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Abstract

A subset-discriminating code is defined by a set of codewords
and a partition consisting of equally-sized subsets. These
subsets are to be discriminated at the output of a discrete,
memoryless channel. The rate-region given in terms of the pair:
(rate of codewords, rate of elements of the partition) is
determined in single-Tetter form,



I. Introduction

This paper is devoted to the determination of the rate-region for a
subset-discriminating code for discrete, memoryless channels. Let -us
be given a DMC W and a set of messages to be transmitted via the
channel. The rate of this set is assumed to exceed the capacity of
the channel. It is well known that the error-probability arising from
such a scheme converges to unity exponentially, that is, the use of
a decoder consisting of a surjective function from the channel out-
put sequences onto the set of messages becomes completely useless.
Instead of decoding onto the set of messages we shall discriminate
between subsets of messages, all of them sharing a given size. Our
task now will be to give a computable formula for the maximum number
of subsets which can be distinguished when the average probability
of error is prescribed not to exceed an arbitrarily small x € (0,1).



I1. Notation and elementary known facts

Script capitals W, X, ... denote finite, nonempty sets. The letters

P and Q stand for probability distributions, U, X ... for random varijables.
We shall write U8 X8 Z if the random variables U, X and Z form

a markov-chain in this order. The cardinality of a set and the range of

a random-variable are denoted by |J{| and |lU|| respectively. WM is
the set-theoretical compiement of U . The logical symbols /?\F and \{ F
mean: “for all i proposition F holds" and "there exists i such that
proposition F holds", respectively, 2 means "identity by definition"

and |t|* 2 max {0,t}.

In the following we give notations and basic statements which are needed
Jater, in their simplest form.

For any alphabet X @DC{) denotes the set of all probability distributions
on X . The type of an n-sequence x" = (xl,...,x € ’)C" is a probability

distribution P , on X defined by
X

P (x) = nTE N, x e X,
X

n

where N(xjxn) is the number of occurences of x 1in the sequence x",

PMx) is the set of all types in X" and Tp = x" e 3{n|P n =P}
X

is the set of ail n-sequences of type P. If 3 is also an alphabet the

joint type of a pair (x",z") e x" x }r1

2 on A x3 defined by P {x,2) = n
xNz" xz"

is the probability distribution
lN(st]xn,zn), (x,z) € XxJ

and the conditional type of z" given x" is the conditional probability

distribution

p (Z]X) - N(xsZ_L anzn) . (X,Z) € xxg .

2N x" N(x|x™)

For a conditional probability distribution V on 3 given X , denoted as



VX =3, and x" € X" the V-shell around x" is

T,(xM = {z"e 30/ p =V}
Y ) 3 / anxn

For the entropy H(X), conditional entropy H(Z[X) and mutual information
I{(XAZ) we also write H{P), H(VIP) and I(P;V), respectively.

For P,Qe P (X)

O(P Q) = 3 Plx) Tos i3

denotes the Kuliback-Leibler I-divergence and for V,W | X = 3

D(V [[W|P) = x?;x P(x) DOV(-1x) [} W(-|x))

denotes the conditional I-divergence.

For Pe P (x), V|X =3 the distribution P(x,z) = P(x) - V(z|x)

on X x 3 is denoted by (P,V), the distribution P(z) = i P(x) - V(zlx)
on 3 s denoted by V o P in reminiscence to the composition of
functions.

The following inequalities are folklore.

For any § > 0 there exists n sufficiently large such that

1PN | < (n+1)lx| < exp {n .6},

//\\ exp {n - (H{P)-8)?

| A

]TPLi exp {n - H(P)} ,

Pe P (x)
n
. < exp {- n - (H(P)-8}}
/p\\ n exp {n - (H{VIP)-6)? ijv(xn) | < exp {n : K{Y|P)}
(P.V)e PM(xx3)
/\ /N exp tn - (HP)-1(PsV)-8)) <] OXeT, [y Ty ("))

P.V)e PNX NeT
(P.V) (X x3) ¥y€Typ < exp {n - (H(P)-I(P,V)}}

and



' n
ﬁf:;:\g wn(zn]xn) = tEl W(zyjx,) = exp {-n-(D(PZnIxr“wlPxn)+H(PZnixn Pxn))}

We shall use the elementary properties of typical and generated

sequences without reference and refer the reader to the book [3]
for further details.



III. The model and results

Let us be given channel-input and -output alphabets X and 3 and
denote the channel by W [X = 3 . The transmission of sequences is
assumed to be memoryless, that is

n
Wh"[x"y = 1w
CAEURLATICHEN

For convenience the messages to be sent over the channel consist of
channel input seguences XyoevnsXn of length n. They are independently
chosen according to the uniform distribution on {1,...,N}.

