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ABSTRACT

A fee-game is 2 special version of an NTU-game with incomplete information ex-
hibiting certain side payment properties. We analyze the structure of the set of incen-
tive compatible and individually rational mechanisms and, based on this analysis, we
propose a further axiom for a value for (N)TU-games with incomplete information.



PREFACE

The first to discuss cooperative games with incomplete information of the players
concerning the other players "types" were HARSANYI and SELTEN [2]. However,
the idea of the "Bayesian incentive compatible mechanism" does not appear in their
work . This idea was introduced by MYERSON [6] [7] [8] into the framework of
NTU-games with incomplete information. Both authors considered a version of a
value for such games to be defined by a suitable set of axioms. While MYERSON
argues against the HARSANYI-SELTEN value (on the grounds of his "probability
invariance axiom") he provides his own version of a axiomatized solution concept.
However, this value in turn may have discontinuity properties (cf. [2] ).

MYERSON did rot attempt to formulate axioms for the HARSANYI-SELTEN value
in the presence of mechanisms. This was done by WEIDNER [10]. It turned out that
there is a canonical axiomatization of HARSANYT's and SELTEN’s value — however,
it Is limited 1o the case that the types of the players are distributed in a stochastically
independent way.

These facts, it would seem, indicate that there is still room for discussion of a "value
for NTU-games with incomplete information".

Our model - already introduced in [9], differs by an essential feature from the pre-
vious ones: we do assume that players can agree upon one of continuously many
decisions. Hence we try to model the generalized version of a characteristic function of
an NTU- game with incomplete information.

In particular, we focus on what is called a fee~game. Such a game exhibits some side-
payment properties; these properties appear in the ez ante and ez post situations.
However, the introduction of incentive compatible mechanisms somehow blurres the
side- payment nature of the game. For fee~games, we give a detailed description of the
structure of incentive compatible and in mediis individually rational mechanisms. In
particular, for the case of incomplete information on one side, the structure of those
mechanisms which are not constant is precisely described. Based on this analysis,
within the final section, we introduce the "ezpected contract aziom", which may be
considered as a starting point for a further discussion of an axiomatic version of values
for NTU- games with incomplete information.



SECTION 1 Unanimous CII-Games
Within this section we introduce the general model as well as some basic notation.

Definition 1.1: A (unanimous) cooperative game with incomplete information
(¢ CII-game) is a 6-tupel

(1) I'= (I,T,p; 5_(: EQU)

Here, I = {1,...,n} is called the set of individuals, agents, or players. T = 11 T, is the
i€T
cartesian product of finite sets Ti’ i€l, and Ti is the set of possible types of player i.

Let (©,E.P) be an abstract probability space and let 7: 2 — T be a random variable

selecting n—tupels of types; now p is a probability on T and our interpretation is that
p=Po 'r—l is the distribution of 7. Of course, all relevant data will depend on p only
(and not on the choice of (L E,P)), hence p is called the distribution of types.

Let e = (1,..,1) €R} thenex = X x, and
+ iel !

(2) X = {xeR? | ex 1)

reflects the feasible alternatives, parameters, or "contracts” the players can agree upon.
Within this paper we shall assume that contracts may only be reached unanimously,
however, coalitions and their power can easily be introduced into the model. This, if
players fail to agree upon some x € X, then they will have to bear the consequences of

the status quo alternative x. We assume x € X.

Finally, the mapping

3) U:I=xTxX—R



reflects the utilities; if chance chooses t € T and the players agree upon x €X, then

player i’s utility is U?(x).

As yet, we have not specified the rules of the game, this will be possible once we have
the notion of a "mechanism".

Definition 1.2 Let I'be a Cll-game. A mechanism is a mapping

(3) p:T—=X

A mechanism g is called incentive compatible (IC) if, for all
i€landall t, 5 € Ti’ we have

(4) E(U;r oporT|T=1t)2 E(U: O Ty eesSpyen T ) 73 = t,).

(Later on weuse &’ = o 7).

The concept of a ("Bayesian") IC mechanism goes back to HURWICZ [4], our
version is close to the one adopted by MYERSON [ 7] in a different framework, see
also [ 1]. The first authors to study Cll-games were HARSANYT and SELTEN [ 2] -
but in their context mechanisms are not present.

As particular version of a mechanism is the one we shall call constant, i.e., if ut =X
for all t € T and some fixed x € X. E.g., the status quo mechanisms p is defined by

(5) d=x  (t€T)

Now we are in the position to specify the rules according to which the game is to be
played.

First of all, there is a bargaining period. Within this period players may agree upon a
mechanism 4 in which case they will register this mechanism with an agency ~ the
referee or court. This agency is supposed to be very powerful in the sense that it is



capable of eventually enforcing the mechanism agreed upon or — if no agreement has
been reached - the status quo mechanism g.

In the next step, chance chooses t € T. Each player i €I observes his typet, € Ti'

Next, each player i announces his (alleged) type, say 8, to the court. This constitutes

some § € T, the court will choose u{s) € X and player i receives utility U;‘(u(s)).

According to the various stages of the development we consider basically three situa-
tions or "states of knowledge” with respect to the players and the court: "ez ante" ~
before the chance move, "in mediis" ("mediis in rebus” indicates the not so purely
temporal aspect) — after the chance move and prior to the announcements, and "ez
post" — after the announcements.

