’s
point of view and compute an optimal strategy for him in the first place.

The idea is applied to a game that has received great attention in the literature
since the convergence behaviour of its value function involves the density and the
distribution function of the standard normal distribution (see Mertens and Zamir
[76] ). In their analysis the normal distribution springs forth from some diffe-
rential equation. Here the N—stage game is explicitly solved and one finds that the
normal distribution appears due to the central limit theorem.



The Model

The data of the game are listed below:

a finite set R

(set of types for player 1)

for every type r €R a mxn-matrix AT
(payoff matrices)

a probability distribution p € A(R)

a natural member N

(number of stages)

The game is determined by the following rules:

At state zero r € R is selected according to p. Both players know the distri-
bution p but only player 1 learns his type.

At stage t =1,...,N both players independently and simultaneously pick out
actions i, € {1,...,m} resp. j, €{1,...,n}.

Afterwards they learn their opponent’s choice of action (and nothing else).
Both players have perfect recall.

N
After stage N player 1 receives from player 2 the amount 1%7 bX Ar(it , jt)‘
t =1

Let H ={1,..,m} = {1,...,n}. In the following the identities h =(i,j), h, =(i;,j)

and bt "_'(hl"“’ht) are always tacitly assumed.

A strategy of player 1 is given by a sequence of stochastic kernels ¢ =(al,...,crN),

o, | Rx L ={1,...,m}

ie o r,ht_l; - ) is a probability distribution on {1,...,m} for all
t

(r,ht'— 1) ER x Ht_l) and a strategy of player 2 consists of a sequence
T=(T)emTy)

r, | B' 1= (1,0}



The sets of strategies are denoted by

N
Mol 5, , =1 T,
t=1 t =

I

Using the strategies ¢ =(0y,....0N), 7 =(7ys--»7y) the players generate the distri-
jyonR e

’

bution P(

N
PP, ") =p() T o(rh” Lip L)

and a payoff function on N, 7N is naturally defined as

N £P N
Z A)=EG, )(Nt§1A‘)

aﬁ(a,r) =E " (

o

2=

A, being a random variable on R x HN,

A (rp™) =A(n,).

Hence we have a non—cooperative two person zero—sum game

Ly(e) =(=", T, agy).

N (p) is defined in terms of mixed behaviour strategies. One could as well define

the game in terms of behaviour strategies (i.e. functions
g, : R = : Lo {1,...,m} resp. Ty ): Lo {1,...,n}) and consider its mixed

extension (i.e. the probability distributions on the sets of pure strategies). In this
case the min-max theorem guarantees the existence of a value. But the two
approaches are equivalent in a certain sense (see e.g. Kuhn [ 53] ) so that we may
borrow the existence of a value vy(p) of Ig(p) from the alternative approach.



The set of equilibrium points of I‘N(p) is denoted by NEN(p). Due to the rect-

angular property of equilibrium points in zero—sum game we may also write
NEN(p) as the product of the player’s optimal strategies:

NEy(p) =NE(p) x NEG(p).



2. Properties of Equilibria

Definition 1:
Let (0,7) € £ « TN, The vector §(o,7) =(E( a,'r)(r))r €R’

P 1 N A .
E(a,-r) (NtEI Jn) it p(r) >0

£, A(©) =
(o) 0 ifp(r) =0

is called vector payoff of (o,7).

Thus the payoff function can be represented as follows:

R =P €y

Lemma 2:

Let (0,7) € NEy(p). Then §(, 12§09 V'€ =N,

Proof:

Suppose there were a strategy o’ such that
f(a,-r) (xg) > f(or’,'r) (rg) for at least one ry €R.
In this case the strategy ¢,

ol(r,...) , r=r
o"(1,...) = (5-) 0
a(r,...) , r#r,

would yield a payoff exceeding the value of the game against player 2’s
equilibrium strategy. The contradiction proves the lemma.
g.e.d.



Proposition 3:
Let (o,7) € NEN(p), E=£(a,r)' Then
p- {=vy(p)
q- €2 vy(a) VqeA(R).