We are interested in discriminating elements Fi’ 1‘=1,...,N0 of a
partition of {Xl,...,XN} consisting of nearly equally-sized subsets.
Thus, for given & > 0 we define a subset-discriminating (n,NoiN,é)—code

to consist of N distinct sequences X1seeesXys 8 partition of
{xl,...,xN} for which

|F.

N .
| < exp {n - 8} , i=1,...,N
i —-Ng

0

and disjoint decoding sets D.,....D, < S}L
1 N0

These codes will be denoted by C = {(F;,D;) [ i=l,...,N,, = [F | =N},
k

by omission of & indicating that we are interested in codes with

smaller and smaller & > 0. The pair (n_l Tog N, u !

log N} is called
rate-pair of the code. As mostly in information theory also in discriminating
between subsets we allow small error probability: A pair (RO,R) is called
achievable, if for any e, 6 >0, 0 < A <1 and sufficiently large block-
Tength n € N there exists an
(n, exp {n-(Ro-s)}, exp {n-(R-e)}, &) -code such that

-1 o n,nC,; N
A(CW) =N ° 2 L W (Di | x7) < holds.

i=1 xneFi .

For the discrete, memoryless channel W we denote the set of achievable



rates by 32_2 GQ(N). The set ﬁ? is a convex subset of the positive

orthant of RZ

R in a
@*

and

ge* *

Observing

@** -

{(RysR) | O < R

{(RysR) | 0 < R

since time-sharing is available. Qur main result gives

computable manner.

Define

< sup {I(UaZ)} }
vexXez, PZIX; W}

H(X|U) + I{UAZ) > R > R

0

< max {I(UaZ)} 1}
UOXGZ,PZH = W}
H(X|U) + 1(UAZ) > R > R,
Ul < 1} +1

{(RO,R) | 0 < R0 < max {I(UAZ)}, R, < R}

U8 X8Z, Pyy=H
H(X[U) + I(UAZ)
ful < Jxl +1

R

v

the rate-region may be visualized as

R,

ra

e
e
~

7
//\\/j;\
\ :

v

R

The set 32** is well defined since the information-theoretical quantities

invoived are continuous with respect to the defining distributions and

since the restriction on the range of U

implies the set of admissible



markov-chains to be compact. The set C?** accordingly may be calculated
by a computer and thus our main

Theorem

@ - @**
gives a meaningful characterization of the rate-region for our model.

Our proceeding to derive this result will be as follows:

At first a coding theorem will be proved showing that each code out of
some class of codes may be prolonged by adjunction of a suitable set of
messages, a new element of a partition. $ince, as is shown, in using
this prolongation argument we may start from scratch and continue as
long as n'1 tog N0 < I(UAZ) at Teast the inclusion R R is
shown. The additional subsets found in each step have a common rate
of about H{X U). Using the identity 1:? = TQ** as shown in appendix A,
next the converse is proved showing the inclusion R ¢ R ™. Here
we prove that for smaller and smaller & > O the rates (n'1 Tog NO,
u1 log N) of any subset-distriminating (n, No’ N,8)-code are Timited
by a function B(+) describing the border of R,



IV. The coding result

Within this section the inclusion GQ** c® will be proved. Let

P be any finite set and let U, X and Z be random variables with
values in M, X and 5 respectively. Further assume U, X and Z
to form a makrov-chain with P- .y = W. Let numbers R, < I(UAZ) and
R such that R <R < I{UAZ) + H(X]U) be given.

The coding theorem to be fomulated and proved below says that codes
for which the set of messages has rate R0 + H{X|U) (basically) may
be built up iteratively provided the partition given by the sets to
be distinguished consists of at most exp {n » I{UAZ)} objects.
More precisely, given any set of subsets ; | 1= L. NY, if
the F resemble the V-shell around some centers u; € M close
enough then an N + 15% center UN +1 May be chosen such that the
average probab111ty of decoding errors increases only exponentially.

Qur procedure to obtain this result follows [1] as far as the construction

of codes 1s concerned.

By a random selection argument an appropriate center UN +1 is shown

0
to exist, the new set of messages used for transmission is basically

defined to consist of the V-shell around UN 41" However, the V-shell
0

around the new center may contain some old messages, thus we have to
be careful in bounding the number of newly created words. The new
center has to be chosen such that the mutual positions of the centers

are such that the probability of decoding errors may be bounded successfully.

It should be remarked that our method of prolonging a code turns out to
be applicable only in case that the sets Fi to be distinguished from

ohe another are basically V-shells, the centers, however may be arbitrary.

Of course an exponential error bound only arises if those centers have
a great enough distance.

tet Qe P,V T =X besuch that (Q,V) e P (M xX).