Now, whenever players agree upon — and register — some mechanism p, then a game
(in extensive/strategic form) I* arises in which players behave strategically by
announcing types in view of the types they observed. Thus, in this game, strategies are
mappings oy : ".[‘i — T, If "telling the truth" (i.e., the identity mapping) is a Nash

equilibrium in I* the # 18 IC and it is not hard to see that this definition is equivalent
to the formal one presented in Definition 1.2 (i.e., to (4)). For the details, see [5] or

[9].

Existence of IC~mechanisms does not constitute a problem (e.g. constant mechanisms
are IC).

As a part of our story, we assume that the court will register only IC mechanisms.
That is, registering mechanisms which in a sense induce players to lie about their true
situation are considered to be against societies basic rules ("contra bonos mores").
From this it follows that the court ez post will be fully informed about the players true
type. And, since "law enforcement", i.e. assigning u{t) and the resulting utilities, takes
place ez post, this provides implicitly a further argument for the restriction to IC
mechanisms: the court wants to make sure that, when it enforces people to accept the
results induced by g, this is based on knowledge of the types and on the knowledge of
truthfull announcement of these types.



There are further restrictions which the court wants to observe. If a player in mediis,
i.e., after observing his own type, realizes that his conditional expectation of utility is
worse than if no agreement had been reached at all, he will cry foul and try to get out
of the agreement. Indeed, the court may not be able to enforce such mechanisms and
hence it will restrict itself to the registration of in mediis individually rational (IR) IC
mechanisms.

The formal definition is, of course, as follows.

Definition 1.3 Let T be a Cll-game, the IC mechanism g is individually
rational in mediis, (for short: IR) if, for alli €I and all i, € Ti

(6) E(U:- ° I‘Tl "= ti) 2 E(UI(E)ITi = ti) = E(U;r ° ETITi = tj)
Let O denote the set of all mechanisms obeying this definition,
i.e.

(7) M=DYT)={u:T—X| pisIC and IR}.

Note that we have implicitly adopted the viewpoint that recontracting in mediis is not
possible. Nevertheless the players, when bargaining ex ante about mechanisms, will
have the situation #n mediis in mind. This may cause them in advance to reach mecha-
nisms that are elements of 9. So, by assuming that mechanisms outside of £ are
"immoral" (contra bonos mores) we restrict ourself to situations in which the players
in principle would not decide differently if bargaining took place after the chance
move. Some authors seem to indicate that it makes no difference as to whether
bargaining takes place ex ante or in mediis. In our present setup we avoid discussing
this question; nevertheless it might be argued that the model does not change when
bargaining takes place in mediis.

A similar discussion could center around the question as to whether a mechanism
should be ex post individually rational. (Formally this would mean that for all i€l
and for all t €T U'ic (,u,t) > U? (x)). Indeed, if IC mechanisms are employed then not

only the court might be aware of the true types of the players as selected by chance. It
could very well happen that the court enforces a payoff upon a player which ez post is
worse than if he had not jined an agreement at all and, as the power of the



court is much higher than compared to an ordinary bargaining situation with complete
information, enforcing such kind of outcome again could be considered immoral. Much
can be said in favor of this point. On the other hand it is clearly seen that a lot of
situations can occur in which players value their in mediis expected payoff much
higher than the expected payoff of the status quo alternative and nevertheless end up
regretting the agreement with a positive probability. In such cases agreements would
not be reached ez anie or #n mediis even so players would like to contract. We have
adopted the viewpoint that, presently, we do not want to insist on ez post individually
rational mechanisms. Maybe, this can be supported by the assumption that the court
keeps the complete information of the true types of the players as a secret. Of course,
this is a rather weak argument: after all, some agreements are not in accordance with
good customs just because some agency keeps the violation of certain principles under-
lying the idea of "bonis mores" as a secret. On the other hand, disclosing the players’
type might also violate certain basic principles of society.



SECTION 2 FEE-GAMES

A fee—game is a special type of a CIl-game. Some of its properties reflect the fact that
"side payments" be permitied: ez post it is seen that a game with transferable utility
is at hand once the types are revealed. Ez cnte, the expected utilities of parameters
reveal the T.U.—character. However, once IC mechanisms are agreed upon, the side
payment character is blurred. '

Recall that e = (1,...,1) €R} and X = {x em_’;_ | ex < 1}. We write

(1) 8X = {xeX | ex=1}.
Definition 2.1 1. e R is called a fee if eb” < 1 holds true.
2. i b0 is a fee, then the Standard T.U.—game

(§TU-game) or bargaining situation (a la NASH)
generated by b0 is the pair (O, V 0) with
b

(2) V= {x-(e) b? | xeX).

The interpretation is obvious: a unit of money can be distributed among the players
by agreement. However, registration bears some cost which is proportional to the total
amount of money. And each player i is allotted a specific share of this cost, more
precisely, for a unit of money which he obtains by agreement he has to pay a "fee" b?.

Note that (O, V 0) formally is 2 (unanimous) NTU-game in the ordinary sense (full
b

information) but players register a contract x € X (and not a utility n—tupel).