Proof:
The equation just reflects the fact that the equilibrium strategies produce
the equilibrium payoff. Suppose the inequality were violated for some
q € A(R). From the preceding lemma we know that £ > 5( o,7) Voe il

Consequently
Q- §pny$ar €< vyla)
Thus applying strategy 7 in Iyy(q) player 2 could do better than the value

permits.
g.e.d.

Corollary 4:

The function VN is concave.

Define the Sets
Wy ={x€®%:q. x2vy(a) Vqea(R)}
The boundary of Wy is given by
Vy={x€Wy:3q€A(R): q - x=vy(q)}
(the set of supergradients of vy)
Vn(P) ={x€Vy :p- x=vy(p)}

(the superdifferential of v)y at p)



Remark that the statement "x is superdifferential of VN & p" i5 equivalent to

" —p is a normal vector of Wy at x".

Every strategy o =(crl,...,crN) € 2N of player 1 can be regarded as a pair

(IL,F) € o« (EN_ 1)H, that is a behaviour strategy for the first stage together
with a mapping from H into the set of all (N —1) —stage strategies. The canoni-
cal bijection between =N and 2! & (DN_ I)H is given by the identity on ! and
the equation

mp 1) 0) =F@) i hi)  vreR, (hY)eRY i€ {1, m}
Vt=1,.,N-1

%410

Analogously, a strategy 7 =(T1,...,TN) € ’I‘N is identified with a pair
(8,G) €T, = (TN“I)I'I by the equation

r o (BT ) =Gm) (17 )

The following representation of the payoff function reflects this point of view:

Lemma 5:
oy ((£F),(8.G))

= Llep) B fai) gl (ATR) + (N—1) af _, ((F(R).G(R)))

I h = (i,j)

0= Bl (1) = B

I

with

Proof:
Follows from the fact that

PP ec) D) =Blp gy (e )
q.e.d.



Theorem 6:

Let ((£,F),(5,G) € NEy(p). I EF; 1(h) > 0, then (P(h),G(h)) € NEy_,(p).

Proof:

Suppose that F(h) ¢ NEN(p) for some h =(i,j) with P Bt )(h) > 0. Since

(g,G) must be an optimal reply to (f,F) we deduce with regard to the repre-
sentation of the payoff function in Lemma 5 that

B 1 (F(1),G()) < vy_ (o)

Now player 1 can 1mprove his payoff by switching from F(h) to some equili-
brium strategy o’ € NE1 n— 1(p) leaving the remainder of his strategy un-

changed. Consequently (f,F) cannot be an equilibrium strategy.

g.e.d.

Corollary 7:
Let ((5F),(8,G)) € NEy(p).

Then ﬁ(f,F),(g,G) € VN(p) and ( )(h) >0, fF(h) G(h) € VN 1( )

Corollary 8: (The recursive formula)

(p) =max min z ERCRPIR LS (ATm)+ (N —1) vy_,(8)



Proposition 9:
For every £ € VN there is a strategy 7 of player 2 enforcing £,
i.e. f(a,-r) <¢ Voe =N,

Proof:
I {¢} = Vy(p) for some p, { is enforced by any equilibrium strategy of

player 2 in Io(p). Let £ € Vo(p), |V(P)| > 1 (i.e. vy is not differentiable
at point p). vy is piecewise linear on A(R) (see Ponssard and Sorin [ 78],

section 3). Thus any (super-) gradient corresponding to a region of linearity
including p is a supergradient of vy at p, and VN(p) is simply the convex

hull of all these supergradients. So let ¢ =k}'.} Ak {k be a finite convex

combination of the §k, each {k being enforced by a strategy 'rk. Then £ is
enforced by 7 =(1'1,...,1'N),

T
DL f‘: (a3, i)
kK t=l
T—1
X -rlt‘ @ §)
k t=1

-1 .
TT(h ' -’T) =

because PP )= EAkBP K VaEI}N‘
2Tk (ar)

g.e.d.