Then the following is true:
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4.1 Lemma

For § >0, n sufficiently large and any Ups--enly € TQ there
0

exists uNo+1 such that
N

- No
()] Tyl yq) 0 H Tylu;) |
<exp (n (R(V[Q) - [1(Q,V) - Ry|™ + 36))
NO
(i1) é/:\ e izl 1TP i (uNO+1, u XM
uux X eTV(uNO+1) UUX

PX 1 U:V . PU= ﬁ:Q

< exp (n(RHH(X|UU) - T(UAU) + 36))

N
(i11) /”\\ zo : ! (s, u "
191 . .
P il .n Toe 17 Nt
Ul xMeT (uy)  Fulix
PV -Py=Pp=C

< exp (n(R#H(XIU) = T(UAUX) + 36)}

Proof:

It will be shown that the expectations of the Teft side will be smaller
than the expressions on the right such that the application of the
Markov-inequality Pr {X > o - E(X)} j_é—-va11d for non-negative random
variables - will yield the desired result.

(i) is a special case of lemma 1 in [1 ]. For the sake of completeness
we repeat its proof. Let here {and in the following steps) U, denote
a random-variable uniformly distributed on TQ' Then
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N

0
E[[Ty(U,) N ¥~{ Tylu) 1)
1=
NO
< _21 E [Ty(U) n Tylup) ]
1=

Ny« E [ITy(Ug) 0 Ty(ug) )

<N - z z exp {- n-(H(Q)-8)} «» 1 {uw)
T ueTyluy) €T Ty(ug)

<exp {n+ (R, +H(V[Q) - H({Q) + & + H(Q) - T(Q,V)})}

On the other hanqNo
EUTy(0) 0 & Ty(;)]]
< E 0Ty [
< exp {n-H(V[Q)}

whence

< exp {n- (H(V|Q) - 11(Q3V) - R|™ +6))

Next we shall compute the expectation occuring in (ii):

N
© n
Ef ¢ o 1g (UgsUssxT)]
n i=l Py
X"eTy (U, ) uux
N, )
< L exp {-n- (H{Q)-6)1 T I 1T (uo,ui,x }
UOETQ x"eT, {u ) =1 "Pygx
Vi¥o
= exp {n -(RO-H(U) +5)} - T r 1T (uo,ul,xn)

Uo€TQ ety (v,)  Pulix
exp {n -(R -H(U) + H{U,X|U) + &)}

| A

= exp {n (R -I(UaU) + H(X|U,U) +5)) .
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Concerning case (iii) we have

No
£ [.z T 1

i=1

0
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=
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Now N

0
Pr {]Ty(U,) n g_{ Tylug) |
i= .

> exp {n-(H(V|Q) - ]I(Q,V)—R0]+ + 38)}
with Py, =V, P, =P =

or, for some PUUX X|U » Py =Py s
No
z T 1 g ,u.,xn)
n =1 Ip e O
X ETV(UO) UuX

> exp {n -(RO+H(xyu,E) - 1(UAD) + 38)
or

0
n
T 1T (ui,U WX )

n P ©
X ETV(”i) UUX

I~ =

i=1

> exp in(RHI(X|U) = T(UAUX) + 36)1)

Pn.c

Uux
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S K
< Pr{[Ty(U,) n &_{ Ty(u)|
Puiix €PT( UK ): 1=
Px|uV-Py=Pg=C N -
> exp {n2s} E[]TV(Uo)n ::{ TV(ui)l]
or N0 ‘ - .
T 1 (U ,ugex )
et (u ) 171 TPy O
ViTo
Ny
© > exp {n-28¥E { L r 1 (U ,u.,xn)]
- n i=1 Tp O
or X ETV(UO) Uux
NO ]
151 ] z 1TP . (ui,UO,x )
x"eTy(ug)  TUUX
Ny
n
> exp {n-26} E Eiil z 1TP . (ui,Uo,x 111

n
x"€Ty(u,)  "UUX

<3 expr{- n-3§}

<1

whence the existence of a suitable UN +1 follows.
0

Property (i) shows that a center UN 41 May be chosen such that the
‘ 0

V-shells do not intersect too much. Indeed, let us consider a code with

a pair of rates lying in R*™. Then Ry < I{UAZ) < I{UaX) = I(Q:V) , where
the inequality follows from markovity of U, X and Z. Now assume the sets
Fi to be contained in a V~shell of some u; € Tq, each. Then the set of
words to be deleted from the V-shell of a suitable UNo+1
strictly smaller than H(V|Q) since |I(Q,V) - R ¥ > 0. Thus the rate

of the remaining words is still nearly H(Y|Q). This will ensure thereafter

that the probability of decoding errors may be computed as if the entire

has a rate

shell is used as set of codewords.
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We may now formulate our coding result concerning the iterative code
construction and show the achievability of an exponential error bound.