In this setup, fees depend on characteristics of the players. It may be that player i

pays an expert or lawyer 10 work out the details of the contract and that this payment
depends on the size of the contract. It could also be a feasible interpretation to



assume that the total payment ex = T x; goes to the court (as to cover the expenses
i€l

of registration) and that the court charges players according to circumstances which

are based on certain properties/characteristics of players. In German courts at least it

is possible to obtain a special tariff at court by pointing out (and proving!) that

personal circumstances are justifying such remedy (" Armenrecht").

Now to some trivial technical proceedings.
Remark 2.2 Given a fee bO, the mapping

(i X—R"
(3)
Uo(x) = x — (ex) p?

0
yields Vb = {Uo(x) | x €X}; thus U?(x) reflects player i’s utility if x €X is agreed
upon. In particular, UO(Q = UO(O) = 0 is the utility vector of the status quo point.
The individually rational part of the Pareto frontier, i.e., the set {Uo(x) | x €8 X,

Uo(x) > 0} is a simplex with extreme points
0, i .
(4) (1-eb)e (iel),

where €' = (0,...,1,...,0) denotes the i’th unit vector. The inverse images of these extre-
mals (under (UO)_I, that is) are the vectors

(5) a% = (1-eb?) e + 10,
the convex hull of which, say
(6) c¥ .= ovH({ [ieD)

is as well a simplex. All faces of c? are parallel to the corresponding faces of dX. The

vectors all convey all necessary information, thus they may equally be used to des-
cribe the STU—game generated by B0, Indeed, we have
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Lemma 2.3 Let S,i . be n linearly independent vectors, 2edX (i@ , such that the
i€l 2

faces of the simplex generated are parallel to the corresponding faces of
8X. Then there is a unique fee e IR_?_ such that

g=p-ee+p? (ier

holds true.
Proof: Trivial; b0 is obtained via the unique affine mapping that throws the ai
into multiples of unit vectors, i.e., we have
0_1 ol e
(7) b’==Xa -2z
D iel n
with _
(8) A=81-82= . =8 -8 (eLkelk#i)
O
C
(Q-eb®e | 7N
0l O Vemoooooo
= =t A
—bo

Fig.1
The STU-game generated by a fee
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Without making this a formal definition we shall call a simplex c? ¢ X which is
spanned by its vertices (gi)iq, satisfying the conditions of 2.3, via (6) an admissible

subsimplez of X.

We are now in the position to formally describe "fee games" — CIl-games that are
generated by type depending fees.

Definition 2.4 1. A fee schedule is a mapping

b:IxT-——iIR_*_

(i.e., a matrix) such that, for every t € T, bl is a fee.

2. A Cll-game I'= (I,T,p;X,x;U) is a fee~game if

(8) 1. x=0

2. There is a fee schedule b such that for every t € T
oo\ _ t
(9) U'(x) =x - (ex)b".
First let us pause for some interpretation.

In this model chance chooses t € T and, eventually, player i €1 will pay (ex)b} towards
the "expenses of the contract" if the agreement x €X is reached, thus his utility is
x; = (ex)b}. Again we may assume that these are his costs for his expert or lawyer or

else that the court is charging a fee for in order to register — and enforce — 2 contract
(or mechanism).

Nevertheless it might be necessary to justify the selection of the fee vector by a chance
move in a more detailed manner: e.g., the "expenses of the contract" might result from
a more elaborate economical activity which makes the money to be distributed avail-
able, thus expenses or costs may as well result from economical activities and depend
on random influences.
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Note that each player observes only his own b};; in particular the court does not know

the actual fee that has been selected by chance. However, if the court registers a
mechanism p €90, then obviously the advantages are (at least) two—fold: in mediis,
when players announce their observed type to the court, none of them will start
arguing on the grounds that their basic rights are violated — since y is individually
rational. And ez post, when the court knows all the types announced, it is clear that
these types are the true ones — thus the court can indeed act out the agreement speci-
fied by 4, ut that is, based on the knowledge of the true t. We may, therefore, attempt
to further complete our story of how the game is played by assuming that, as a part of
the registered agreement, the total amount of money ex = 'EI x; is first transferred
1

into the courts custody, where after the amount x; - (ex)b} is allotted to player i. (Of
course the term "in mediis" does not apply from the viewpoint of the court as it does
not observe any results of the chance move.)

If we feel that the court cannot be assumed to have enough power in order force player
to pay towards the final distribution of money (x; - (ex)b} might be negative), then it

might choose to collect max b? from player i together with the registration — and
t

repay whatever necessary eventually.

Now, in order to add some geometrical interpretation, observe that in the ez post
situation players have been involved in the STU-game

(0, V%)

with V! = v P = {Ut(x) | x €X} (see Definition 2.1). In view of Lemma 2.3 and the
b

subsequent discussion it follows that a fee-game is equivalently described by a system

(Ct)te'I‘ of admissible subsimplices of X. E.g., the paradigm of a two person CII game

is a system of intervals via X, (see Figure 2) each of which gives rise to an STU-game

(as indicated in Figure 1).
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Fig. 2
Paradigm of the fee—game

Next, it is obvious that ez ante and in mediis players visualize an STU—game as well.
For, if we define

(10) VR (U [ x€X)
and
X|ti T
(11) Vo = (BUT() | = 1) | x€X,

then clearly, we have
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X|t.
Lemma 2.5 (O,V—X) and (0,V" ') are STU-games generated by Eb’ and

T X Z“i
E(b" | 7. =1t;) respectively. Thus, V= = V and V
i™ EbT
=V_ .
Proof: Trivial E.g., E(b'r('ri = t;) is at once recognized to be a fee and we have,
forxeX

E(U7(x) | 7; = 4;) = B(x - (ex)b” | 7= t) = x—(ex) E(b” |7, = t.).