An analogous argument shows that it is sufficient to know player 1’s optimal
strategies only for those Iyy(p) corresponding to the kinks of the value function:

Proposition 10:
Let p =3 A¥ p¥, vn(P) =f M vN(pk), fkk =1, 350,
k

k

and let ¢~ be an optimal strategy for player 1 in the game PN(pk).
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Then ¢ =(al,...,oN)

k T
p r t
T4, . —1
rh™ ;i )-
o\t T —1
p r _1 t(r t)

is an optimal strategy of I‘N(p).

With regard to corollary 7 any equilibrium strategy of player 2 in PN(p) can be

represented by a distribution y on his set of actions {1,...,n} and a tuple
X= ({1 )(1 JeH with E' €EVy_p E"J being the vector payoff player 2 is going to

enforce from stage 2 to stage N after observing action i of player 1 and employing
action j at the first stage. If the value function vy, of the (N —1)-stage game is

differentiable at pi he has no choice. §i’j is always the unique (super-)gradient of
VN_1 8t p'. But even if he has a choice he does not lose anything by making ¢

independent of his own action j. Suppose there is an optimal strategy (v, X) for

player 2 he can replace the £ 1) by the expected vector payoff f' =% ¥ 51’3 en-
J

forcing the same N-stage vector payoff § as before. In view of proposition 9 one is
free to choose any ¢ € Vo1

Consequently
VN(P)
= min min max 1%» Zp(r)

yea ({1,..n}) Xe(Vy *l)m i T

( EJ f(r;i) ¥; AT(,) + (N ~1) £(r))

= min sz(r) max (23, AT + (N —1) €())
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If (y,X) represents an equilibrium strategy of player 2 he will get the vector pay-
off £,

«ﬂﬂgx§(§%A%m+wN—néan

Generally i; =arg max 1%7 (... ) will not be unique. If there were only one maxi-
1
mizer iy given (y,X) in most cases player 2 would improve by modifying (y,X)
i
such that §y ( By s Aligd) + (N —1) ¢ 0(r)) is reduced at the cost of some other
J

i1 until the terms corresponding to i0 and i, are equal. Moreover a unique
maximizer i0 would imply a "completely revealing" move of player 1. He would
always choose action iO if his type is r such that the posterior probability of r

given any action i #io would be zero.

Exploring player 2’s potentiality in the N—stage game, having solved the (N - 1)-
stage game it seems a sensible idea to try to solve the equation

Ey; AT + (N-1) €@ =N ¢E)  Vi=l.m
J

This is not always possible since completely revealing moves cannot be excluded,
and if there is a solution it will in general not be unique, which implies that play-
er 2 can choose which vector payoff he wants to attain (dependent on the prior
distribution p).

In order to understand the importance of the first example, we have to mention a
general result on repeated games with incomplete information (see e.g. Sorin

[80]):

Let A(p)= T p(r) AT be the so called non-tevealing game, u(p) =val A(p) its
r€R

value and define v =cav u(p) to be the concavification of the function u. Then

Ntimm VN(P) =v,(p)
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o1, more precisely
C

IN

for some constant C €R.

0 < v(p) —v,(p) ¢

Example 1: (cf. Zamir [ 71/72], Mertens and Zamir | 76] )

L R
i .
In this case v (p) =0, such that the above result implies that 0 ¢ vn(p) < %.
Zamir [ 71/72] has shown that p_(l_’,__—_p_) < vn(p) < m-}_ii . Especially C—_ is the
n n n

best overall bound for the difference LA there is 2 game with order of speed

of convergence 14_: . This result has been refined by Mertens and Zamir [ 76}, who
I

showed that

2
X

7

fm [av (p)="Le
n= o 21]

where X, is the p—quantible of the standard normal distribution, i.e.

x2

x —
L‘fp e de:p

[m-°

The proof is rather technical and does not give the intuition behind the result. It
is based on a general result about the variation of martingales in [0,1]. In fact
both results have been derived without computing any value v _(p). We are now

in a position to make up for that and we will find that the result by Mertens and
Zamir follows from the explicit representation of the value function. The value
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and the optimal strategies for both players will be described in terms of the
binominal distribution. Let

b(kin) =b(kin, 3) = [§] gD

be the probability function of the binominal distribution with probability of
success %, and let

e

B(k;n)= T b(m;n)

be its distribution function. In accordance with the interpretation of b(k;n) and
B(k;n) we additionally define

b(k;n) =0 if k< O or k > n and B(k;n) =0ifk < 0, B{k;n)=1ifk > n.