4.2 Theorem

For any finite set Y, numbers R,>0 and §>0,0Q¢ DD, VIV =X
such that (Q,V) € T" (‘M1xX) and n sufficiently large the

following is true:
' 0

nem =

Let C = {(F;,D;) | 1= LinuuuNps |Fil =N} be a set discriminating

i=1

(n, Ny» N, 6)-code such that

-1

n = log N, < R,

Fi c TV(ui) for suitable us € TQ
and

|F .

sz exp {n- (H(V[Q) -8)).

Then there exists Uy 41 € TQ such that for suitable chosen decoding
0

sets D, i=1,...,N, the enlarged code

*

C" = {(F,DL) | 1= L.}

with ND

F = Tyluy ,1) - W F.
N +1 VN G+ T T

satisfies

IFN0+11 > exp {n -(H(VIQ) -8)}

and

N +1
* O -
CRUERES F )7L N A(C,W)+2 - exp {ne (EL(R,RLQLV,H) - 46)}
i=
where
E(RysR>0Q,V5H)
= min (O(Py gl W1V 0 Q) + [T(UAZ) - Ryl T}

Puxz=(Q:V>4)
H(X|U) + T(UAZ) > R .
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Proof: Let u be chosen consistent with the inequalities of the

N +1
0
lemma. We define the decoding sets for the prolonged code to be

D: =D, - (" | T(uy azy > Hu;az)}, 1= 1,000

o 0]

and
"

i=1...N

Ifuy A zn) > I(u_iAZn')}.
0 0

D {
= {z
N +1

*
Obviously, the sets Di s 1 = 1,...,NO+1 are disjoint. We may now
estimate the average probability of decoding errors:

*
A (C, W)
N_+1 N
0 0
= (x| Fi“-l oz WD 1)
i=1 i=1 x”eFi
N0+1 N0 _
= (3 |FDTH ez xS KM (0,03 | x"))
i=1 i=l xneFi
+or W (DS 1xM)
x"eF ©
N0+1
N_+1 N, .
0 -1 0 n * n
= (T [FH 7 (Nea(CW) + = & W (Dy-Dy [ x7)
1=1 i=1 xneFi
N *C
+ 3 WY (04 1 X™)
x"eF °
N0+1

Due to the markovity of U, X and Z we may replace the channel W by
W IMrxX = 3 defined through w*(z| u,x) = W (z ] x).

First we estimate the error-probability resulting from the transmission
of the newly chosen center,
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No+1

_ _ *
( z [F:) Lo wn(DNCH ")
i=1 x"eF °
N+l
-1 , n, n*c n
< N5 exp {-n- (H(V[Q) -&)} = WDy yp 1 X7
n 0
XeTyluy 41)

-1
0

exp {-ne (H{V|Q) -&)} = w*n_(D

n
X €Tv(u

n
= N [y s X},
N +1 No+1

) 0
N0+1

where the inequality results from FNO+1 - TV(UN0+1)’

|Fy 4112 exp {n.« (H(V|Q) -8)} and our assumption
0

|F:] > exp {n- (H(V]Q) -6)}, i = 1,...,N

il

0
Now
*n *C n
| nz W (DND+1| x7)
X €TV(UN +1)
0
x"e% . )w ("] ¥ I(uNO+1z\z ) < T(u;az 3] Uy 41> X )
v N0+1
= 2 exp {'H(D(pzluxll NIPUX) + H(ZiUX))}
uuxz n
PXIU =V’~ * [ n L I {Z 1¥ PUN :U'isxn,Zn = PUUXZ}l]
I(UaZ)<I(UnZ) €Ty Uy 41) °
0

On one hand the expression in brackets may be upperbounded by
exp {n+ {H{X|U) + H(Z]UX))}

yielding the upper bound
L Aexp {-n- (D(leuxn W 1 PUX) - H(X|U))}

Pulixz

Pxju=Y
for the error probability resulting from the use of the newly chosen
codewords, '
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On the other hand the previous lemma gives the bound

n nn_
) | {27V P, Ussx 520 = Ppyyyst]

1
n i "N +1°

X ETV(UNO+1) 0

< exp {n+ (H(Z|U UX)} - exp n+ (RHH(X|UD) - T(UAV) + 36)}

such that the error-probability may be upperbounded by
5:::: exp {-n- (D(PZIUX” W*IPUX)+I(UAZ|UX)-H(X|U U)+I(UAU)-R0-36)}
P r
UuXZ
PX,U‘—'V .
I{UAZ)<I(UAZ)

<2 exp =0 - (D(Py W™ ] Py ) -H(X[U)+T(UAUXZ)-R -35))
Puixz
Pyivy
T{UAZ)<I(UAZ)

| A

> exp {-n + (D(Pzyyl WIVoQ)-H(X|U)+1(UZ)-R =35)}
Pulixz

PX !UZV .