Finally, it turns out that in our present model the introduction of IC-mechanisms in
general amounts to a restriction of the available utilities. To this end define

(12) v {EU 0" | pem)
and
9ﬁlti T T
(13) \Y = {B(U" oy’ | T = ti) | pedt}.

Now, if W 4+ = W lR_I:- denotes the nonnegative part of a subset W of R®, then we

have
m__ Py
Lemma 26 V™ andV are nonempty, compact, convex polyhedra satisfying
mit. Xt
M X i =t
A% gV_—*_-, \% + cv +
Proof: Both sets are nonempty containing the utility vector 0 €R® which is

obtained via the status quo mechanism y.

Next, the set of mechanisms has the canonical linear structure of }_{T c ([Rn)T and the

inequalities defining IC-mechanisms ((4) in SEC.1, that is) can be rewritten as
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bt ) (bt W' (ttl) (st
1 Ui( ') (M(l ")) p(tly) 2 é%" (Ug’ "“’) (n(s’ _’)) p(tlt,).
€T

=1

Heret =(t.t J€T. » I T.=:T, = T . and (p(- |t.) is the conditional distribution
L A T i~ T i

of 7 given 7, = t,, i.e. p(- [t;) = P(r =" [7; =1%;)- Since Ut is affine, (14) constitutes a

system of linear inequalities ("in x"). Similarly the conditions defining mechanisms in

9 (i.e. (4) in Definition 1.2 and (6) in Definition 1.3) constitute a system of linear

inequalities. Hence 90 is a compact convex polyhedron. The same is now true for v

| t.
and V. ! since e.g. the latter one is the image of 90 under the composition of the

affine mappings

T T, t t,t t,t
X5 = @) (8 = U3 U () eq
and
@) =8 (@fud) = ( 2 al p(tf), T ut p(tt)).
T 1

Next, let us prove that Vim C V%. The elements of Vm are positive, since by defini-

tion for ueIM

T
E(U{o,ﬁ)=t§T E(Ujop |7 =t)P(r,=1t) 2 0. TP(r; = 1)
it

(cf. Definition 1.3). Since V% is a simplex spanned by 0 and (1-¢ E b") ¢ (i €I) (cf.

Lemma 2.5 and Fig.1), it is sufficient to show that, for u €9, E U7 o p" is dominated

by some element on the Pareto surface t';’VZ of VX. This, however, follows at once

since

= E(euf) [ff—T—bT] <E [E-T—-—b'r]

eu eu’
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.
= EL__Eb ¢ Vx|
el

with an obvious modification for the case that P(uT = 0) > 0. This proves the first

relatlion of Lemma 2.6. The second can be done analogously. Note, however, that
| 1.
V  !may contain elements with negative coordinates j #1i.

Definition 2.7 1. pis Pareto efficient (P.E.)

a)  ezante,ifEU" o is P.E.in V'
b)  in mediis, if there is no € V2" such that, for all i €1
and ti € Ti

E(UTO u | = tj) <E(UT o 4" | T = ti)

holds true with strict inequality for at least some i and

Y

3) ez post, if there is no i € Vm such that, for alti €I and
t €T,

Ui < U

holds true with strict inequality for at least one i and t..

2. it is Pareto efficient in V' if Ut(,ut) is located on the
Pareto surface of Vt, ie., ,ut egvt or, equivalently if
t
ep = 1.

Note that (as in other models) P.E. ez ante implies P.E. in mediis implies P.E. ez
post. For, e.g., if p is not P.E. ex post, then & as in 3. yields /i as in 2. by integrating
with p(- |t,).

Note also, that is much more to ask for ",ut €Vt for all t€T" as compared to 3.
Indeed, this is a very strong requirement and, as it turns out, if it is satisfied than,
generically, p is a constant mechanism.



Theorem 2.8 Assume n = 2. Let I,T; X,x and U be fixed. There is an open and dense

set of probability distributions with the following properties: if p € 90 is
such that 4 is P.E. in V* for every t € T, then there is & € X with 4 = &

(t € T).

Proof: First, fixi€l, t.,8 € Ti' By IC we know

T -,S-
(15) E(Ufop | 7y=t)2E(UJop ™ | 1y =t)

and as 4* € V? for all t we have eut =1 (t € T}, hence (15) reads

.