Theorem 11:
The value functions v, are piecewise linear, so they are well defined by the

values at their kinks. The points of non—differentiability are given by

and the values by

Vn(pk,n) =% b(k—1;n—1)

An optimal strategy (f,F) € NElll(pk o) is defined as follows:

. 1B(k—=1n—1)
T = 3 7B =T
( Consequently we have {(r,;B) =% B k.E 1_,x11 )
~ 11 —B(k —2;n—1)
fryT)= 3 7T -BE =13

1
F(T)eNEp_; (Py_10—1)

1
F(B)ENE, ) (Pyp) A =Orm+1
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(remark that according to the previous definition

P_1n=Pgp =0 and Py 9y "Ppy) n =1 )

Moreover NE111(pk o) turns out to be a singleton.
)

An optimal strategy for player 2 in I‘n(p), Pen$PSPriyp is given by
11 . _
g(L) _E‘Z B(k—'l, n—l) ’ k—O,...,n

2 2
G(T) eNEy_1(Py 1) "NEN_1(Pryyn—1)
2 2 =
G(B) ¢ NEN-—I(pk—l,n—l) n NEN—I(pk,n—l) k=0,..,n + 1.
. . 2 2 .
Of course the intersection NEy_ l(pk,n— 1) NNEN_ 1(pk +1,0— 1) is always non-

empty. The instruction means that player 2 has to ernforce the vector payoff
corresponding to the interval [py, 1Py g4 K

wi>

N 4
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Before proving theorem 11 let us state some consequences. The equilibrium vector
payoff of the n—stage game corresponding to the interval [ py 2Prt1 11] ,
¥ ¥

‘fk,n =(§i’n,§§,n), satisfies
gk’n * (pk,ni 1 *pk’n) =vn(pk’n)
fk,n ) (pk+1,n’ 1 _pk+1,n) =Vn(pk-{-l,n)

Explicitly:
(1) &+ (6,6 1) Blk—1in) =3 b(k—1n —1)

(2) & .+ (& o —¢& 1) B(kin) =3 blkin —1)

Subtracting (1) from (2) yields:
(6 n — &k o) blion) =5 (blsn —1) =b(k ~Lin ~1))

= (Gt SRy

B
B

. -
=1 ~n ,k—O,...,n+ 1

gi’n = 1b(kn —1) (1 =) B(kin)
= i—k B(k;n} —%(B(k;n —-1)+ B(k1;n-1)) + % b(k;n —1)

= 2 B(k;n) —B(k —1;n 1)



-16 -
1 2 ok
Ek,n - Ek,l:l +1-4

= 1-B(k—1,0—1) 2% (1 —B(k;n))

Adding (1) and (2) one obtains
2 £2 1 _ e yB(kn + 1) =b(k;
Ck,n + 2(§k,n _fk,n) (k;n + 1) =b(k;n)

such that

_1 _
Va1 Py 1,n41) =3Va(Py o) + Vo(Pry 1 2)) =V (P )

1 2 2k . ..
gk,n "fk,n =1- implies that

R "

Proof of theorem 11:
(by induction over n)
n =1: The one stage game is transformed into a matrix game:

L R
TT 2+p —24+p
TB ~24 5p 2-3p
BT 2 —5p -2+ 3p
BB -2-p 2-p

E.g. the strategy B T for player 1 means:
Play top in the type is I and play bottom if the type is Iy.