I(UnZ)<I(UZ)

whence, additionally using the bound derived above,the ineguality
N +1
0

' - *
(z IFhH7! RS ,q | M)
i=1 xneF 0
N0+1
-1 . ) +. .
< N7 exp {-n (E1n {D(PZ[XH WIPX)+]I(UAZ)—RO| 1= 46)}
UXZ
Pxiu=VsPy=Q
follows.

Qur next point will be estimating the error-probability resulting from
the use of the old words through the modified decoding sets. Here, as
was seen above only the probability to reach the deleted part of the
old decoding set has to be investigated. The inequality
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N_+1 N
© -1 ° n ¥oon
( ‘El |F1]) _21 L W(D;-D; | x7)
i= i=l .n
X EFi
N
.-1 0 *n * n
< NJ” exp {-n (H(V|Q) -&)1 + = L W (Ds-D; | Ussx)
i=1

n
b4 EFi

is proved analogously to the proceeding above. Then

N
° *n * n
I I W (Ds-D; | UisX)
=1 ner,
;
N
° M, N n n n
< I z W (127D, | Tuy ,4a27) > T{u;az )} ] ugsxt)
2
=0 x"eTy (uy) °
* B
< 2 exp {-n (D(PZ|UX“ W PUX)+H(Z|UXD}
PN
UUXZ N
Pyiy=V © n
%| U _ e[z I | {z"|P non = Po~oott)
HUAZ)<I(UnZ)  3=1 gnep oy RS G
Vi

We obtain as before the upper bounds

Eﬁ;::; exp {-n (D(P7yyl W] Puy) - BOXU)))
uuxz:

PyjesV

I{UAZ)<I(UAZ)

and

> _ exp {=n (D(Pz; x| W Puy)-H(X|U)+I(UAZ)-R -36)}

I(UaZ)<1(UaZ)

for the term in brackets. Here instead of (ii) of the preceding lemma
the inequality (iii) has to be used. Thus
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N _+1 N
0 10 0 *
(£ F)7 7 oz W(Dy-Dy[x7)
i=1 i=1 KMeF
;
< N exp {-n- (min {D(Po || WPy )+ |T(UAZ)-R |} - 46))
-0 P Z|X X 0
UXZ
Pxu=VsPy=0

The coding-theorem as formuiated in section III is now obtained as a
corollary. In fact we prove even more since codes may be built up
iteratively and given an universably obtainable error-bound.

4,3 Corollary

For any VI, Q e P(M) and V|V =X such that (Q,V) e (MxXE),
any & > 0, and n sufficiently large there exists a subset-discriminating

(n, Nj» N,6) -code C such that

n! Tog Ny > Ry > 1(UaZ) - 6

"t log N s R > R+ H(X|U) - 28

for which
}\(Csw) = 2. exp {-n- (Er(RosRstVaw) - 46)}5

Er(RO,R,Q,V,w) > 0 and the bound on the error-probability holds
simultaneously for all channels W [ =~3 for which (RO,R)€CQ=82(W).

Proof: Given (RO,R) as above and a markov chain U< X1 with
probability distribution PUXZ(u,x,z) = Qu) « V{x|u) - W(ZIX), we may

‘fteratively choose centers Ups.--sly and sets Fl""’FN satisfying the
0 o}

conditions of Temma 4.1. In particular |[F.| > exp {n- (H(V]Q) -6)}
No
such that N = = 1Fi| > exp {n- (I(UAZ)+H(X]U) =6)1.
i=1
The exponent Er(RO,R,Q,V,W) is positive (and can be assumed to exceed
4s) for R, < I(UAZ). The universality of the code follows from the
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construction of the code. The centers u; are chosen according to
their mutual positions and the error-estimation,as provided in the

proof of the theorem,is solely based on these positions.

Given U-eX-&Z we proved until now the achievability of rate-pairs from
((R,sR) | 0 < R, < I(UaZ), R = Ry + H(X|U)} . To see the achievability
of the larger set {(R,,R)|0 <Ry < I{UaZ), Ry < R <Ry + H{X|U)Y

we observe that the rate-pair (Ro’Ro) corresponds just to a subset-
discriminating code in which the elements Fi of the partitions are
singletons. Such a code may be identified with a common code for the

DMC W possessing rate Ro' The achievability of rates (RO,R) in the
interval [(R.R,)s(R)sR; + H(X]U)})] is now obtained by using time-
sharing. As far as the error-exponent is concerned it is easily seen

that the one corresponding to the transmission of the entire V-shell

is worse (smaller) than the one corresponding to sets F. being singletons.

Er(Ro,R,Q,V,W) is therefore attainable even when time-sharing is used.