T ..8.
T T _ =171 T _
E(”i-bi | Ti"f-i)Z(# b, | Tj'_tj)
ie.,
(16) Bl | m=t)2 (™ | r=t)

which implies
s

T 8.
E#'ir? E(ﬂi_] )

for all i €I and all 5; € T;. Since p.t evt (t € T), summation over i yields

5172 152

T.,8 8,1 ¢ t
IZE‘UI +E1’2=2 12 "2

p P+ T
[ 1 2
2 to€T, 1,€Ty

(s, €Ty, 5, €T,)
51
Multiplying each of these inequalities with p © = P(7; = s5,) and then summing over
8 € T1 yields
sl,t2 54 t2 tl,s2

1> r u P P+ X (s5 €T,)
= 1 2 A2 2
leT1 t2e’1‘2 tIET1

1
50 that the same procedure performed with p 2 finally results in
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§,tg 8, Sn b, 8
1> % 2p112p1p2+2 ﬂ212 12
sltET1 t2ET2 leTl 2
(17)
t,,t
2 _
=X (W+u)p
e 1T H2

Now, in view of (17) it follows that non of the inequalities employed can be a strict
one, that is, in view of (16) we may conclude that

T ...
E(u] | ;=t)=E@ | Ti=1) (€L s €Ty, t€T,)

hence
tot, tg,t S,tg 1.t
] 32 }
1;2ET2 t2ET2
and
t,ty ty,t t1,8 14,0
b) 1’ ? !
t, €T t, €T
1771 1771

[ t.-
Let us focus on (18). For any syandt, the |T2|-vectors ,u,ll and p 1 satisfy

N WU
(20) (“1 —# Jp~ =0.

These are for fixed s; and s; exactly |'T | equations. If |T;| 2 | Ty then 0 is the only

t,-
solution of (20) (i.e. of the linear system x p S (tl €T;)) if the matrix p' " has

full rank | Tyl ~ which is the case for an open and dense set of matrices (distribu-

8§,
tions). If [T,} > [T,| , we draw the same conclusion from (19). Thus, (20) yields pll

8] it
=4u, and,asp;’ + 4y =1, we see that all uil 2 are equal, q.e.d.

[SPOFEE e
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Remark 2.9 Suppose that in addition to n = 2 we require player 2 to have just one
type, i.e.

(21) T=T, = {*}.

Then it can be verified that the statement of Theorem 2.8 holds true for
oll probability distributions (instead of almost all}.
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SECTION 3 Incomplete information on one side

In this section we consider the special case where only two players are involved in the
game, such that player 2's type is deterministic. Thus, player 1 in mediis has full
information since he observes his own type and knows kis opponents type.

Of course this is a severe restriction. In particular, various results of other authors
apply to this restricted model ~ e.g. WEIDNER [10] (who is dealing with the case
that types are distributed independently) should be taken into account.

Nevertheless, we feel that open questions can first be attached by restricting ourselves
to this simple (?) case.

To be more precise, we assume throughout this section that T is of the special shape
T=T ~ {*}.

t (t,,%)
Then, it makes sense to write 4 | instead of 4 © (1, €T,). Similarly, since player 1

Xit (t:%)

is fully informed in mediis it is clear that V.

=V (t; €T,), again we write

t t (t;,%)

v 1 for this quantity. Similarly we use p ! instead of p (= p(t{|*) =P(r; =

t)=---)etc

Next, note that our special case allows for player 1 to induce an "ordering" of two
types: f a5 € T, and b‘f < b‘f (i.e. he pays a smaller fee in case his type is a) then, for

all xeX, x40
U%(x) = x; - (ex) b¥ < x ~ (ex) b = 0P () .
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Lemma 3.1 Let T = {o,f} = {*} and assume that b‘lz < bf. Suppose that p €M is ez

ante P.E. and satisfies pa # pﬁ. Then the following statements hold true

1. ,ua is V%Pareto efficient
2 U = v
. o) <vlh

7

{1y =0}

.
{_'x ‘ L}.T (wy= (.ch‘i'k}

Fig.3
General position of non—constant x € I

Proof: Observe that U:! is linear with gradient

[ (41 (2]
hl - (l —bli—bl):

thus the vector

eclx = (b'f, 1 -b‘f) >0



satisfies
—
US Y= 0
Fig.4
Gradients of utilities
Moreover,
U7 =hie

M = (1:5f, bf) (b5, 1-b9)

_1a_B

= b1 - b1 <0.

In order to prove the first statement, assume ya is not P.E. in Va, then, for ¢ > 0
sufficiently small let

#a,e=ua+fcclr ¢X
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As uis IC we observe that

(2) U9 = U > vYH
and in view of (1)

(3) U9y = 0B + e A
< 0] (4 < vl

(again using that p is IC.) Now, (2) and (3) show that {u™¢, pﬁ) =: u is IC. More-
over, as

(4) Us(eq) = (- bg, 1-69) (b, 1-bF) =1 -bF - bF = 1-eb¥> 0

it is seen that 4 €90 and (again viewing (2) and (4)) that (no matter what P) uf is an
ez ante Pareto improvement compared to .

In order to prove the second statement, assume
Ui < U5 .

Now, for small ¢ > 0, consider

uﬁ’f = pﬁ+ € ef
Then
(5) %07 < U5

is still true for small € > 0. Moreover

(6) Uf(,u“) < U?(pﬁ) = U?(p.ﬁ +e Ef)
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(as Uf(e?) = 0). Again, from (5) and (6) it is derived at once that pf := (u®

pﬁ Yem .
Finally, in order to verify the third statement, assume that

v = o

Then in view of (1), we have

(- By =0

B3 - Py = 0.