One checks easily that for p € %the mixed strategies

(=8 200 ) (5

and for p 2 % the strategies

o052 (1.4
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constitute an equilibrium. In terms of behaviour strategies:

1 1 —-2 1
)1 PE3 . m%,PSQ
f(r;;T) =14 1 f(1;T) = 1
1 1
yP2
gn)=12"""2
ZIPSE
Consequently

v(p) =min {p, 1 ~p}

n—n+1:
At first we show that player 2 can enforce the vector payoff fk o+l in the

(n + 1)-stage game by playing (y,1 —y) at stage 1 regardless of player 1’s
action at stage 1 provided he is able to attain § _ and § +1n in the

n-stage game.

Let y =% —i B(k —1;n)
Then y must satisfy
(n+1) fk,n+1 =(4y —1,4y-2)+n gk,n (if player 1 plays top)
and
(n+1) §k,n+1 =(1—4y,2—4y)+n gk—l,n (if player 1 plays bottom)

The first equation is verified as follows:

4y —2 +n fﬁ’n
= —B(k—1;n) + 2k B(k;n) —a B(k—1,n -1)
= ~B(k —1;n) + 2k B(k;n + 1) + k b(k;n) —n B(k —1;n) —-121- b(k —1; n—1)
= 2kB(k;n+1)—(n+1)B(k~1n)

2
= (a+1) 6k,n+1



~18 -

4}*—1+l:¢‘11“1
= dy-2+nf +1+n-2k

= (@a+1) 512‘,“_{_1 +(n+1)—2k

1
(n+1) 5k,n+1

(4 1) b gy =L 4y —2) + 6

The second equation is checked analogously:
4y —2 +n ‘512:,11 |
= —B(k—1;n) + 2k B(k—1;n) —n B(k—2,n —1)
= —B(k—1;n) + (2k —2) B(k —1;n) —n b(k —2; n —1)
= 2—-4y+4n §]2§—1,n

4y—1+4n {i,n
= 4y-—2+n§ﬁ,n+1+n—2k
= 2—4y+n{§_1’n+n-—(2k-1)
= 1-—4y+n i—-l,n —2(k —1)

1
= 1 —4y + n fk_l,n
={4y —1,4y-2) + 1 Ek,n =(1—-4y,2—4y)+ 1 'fk—l,n

So far we have shown that player 2 can guarantee the payoff v +1(p) in [ +1(p),

it is not yet clear that he cannot do better.

If we suppose for a moment that v_ 41 is the value function of I 41 (and that

(g,G) is an equilibrium strategy for player 2) we can deduce player 1's optimal
strategy in a game [ +1(pk,n +1)' InT +1(pk +1,n) player 2 can decide to enforce

the vector payoff gk,n 410t 3 +1n+1 (or any convex combination of these two).
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If he chooses fk at+1 from the second stage on he must head for ‘fk— 1n if player
1 plays bottom and for § _ if player 1 plays top.

According to corollary 7 this implies that the conditional probability P(r, |B) is
located within interval [p,_ 4., P ] and P(r,]B) lies within the interval

[pk,n’ 1:'llz--{»l,n] ’

e éen = [Pg,n'Prs1,al
T

Ek,n+1
B
k—1n [Pk 1,0 Pk 0}

If player 2 decides to enforce &, 1o+l the situation is represented as follows:

A

Ek+1,n+1

~

Since both strategies of player 2 are equilibrium strategies in I +1(pk +1,n) the

k+2n " [Pry1n0Prs2,0l

‘5k+1,n ~[py ,n'Pk+1 ,n]

posterior probabilities must satisfy both restrictions simultaneously:

By IT) =Py 10

B(IIIB) =Pxn

Player 1's first stage strategy f is designed in such a way that it creates exactly
these posteriors.

f is completely determined by the following lemma:
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Lemma 12:

m
Letp= X Al P; be a convex combination of probabilities p; € A(R). Define
i=1

fe 21 by
. P; (r)
(e =% =5
Then B(i) =), , p' =p;
i.e. action i is played with a total probability of A, and the conditional pro-

bability on R given i, pi equals p,.

With respect to theorem 6 it is clear that ({ F) must satisfy
1 1
F(T) eNEy (pk+1,n) and F(B) e NEy (pk’n).