The set of achievable rates as obtained by the coding theorem and the
preceding argument has to be augmented a second time to give the region
as defined in the main theorem. We observe that according to theorem 4.2
the rate-pair (I{UAZ), I(UAZ) + H{X{U}) is achievable. Forming unions
of an exponential number of elements of the partition, i.e.
Ey = §E¥ Fis ]Tj] = exp {n-cl, Ty N Ty =0 for J#J' and

i ‘
considering the sets Ej as new partition of the messages at hand,
rate pairs (RO, T(UaZ} + H(X|U)), O <R, = I1{UAZ) are achievable. This
procedure of course does not enlarge the error-probability since less
objects are to be discriminated. Previously it was argumented that the
pair (RO,R0 + H(X|U) is achievable. Again by time-sharing between codes
of rate-pairs (R .R; + H(Xju)) and (R, I(UAZ) + H{X}U)) we get
achievability of pairs (RO,R) such that R + H(X{U) <R < T{UAZ)+H({X|U)
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with an error-exponent being at Teast the smallest of all codes

used intermediately, i.e. Er(RO,R,Q,V,w) as defined above. Together
with our first enlargening of the achievable rate-region Er(RO,R,Q,V,W)
is discerned to be an exponent bounding the probability of decoding
errors.

At last comment concerning the coding theorem is in order. The finiteness
assumption on VI, (M| < |X] +1 used in the definition of R '
yields that any distribution PUX = (Q,Y) wmay be approximated arbitrarily
well by types. Remembering the continuity of the information-theoretical
functions as depending on varying distributions this shows the achievability
of the rate-region as given in our main theorem, which in contrast to the
coding theorem and subsequent remarks of section IV does not take care of
types. In the same manner the error-exponent may be defined by additidna]]y
allowing variation on probability distributions which are not types, of
course.
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V. The Converse

The converse of the coding-theorem - forma]ized by the inclusion R ¢ fﬁ?* -
consists of proving that codes only may exist with rate-pairs up to a
certain size. We shall give a déscription of the rate-region by means

of some antitonic and concave (n) function such that the shape of the
region as visualized in section IV is obtained. We shall prove that this
boundary of R* s given by the function

x

B" : [0,o)——[0,«) defined through

B (c) = sup {I(UnZ))
UexeZ, Py =M
HOX| U)+I(UAZ)> €

B*(c) is defined to be zero if the constraint yields a void set. An
alternative description may be given by

B (¢} = max {I{UAZ)}
yex-elz, PZlX' W HU[L__]T{[ +1,

H(X{U)+I(UAZ)>C
(see appendix A) such that for deriving properties of B =B =8

we may make use of either description.

To prove the 1nc1us}on Rc TR we have to provide some technical tools.
At first we shall investigate the continuity of B{(-). Since the proof of
the corresponding lemma needs some digression we refer it to appendix B.

Define S = {c|c > 0, there exists UeX®Z such that
H(X|U) + I(UAZ} > c}

(Here as in the definition of BY the restriction on the range of
may be omitted, see appendix A).

5,1 Lemma:
*% .
B () =B (-) is continuous on S .

A second property of B needed in the sequel s given in

5.2 lemma: *
B{+«) = B {«) 1is concave (N) on 5,
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Proof: For ¢, T=1,2 Tet UTfa-XTé} ZT denote markov-chains such
that H(XTIUT)+I(UTAZT) >¢ , t=12. Define ¢ =a-cy + (l-a) « ¢y ,

e €(0,1) and (U,X,Z) such that Pr ((U.X,Z) = (U}.X{,Z))

=g=1+- Pr {(U,g,i) = (U2,X2,Z2)}. let T be a random variable
independent of all other random variables such that Pr {T = 1}
=a=1~Pr {T=2} . Since

1((T,0) AZ|X) = 1(TAZ]X) + T(UAZIX,T)

s T(UpAZy %)) + (1=0)  I(UpnZ,|X,)
= 0
we have (T,TJ)-e- %<7 and
HOX|T,0) + 1(T,UnZ)
HXITU) + T(UAZIT)
a-(H(X [Uy) + T(UpaZy)) + (1-a) (H(XplUp) + T(UpnZy))

> L.

| v

n

Thus

B*(c) > 1(T,UnZ)

| v

I(EAiIT)

| v

| v

G'I(U1A21) + (1-a) I(UzAzz),

whence B%(c) Z_Q(B*(cl)-s) + (l-a) (B*(cz)-e) for any ¢ > 0. The
claim follows.

5.3 Lemma:

For UeX" e Z" with memoryless transition from X" to 3"
following holds:
(1) Utﬁ’xt'e‘ Zts t=l,...,n

(i1) Fleuez, . t=1,...n
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(iii)  T(UAZ") < 21 T(UAZy)
t=
Giv)  HOXTUIUAZ") < ng(Xt]Ut)+I(UtAZt),
t=

t-1 : .
JA = (Zl""’zt-l)
t-1
X = (Xl""’xt-l)
- t-1 -
and Ut = (U,X" ), t=1,...,n.