But h? and h? are linear independent in view of

B P _pf

h1 1 bl’ b1

o = o a
P2
_bl-b1<0.

Lemma32 LetT= T1 » {*} and let u €90 be ez ante P.E. If, for a,4 € Tl’

a_
by=h
then p% = ,u,ﬂ.

Proof: In this case, Ui’(-) = U?(- ). Hence, using IC, yields
v 2 v = vAH)

(7) > U§(d) = v > v

= Uf(u%
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where all inequalities have to be equations.

It follows that ¢ and ,uﬁ both are multiples of e‘; = 5‘13, assume (w.l.g.) that
o _ a a_ f
I —Alel>)\2£2—u.

Then
(8) Us(e7) = (b3, 1-b9) (bY, 1-bY) =1 - b3 -bT > 0
and
(9) Ug(e?) = Ug(c?) > 0,
thus
', & by B
(10) U2 (%) > U, («”)

for t = a,f. It follows that u = (pa,pa) is IC (by (7)) and an ez ante improvement for

player 2 (by (10)), thus x € 9 follows at once as well as the fact that i Pareto domi-
nates u ez ante. The assumption L1 > )tz must, therefore be wrong, g.e.d.

Theorem 3.3 Let T = T, x {*} and consider 4 € 9, u ez ante P.E.. Let
1
T]_ (l = 1"":1’)

denote the disjoint subsets of T1 given by the requirements

!
of =1 (apeTy (1=1,..L)
b <! (aeT] peTith 1=1,.,1-1)
such that
Lo
T,= 2 T
1 1=1 1

(using Tinstead of U for disjoint unions). Then the following holds true:
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1. 1% is V& Pareto efficient (a€ Ti)
2 VA =UlH (et perith =1, 1)

3. vl <vih)  (eerd geritli=y, 1)

Proof: Use the techniques supplied by 3.1 and 3.2 (cf. Fig.5).

Fig.5
Three types in Figure 3

Theorem 34 Let T = {a,f} x {*} and b? < bf. Suppose u €M is ez ante P.E. and
satisfies ﬂa# ,uﬁ . Then the following holds true.
HE UL 04" >0, then U9 = 0.
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Proof: For small 7 > 0 define

(11) BT = % 4 pP (n, )

(12) uﬂ:ﬂ s pﬁ + Pa fa + pﬁ fﬂ
Wiy 1T o H

Assuming U3(4®) > 0, U9P) > 0t is lear that 527 = (47, 457 is individually
rational in mediis for player 1 (U?(ya’n) > U‘f(pa)!) (for small 7 > 0).

Fig.6
General position of non—constant v €
—the final version —

Fig.7
The proof for Fig.6



- 928 ~

Moreover, " is IC. For, in view of 3.1, we know that

v < ofud

and this relation is preserved with respect to 4 *™Mor small #. In addition (again using
3.1)

v =i+ of=
(since Uclx(eclr) = 0)

.= U‘ll(ua) + pﬁn = ..
(by 3.1)

U:C[t( #as 71) .

Thus, 4 *7 is IC and hence x °" € M. We are now going to show that y *7is an ez ante
improvement (strictly for player 2) for both players — this proves also x *" € 9% (since
for player 2 ez ante = in mediis) and hence establishes the Theorem.

Now
(13) EUIopT’”=EUIop+papﬁn+pﬁpa—;L-a : Ué(e'f)
—Uﬁ(fl)
and 4
ﬂUz(f?)
EU"ouT’”=EUTou-p“pﬁHpﬁp“T
2 2 -Ug(e})
B2 ﬂUg(fl)
+ (") —5
—Ul(el)
Next, compute
(15) U(ed) =P - 12> 0

and
(16) vef)=1-vf-vf=1-et/>0,
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hence, it suffices to show

(17)

However,

Ug(e(f)

VR = (-0, 1-b5) (b3, 153
=1- bg— b

> bf -t = - ufd q.ed.

There are a few conclusions we can easily draw in view of this result.

Corollary 3.5

Proof:

Let T = {a,f} = {*} and bcf < bf. Suppose u“ €X is Ve
efficient (i.e. ex® = 1) and U‘i’(ua) >0 If pﬁex exists such
that (ua, pﬁ) € M is ez ante P.E., then it is uniquely defined.

As the geometrical situation is cleared by Theorem 3.4 (and represented
by Fig.6), we shall restrain ourselves to some verbal-geometrical argu-
ment. Clearly, if pﬁ # pa, then ,uﬂ 15 uniquely defined as the intersections
of the two lines {x | U’f(x) = U?(pa)} and {x | U‘f(x) = 0} as depicted

in Fig.6. If these lines do not intersect in X then p,ﬁ = 4% constitutes

p€Mif and only if E U;(,ua) > 0. Thus, it is not hard to give precise
g

conditions so that u” exists and to actually provide a formula for its
computation.

Corollary 3.6 ("Unique implementation")

Let the conditions of 3.4 and 3.5 be satisfied. Let u EVm

be
Vm—Pareto efficient (i.e., located on the Pareto surface of

VDJI)_ Then there exists uniguely u€ M suchE U o "= u.