The proof is complete if we show that the strategy (f,F) that was derived under
the hypothesis that v_ _H(p) is the value of T +1(p) actually guarantees the

amount v, . 4 (pk+1,n+1) in the game I (pk+1,n+1)‘

Since

nt1 Peg1,041) =3 (P ) + VaPy )
it suffices to check that the first stage payoff equals A +1(pk +1,n +1) independ-
ently of player 2’s action (cf. corollary 8).

Suppose player 2 plays left:

pk+l,n+1(3 f(rl;T) -3 f(rl;B))

+ (1 -pk+1,n+1) (2 f(l‘z,T) -2 f(r2=B))

B(k; B(k—1;
= Blkn+1)3 [mﬁ—%—n{m’%]

+ (1 —=B(k;n + 1)) [ : l_g(gfkﬁnl 1 _i —B k;; _}_'11 ]
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3 (B(k;n) ~B(k —1;n)) + B(k —L;n) ~B(k;n)

= % b(k;n)

= Vag1(Pryrngd)

A similar computation shows that player 1 also gets A\ +1(pk +1n +1) if player 2

decides to play right.
qg.ed.

Theorem 13: (Mertens and Zamir | 76} )

2

b e
fim [ﬁvn(p) =L e QP_
poow 2II

x, being the p—quantile of the standard normal distribution.

Proof:
Define m(p,n) =min {k : B(k;n) > x

2k —n
{n

p!

> xp}

m’(p,n) =min {k :

_2 m{p,n) —n
ryla) =22

) _2m(pn) —n

I

xp(n

As an immediate consequence of these definitions we obtain

fim B(m(p,n);n) =p

I~ o

fim x’{(n)=x
- o P
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and due to the central limit theorem it follows that

&m B(m'(p,n)n)=p

n-=+ w
0 =] nﬁm (B(m(p,n);n) —B(m’(p,e);n) |
x_(n) __t2
=| fim ;P 2 a

B+ xI;(n)

Consequently x_(n) converges as well and &m x_(n) =x_.
p Bseiie L

im - Vn(pm(p’n) ,Il) 5
D+ x_(n-1)
0 . — _LT“
J?[Kn—- 1)

b(m(p,n) —1;n —1)
n- o x_(n— 1)2

0 __LQ_

e

due to the local central limit theorem and the convergence resp. boundedness of
xp(n). Consequently



Tesp.

By definition of m(p,n) and Py , Wehave pEe [p

-93 -

<2

- =1 o
nt-i-mm n=Tv, (pm(p,n),n) J2_He

2

P

{ -
&m [nv =—
o o B (pm(p,n),n) ¢
1211

Since vI’l =1 _2_m(%£)_ on this interval:

3 17,0~V Py ) |

= [Gp-p y|1-2mipa)

m(p,n),n
= {p _pm(p,n),n) xp(n)

so that finally

Gm [n | v (p) =V Py n)n) |

n-+ w

= fm (p _pm(p,n),n)' 4m xp(n)

= o n+ o

= 4m (p~-B(m(p,n)—1n))- x

n+ o

P

m(p,n),n’pm(p,n)+1,n)
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resp.

x2

fm {nv (p)=e
D+ m

q.e.d.

The next example is an exercise taken from Sorin { 80], but here we overfulfill the
task by solving the game completely.

Example 2: (cf. Sorin [ 80] )

LR

1_T(20 2 _
2-3(32) ]

2p ,pszlg
u(p) =val A(p)={ 1 —p, 5 <P <3

P P23

2p ,psglg
v,(p) =cav u(p) =

n=1:
The value of the one-stage game is again computed by transforming it into

a matrix game:
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L R
TT 2p 1-p
TB 2p
BT 2p 1
BB 2p

B T is a dominant strategy for player 1. Thus

20,p¢3
V1(P)=

v

1
lypf

That means in the one stage game player 2 can choose among the vector
payoffs (2,0) and (1,1).