Proof: To prove (i) we observe that due to the inequality
H(Zt|Xt,Ut) f_H(Zt[Xt), t=1,...,n it is sufficient to show

-

: H(Zy X0 Up) > E H{Z,]%,)-

But .
1

| v

. |
i,H(Zt|Xt’Ut) : H(ZgXgoUpsZ 75 Keyoee )

HZ" X", 0)
H(Z"| XM

z H{Z,|X,) .
p ottt

it) it is sufficient to show

>.HZU
“‘i (Z,1Uy)

In case of property

(
z H(Z, U251
t

We have

p H(z,|ux"zb
t

=1 (HZX X2 - R Z,,0.xEL 2 )
t ;

t,

= H(Z" XMV -z H(XZ, 00T
t

= HOXMU) + HEZTOLU) - 3 H(X ] Z,,Ux 2
t
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Zt,U,Xt—l,Zt_l)

= H(XMU) + HEZ"X™) - ¢ H(X |
t

t'l 1 t"].)

TR St O MIT Skl Y

_ Ny
= H(Z"|X") + i H(X, | 2Ly

t=1 )y, x

t-1
H(Zy|Xe) + T 1(X(AZy»Z )

t
(H(ZyIXe) + TXaZy JUXEHY)

(HZ %) + HZ X - Hz ot hxe))

(H(Z U, Xt

Lot B o ol i T o o s B o 0

where the last equality foliows from application of (i).

To see (iii) we proceed
1(UAZ"Y = H(Z™ - KH(Z"U)
(H(Z,) - H(Z,|u,Z" 1))

(H(Zy) - H(Zy U250 0)

| A

| A

et 1 e+

(H(Zy) - H(Z JUXETY)

using (i1) to derive the last equality.
The chain follows considering the definition of Ut‘

(iv) is a trivial consequence of (iii) since we observe the equality
HOXMU) = ¢ H(X 4U;) holding due to the very definition of U,.
t

The preceding lemma will be applied to derive a connection between the
quantities H(X"[U) + T(UAZ™) and 1{UaZ"), where U -eX"-e7". Giving
a lower bound to the first expression we shall obtain a single-letterized
upper bound to the second.
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5.4 Lemma: For Ue X"e Z' 1et X" and 7" be connected via a
memoryless transition system. Then

nL (HOUY + TUAZM) > €
implies

n~1 }(UAZ") < B(c).

‘ Proof: let U -eX'e Z" satisfy the assumption.
Using Temma 5.3, (i) and (ii) we get

Ute Xt~e Zt
and I(UAZ") < T T(UgaZy).
Tt
This yields
1(UaZ™)
< T I{UpAZy)

t
I sup {1(UAZ) | H(X|UJ+I(UAZ) > H(X,|U,)+1(UAZ)}
t .

1A

i B (H(XtIUt) + I(UtAZt)).
Now concavity of B(+) gives

n'l
-1

I(UaZ")
< B(n "z H(Xt]Ut) + I(UtAZt)).
t

Since (iv), lemma 5.3 implies

0! 3 H(X U + I(UaZy) > ¢, the antitonicity of B(-)
: >

which follows trivially from the definition, shows our statement.

We have now provided all material to formulate and prove the converse. It
will be proved by showing that for a subset - discriminating code the
number of messages contained gives an upper bound to the subsets which
may be distinguished, formally:
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5.5 Theorem: Given a subset-discriminating (n,NO,N,é)-code with

average error probability not exceeding X € (0,1), then n'1 Tog N € R

implies Ry £ n™" Tog N, < (1-0)70 B((1-2) R - n™} h(a))n™L n(a) + 6
Proof: Let X"

denote a random-variable uniformly distributed on the
set of messages {xl,...,xNi. Define a random variable U with values 1in
{1,...,N0} by

u=4 iff X"¢ F
and let Z" be connected with X"
that U, X" and Zn
Since

via the DMC W. We firstly observe
form a markov-chain in this order.

. F. %— exp {n-¢}
Pr {U=1} = | {I < 9 g = exp {-n - (RO =8)},
using the trivial proposition:
Pr {A =2} <a
ac 0 -
implies
H(A) > Tog <,
we conclude
H{U) > n - (RO -8) .
Now
n - R0 = log NO
<HU) +n s
= I{UaZ

Using Fano's inequality we may continue upperbounding
tog N, < I(UAZn) + A

log N0 + h(Xx) + ns
where h(-)

denotes the binary entropy function.
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Thus
(1-1) Tog N, < I(UAZ") + h(2) +n - ¢
whence
-1 -1 n
(1-2) R0 -n " h(x) -8 <n " I(UaZ").
On thefother hand
n-R=Tog N
= H(X™
= H(X™,u)

I(UAZ™) + HQUIZ™ + H(XMU),

where the third equality holds since U is a function of X", Again

using Fano's inequality we obtain

(1-3) R < b [T(UAZ") + HOXMU) + h(3)] .