-30-

Proof: Again we shall argue verbally and claim that the details are obtained by
inspecting 3.4 and Fig.6. We distinguish three cases.

Case 1: Assume that u is in V."—I Pareto efficient. Then, clearly, ,ut must be V*
efficient for t = a,f. By Theorem 2.8 — or rather Remark 2.9 — p is
constant, i.e., ,u.t = X for some X € X. Since

(18) u=EU"(X) =% - (ex) Eb” =% - Eb”,

we obtain x = u - Eb”

Case 2: Now, if v is not efficient in VX, then p% # ,uﬁ. We shall distinguish Case
23 and Case 2b according to Theorem 3.4.

Case 2a: Ug(ua) > 0. Then U?(,uﬂ )=0.
It is not hard to see that the four linear equations
(19) u= U + VA

= 1% (eu®) b2+ P~ (e VP

(20) ex=1 (by 3.3)
(21) V) =050 (by33)
(22) vl =0 (by 3.4)
determine x% and ,uﬁ uniquely.
Case 2b: If Ug(,ua) = 0, then we argue analogously to 2a. g.e.d.
Corollary 3.7 Let the conditions of 3.4 and 3.5 be satisfied. Let % € X be such

that J, as defined by ' = & (t€T) satisfies 7 € %, Then
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U%®) < U(R), USP) = 0and B UT 0 4" < ETUT 0 4",

Thus, in the present situation, the expectation for player 1 with respect to a non-
constant mechanism in 01 is worse than compared to any constant mechanism in 1.

Again, the proof rests on a geometrical argument: inspection of Fig.6 shows that, for
player 1, U‘i’(pa) < U?(J‘c) (for x must be "in mediis IR" in situation §) while U‘lﬁ (,u.ﬁ )=

0 < U¥s). ged.

It is now easy to visualize the shape of vt §V§ (cf. Fig.8).

-1
—
<
\ ~
Eq't
N <
\ o
E‘Q'L'C
AN \\
- T
“Onckrd,
/(/ b J("‘ Mgtkahl‘w3

Gdtlives wes. -Eug-q
Vo om T4 vt Maeshamiinas Fig.8

The shape of VEm
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Theorem 3.8 Let T = Ty {*} and let Ti (I=1,...,L) denote the number of the
decomposition of T1 indicated in 3.3, i.e. bi’ < b‘lg (aETl, ﬁeT}'*'l
1=1,...,L-1). Then the following holds true:

B UJou” > 0for aeT) then UF(H) = 0 for ge Tl

Proof: For notational convenience, we shall restrict ourselves to the case that
T, = {@f7} and bY < b < b,

For sufficiently small 7 > 0 take 47 to be defined by the following

157 = @+ o p %, —n)

It is not hard to see that this constitutes an #n mediisi.r. mechanism.

In order to show that the IC—property is preserved during the transition from u to
¢ we have to distinguish 3 cases.

a) ("o,8") Player 1 does not pretend to be § when ais his type; because
U = U + 9P 07

udP" = u§d) + o o7 1

b) ("&7") Player 1 does not pretend to be v when a is his type. This follows for
small n > 0 since U‘lx(pa) > U?(,tﬁ) holds true -
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which is a consequence of Theorem 3.3.
c) ("B7") Player 1 does not pretend to be v when Bis his type, because

AT = vilh
vh) = v .

Thus, we have established 4" € 9. It remains to show that this mechanism consti-
tutes a Pareto improvement versus u.

Now, writing 7 := pa pﬁ p7 we observe that player 1 has expectation
EUTou™" =EUJou"
+rn+0+77n. (-1)

=EUJou",

while player 2 has expectation

EUZ o "7 =EUJou

-TN

vh(e8
However, the quotient -Ui—%— has already been established to be positive (see (15) and
184

(16), this term appears in the proof of 3.4 as well). Thus it remains to show that
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Ug(ellg)
(18] TN
— which is the exact analogue to (17), g.ed.

Note that, structurally, the case |T,| = 3 is slightly different compared to |T;| =2

While the proof seems a bit easier and more straight forward, the result is of course
slightly weaker: If player 2 in his "worst type" has positive utility, than player 1 in his
worst type has zero utility — nothing is said about the intermediate types.

Fig.9
Three types in Figure 6
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SECTION 4 The expected contract

Consider the Standard T.U—game (O,Vt), i.e., the ez post version when t € T has been
realized by the chance move. A "value" (e.g., the NASH-bargaining solution) in the
“classical" context of complete information is a mapping, say

x: {u,W) | R® 3W compact, convex; u € w} .

Given some elementary axioms (symmetry etc.) such a value (e.g. the NASH—solution)
will satisfy

(1) x{(0,VY) = £ (1-ebt) =: T

(where vi=v ; (see2.1)and e = (1,..,1)).
b

' can be considered 2 (rather undisputable) solution for the ez post situations . And
the ez ante expectation of players if in each ez post situation ' could be chosen (i.e. in
the case of full information) is given by

N_pwt_¢€ T .=
(2) Ex(0,V')=Eu —n(l—eEb)-i—x(O,VEbt)—.u.

This formula (which is of course resting heavily on linearity) shows that the above
mentioned ez anie expectation is as well the value of the "expected" STU game

(O,VEbT). (Of course VEbT =vX (cf. 2.5)).