An optimal strategy for player 2:

Choosing {T =(2,0) and £B =(1,1) the equation

2y, 1-y) + €L =(1 + ,0) + £°

can be solved. One finds y =0, and player 2 is able to enforce the vector
payoff %((0,1) + (2,0)) =(1,%—) in the two-stage game. Of course he can also

attain the vector payoffs (2,0) and (1,1) of the one stage game by playing
the one-stage strategy twice. If p ¢ %—, (2,0) gives him the best payoff. If

p> % he will strive for (1,%) which always dominates (1,1). So he is able at

least to attain

| 2p ,ps%
Vg(P'—'
1+2,p23
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Player 2 has no chance to improve his payoff further since v, is always a
monotone decreasing sequence converging to v_ (see eg. Sorin [80] ). In this
case we find that ) already equals v_such that vy really is the value of the

two-stage game.

An optimal strategy for player 2 is given by

1,p<%
Tl(L)= q
Ovng
1,p<%
To(T;L) =1 To(BiL) =
0,p231;

n>2:

Since Vo =V V n > 2 the question is:
How can player 2 enforce the vector payoffs (2,0) and (1,%) in the n—stage

game?
If he wants (2,0) he only has to repeat the strategy of the one-stage game.
If he wants (1,%) he must solve

n(12) 2 (2y,1-y) + (n—1) €7
(1) (1 +y.0) + (@-1) ¢
) . T ,B
for a suitable choiceof {7,{7 €V _; =V,
1

Taking ¢7 =X+ (2,0) + (1-2) (1,3) and €5 =(1,3) and one gets A =—2—

and y =0 such that
n(1,3) =(0,1) + (2,0) + (n~2) (1,3) (if player 1 plays T) (3)

n(l,l) >(1,0) + (n—1) (1,%) (if player 1 plays B) (4)
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In this example the situation is clear enough that we don’t have to carry
out the convex combination of vector payoffs according to proposition 9. If
n is even the problem is exceptionally easy. Since the vector payoff (1,%) is

precisely attained within two stages player 2 must only repeat the strategy

f Ly(p):

1,p< %—
Tog—q () = .
0 v P 2 3
1,p< %—
T2t(...T;L) =1 T2t("'B;L) =
0 ' P 2 g

If n is uneven player 2 may start as he d1d in the precedmg case, i.e. he
employs the above strategy for t =1,... —2— Ifp2 5 he still has to achieve

the average vector payoff (1,%) during the last three stages. That means we

still need an optimal strategy for the three—stage game. With respect to (3)
and (4) one finds

If player 1 chooses T at this stage player 2 must obtain the vector payoff
2—((2 0) + (1,5)) uring the last two stages. Since he cannot get (1,5) in the

one stage game we cannot do with pure strategy choices. It is easily checked
that he can guarantee the desired payoff by
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1,p<
Tp—1(-TiL) =

Y
o
(v

o

1
1,p< 3
7p(--T T;L) =1 7,(-TBL)=

3.P23

If player 1 chooses B at stage n —2 we are again in a well known position.
According to (4) player 2 must obtain the vector payoff (1,%) during the last

two stages; i.e. he has to employ an optimal strategy in I‘2(p).

1,p< 31;
(- BiL) = .
0 ' P 2 3
I,p< %
7,(-B T;L) =1 7 (.BBL)= .
0 s P 2 g

An optimal strategy for player 1:
Ifp < %— he always plays T, his dominant strategy in A(p).

Hp> %— the posteriors player 1 must create are determined by theorem 6
and inequality (4). Theorem 6 says that P(r,|T) =% and P(r,|B) € [%,1] .

The second statement is not very helpful, but it is made more precise by
inequality (4): If he chooses B his type must be I, ie. E(rIIB) =1. Accor-

ding to Lemma 12
1(ryiT) =3(1 )
al(rz;T) =1
(p =%(1 -p) + %(p _g)

'UIWi'-‘

T
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From stage 2 on player 1 must act optimally in the game I _ 1(%‘-) (if he has
played top) or I _ (1) (if he has played bottom). Since v _ 1(%) =u _ 1(31;) he
can defend his equilibrium payoff by playing optimally in the matrix game A(%—)

at ever stage after choosing action T at stage 1. Consequently

at(T,...;T) =1
at(B,...;T) =0 Vi=2,..,n
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