The application of lemma 5.4 with

¢ = (1-A) R =~ n"% h(3) results in

(1-2) Ry = T h(2) - 6
-1 n

<7l 1(uaz")

< B{1-2) R - n"% h(x))

thereby yielding

Ry < (1-3)71 B(1-3) R - "t () + n”

1 h(x) + 6.

Since this upperbound holds for any X € (0,1) and & > O we have by
the continuity of B(-) as proved in the appendix B the result Ro < B(R).
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Appendix A

Until now we gave an inner bound R to the rate-region R for the
discrimination-problem of equally sized subsets by proving a coding
theorem. The proof of the converse, the outer bound to the rate-region
hinged upon the coincidence of B*(-) and B**(-).

This supposition has to be verified now, in fact we shall prove a little
more, namely the identity of R* and R **,

A.1l Lemma

':Q* - @**

Proof:
Obviously, the result would be implied by the identity

{{I(UAZ), T{UAZ) + H(X]U)) | UeX® I}
= {(I{UaZ), I(UaZ) + H(X|U)) | U XeZ, ||U]l < |®| +1}
or, equivalently by '
(HXIU), HEZIW), D) | U e x e 1)
= {(H(x]U), H(ZIU), H(Z)) | Ve X-eZ,|Ull <|x]+1}

The latter identity is obtained basically as a particular case of

lemma 3.5 of [3 ]. It is hardly worth mentioning that going through the
proof of lemma 3.5 we observe the distribution of the random variable X
remaining fixed when the original random variable U is replaced by a
new one with range bounded by || + 1. Consequently, since Z is
connected with X via the channel W, the distribution of Z also does
not alter whence of course H(Z) is fixed too.

As a trivial consequence we obtain

A.Z2 Corollary:
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Appendix B
For the sake of brevity we assume some familiarity of the reader with

the notion of a "correspondence", sometimes also denoted as "multi-
valued function".

From [2], p. 123 we cite the "maXimum theorem" which represents the
basis to our proof of continuity of B(-.).

Theorem: Let f : M> R be a continuous function and o : T+ M
a continuous correspondence such that ¢(t) #0 for all te T, TCR.
Then
h(t) = max {f(m)}
mEop(t)
is continuous.

Let M be a compact set and g : M~ T denote a continuous function.
Then ot) 2 {g(m) >t} ds closed and as a subset of a compact set
compact itself. Restricting the domain of o(«) to the image T of ¢

yields :
No(t) # 0
t

The continuity of a correspondence may in case of compact-valuedness
of ¢ equivalently be derived by a criterion reverting to sequencees
(see [4], pp. 24 and 27).

It will be seen that from g assumed to be concave (n) the continuity of
¢ as defined above is easily derived.

@ is to be shown to be upper- and lower- hemi continuous. Upper-hemi
continuity rules out implosions. To verify upper-hemi-continuity at

each point t we assume to be given a sequence (t_ ) converging to t

)
n
and for each n an element m, € w(tn) such that m_ - m. By definition
of ¢ we have

g(mn)_z t, and
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thus by continuity of g

g(m) > Tim t,=t,
e

yielding m € ¢(t) as was to be shown. Lower-hemi-continuity excludes
explosion of the values of ¢. Formally we have to assume (t ) -t
and me€ ¢ (t) to be given and show the existence of a sequence (mn)
converging to m such that m, € @(t ).
Since @(tl) # @ there is my such that g(ml) >cq . For any n € N
choose Ay € [0,1] such that

A s 9(m) + (1-2) g(m) = ¢,

Since (c_ ) ~ ¢ = g(m) we may assume (ln) - 0. Obviously, for

n)

2 - .
My = Aq omp+ (1=2) «m

the sequence (mn) coverges to m. Further, due to the concavity (n)

of g(+) we have g(mn) > ¢, representing the lower-hemi-continuity of of-).

n

Proof of lemma 5.1

Observe that the set P of all probability distributions on W xA x3
with W such that || ¢ || + 1 and such that the corresponding random
variables U, and Z form a markov chain with PZ[X = W 1is compact,
Pefine T = {c | ¢ > 0 there exists UeXeZ such that
H(X|U) + I(U Z) > ¢} c R, for p="P define f(p)} = I(P

= 1(UAZ)

UXZ vPz u)

and g(p) = H(leul Py) * I(PU;Pz]U) H(X|U) + T{UAZ). Then f and g

are continuous and g is concave (n} in addition, the latter property was

obtained as a by-product in the proof of lemma 5.2. Thus all postulates

concerning the ' max1mum theorem" are met showing the continuity of
-

B(-) =B (+).
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