Clearly, given complete information, players would register the mechanism implied by

Xt : %(I-bt) + bt

(3) T+ bt = (U @t

I

atk

1

I
=1
Il e

k
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(cf. 2.3 for the meaning of the atk). This motivates the following.

Fig.10
The expected contract

Definition 4.1 The ezpected contract is given by

x=Ex"=%(1eEb)+Eb"

Note that the expected utility of x equals 1, i.e.
() EU(X)  =EE-(exb)
=x~Eb”

=£(1eBb) =1
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that is, the expected contract implements the ex ante expectation of a situation with
complete information.

Thus, if players had no information, they could register x and have the same expected
utility (ex ante) as in a world of truth speaking individuals in which, after each choice
of t, everybody would reveal his type and the fair x(O,Vt) would result by an obvious
agreement.

Now, suppose players, being aware that the world is not the ideal place they (we all)
would like it to be, agree upon the implementation of BIC mechanisms.

When bargaining er ante, they might want to have a mechanism which is ez ante
Pareto efficient. In that case, there should be no reason for deviating from the result
that — in ez ante expectation — was presented by the fairness considerations "with full
information" — provided of course, such BIC mechanism exists at all.

Now we have

Lemma 4.2 Assume n = 2. Let I,T; X, x and U be fixed. There is an open and dense

set of probabilities (distribution of 7) such that the following holds true:

Let u be BIC such that
EU (W) =1
Then ' = X (t€T).

That is, the only way to implement a fair ez ante utility is by means of the (constant)
mechanism that chooses the expected contract.

Proof: It is easily seen that p is Vt-—Pareto efficient for all t € T. Therefore, we

may choose the dense and open set according to the result of Theorem
2.8. Then, as p is BIC there is x € X such that

=% (teT)
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holds true. Now, as

=EU™(%) =% - (ex) Eb
=%x-Eb",
we conclude that % = X, q.e.d.
The simple result of Lemma 4.2 bears some consequences in view of a discussion regar-

ding the concept of a "bargaining solution" or "value for CII-games". For our present
purpose it suffices to fix I,T,X and x = 0, hence a value would be a mapping

¥:{(p, U) | T= (I, T; p; X, x; U) is CII} - X©

satisfying certain axioms.

We do not want to discuss the axioms of symmetries. Also, in the present ("side pay-
ment") context, an axiom of covariance with respect to linear rescaling of utility can-
not be formulated - note, however, that rescaling the elements of X and U is also

covariant, thus there is no problem in discussing "Fee—games with varying currency”.

However, we want a solution to yield, at any instant, an ex ante Pareto efficient
mechanism p € 901 More precisely {if we write 9 (I') instead of ¥ (p,U) by obvious
reasons and use 90(I") as an obvious extension of notation):

Aziom IN:
"For any I, (') € M(T') and 9(T') is ez ante Pareto efficient"

Furthermore, we believe that the expected contract x should be chosen if it induces a
mechanism in 9. That is
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Arziom x: (The expected contract axiom)
"Let p = w(T) be the (constant) mechanism induced by X (= X(T')), i.e,,
BA=% (teT).

I EED, then $(T) = &.

There are two motivations we may offer for this axiom, and we shall discuss them in
the light of the case T = {a, £} = {*}.

In this case, player 2 (since ez ante and in mediis is the same for him) initially viewed

VX. However, player 1 convinced him, that he would not accept anything but IR in
mediis and this led them to discuss mechanisms — IC and IR mechanisms, that is. So

now, player 2 views v

. Suppose it turns out that u € v Player 2, a firm supporter
of the IIA-Axiom, argues that v C V%_g (Lemma 2.6) and it turns out that u is

uniquely "implemented" by 4 (Lemma 4.2).

Flayer 1, if he wants to argue against this, may propose different constant contracts,
to start with. However, any constant p is generated by some x € X. But then the

discussion may as well be conducted in the ex ante situation. The only difference (with
respect to the "no information" case) is that player 1 knows he will not regret his
decision to contract with player 2 in mediis — but the IC property is not needed at all.
Thus, all arguments directed against X can be discussed from the ez ante viewpoint
(this is an ITA argument) — and it is hard to see any such arguments as X satisfies all
symmetry, efficiency (and covariance) requirements.

Next, player 1 could argue for nonconstant mechanisms.

Lemma 4.3 Let T = {a,f} = {*} and b‘f < bf. Assume p €901 to be ez ente Pareto
efficient and p® # uﬁ . Also assume that gz € 9. Then
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Ul < Ui, Ui = o,

and
EUIu,u.Tf:EU'lroﬁT:El.

Proof: This is a consequence of Corollary 3.7.

Clearly, this settles all attempts of player 1 to argue towards nonconstant mecha-
nisms: he will be worse of in any situation. no matter whether he considers ez ante or
in mediis situations.

Are there values satisfying Axiom X7 As is easily seen, any mechanism "implemen-
ting" the NASH-value of VgJT will do this (and in our "standard case", T = {a,4} x
{*} this mechanism is uniquely defined). However, it needs some more axiomatic field
work to characterize a value for CII games. We will deal with this question in a
further discussion.
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