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Abstract

Nondegeneracy and .hnmogeneiry in the theory of finite side payment games serve as
concepts which can be seen as surrogates for nonatomicity. Thus, nondegenerate
convex games are extreme, and homogeneous superadditive games allow for nice
v.N.—M. —solutions. When studying these phenomena one encounters the fact that
the presence of many small players is required. Within this paper it is shown that
(similar to the case of the L.P.—game) a suitable version of nondegeneracy can be

employed for T.U.—market games in order to prove an equivalence theorem for the

core and the Walrasian equilibrium.



1. Introduction

Let @ = {1,...,n} and P = {S|S © Q}. Within the framework of Game Theory,
the elements i € O are called "the players™ and S € P is "a coalition”. Any function
v:P— R, v(0) = 0, is a "characteristic function” (cf.) and the triple (2,P,v) is a

(cooperative n—person) game. v (or the game) is simple if the range is {0,1}.

A system of coalitions (subsets) Q € P is said to be nondegenerate (n.d.) if the
linear system of equalations in variables x,,...,X, given by

Y =0 SeQ

ies
admits of the trivial solution X’=0eR only, that is, if the "incidence matrix”

Q = (Igv)seg

el

has rank n. Here, 1g is the indicator function of S € P, o be identified with the
vector 1 = (1gw,...,1g=).
Vectors m = (m,,...,m,) = 0 and "measures” m : P — R are identified via
ms) = I m (SeP)
=
If « € R,, then m is nondegenerate w.r.t. a (m n.d. a)
Q = Q = Q(m) = {Sm(S)=a}

is n.d., i.e., if m is uniquely defined by its sets of measure a (its "a contour™).

Moreover, m is called homogeneous w.r.t. a (m hom a) if m = a and, for any
SeP, st mS) > a,thereisT € S withm(T) = a.

Qur main thesis to be supported by the results of this paper is the following: non—
degeneracy and homogeneity are related concepts which, in a finite framework
(finitely many players), serve as a surrogate for nonatomicity (which is a concept for

continuously many players).



This statement must be regarded in the light of the following evidence

1. Superficially homogeneity is satisfied in the continuous case: e.g. a non atomic
measure in the Borel (or Lebesgue) sets of the unit interval is homogeneous with
respect to every a within its range. The obvious objection that the quantifications
are different is slightly weakened by the fact that (in the finite case) the
homogeneity of m with respect to a implies the homogeneity with respect to

various other values within the range; see [14] [13].

2. Analogously it is easily seen that, considering a non atomic measure on the unit
intervall this measure is nondegenerate with respect to every a within it's
range; that is every non atomic measure is uniquely determined by any

"contour™ Q,.

3. It is possible to analyse sufficient conditions which ensure nondegeneracy and
homogeneity in the finite case by introducing "types” or "fellowships”, that is,
to collect those players which, with respect to a given measure, have equal
weight. Then sufficient conditions in order to ensure “n.d.” or "hom"” may be
interpreted in a way such that, roughly speaking, it is the presence of many
small players compared to the large ones which implies the desired properties.
[71 [9].

4. Both concepts are closely related: Essentially it can be said that homogeneity is
something like nondegeneracy with several degrees of freedom. In other words
the incidence matrix of the system Q, in case of homogeneity is non singular if,
in addition, we prescribe the value of certain variables x; (see the definition of
nondegeneracy above) in advance, i corresponding to a certain type (fellowship)
of players, the so called steps, see [4] [12] [13].



There seems to be a wide range of applications in the framework of games and
equilibrium theory where conditions n.d. and hom serve a similar purpose and
frequently replace the requirement of non atomicity. E.g. the unique minimal
homogeneous representation of a homogeneous simple weighted majority game
(see [4] [12] [13]) coincides with the unique representation given already in
[3] for the case that the game is zero sum; and if so, it follows that
homogeneity implies nondegeneracy (that is, a zero sum game nessesarily has no
degrees of freedom), see [4] [12] [13]. Many results have been obtained in
the finite case which can be imitated in the continuous case by non atomic
games (or economics). For instance the extreme point problem in the cone of
non negative convex games may be attacked by composing extreme point
functions with nondegenerate measures, see [6] [14] [15]. A similar result is
obtained if nondegeneracy is replaced by nonatomicity in the continuous case.
Similarly, extreme super additive games may be obtained by composing non
degenerate and homogeneous measures (in the finite case; non atomic measures

in the continuous case) with super additive point —to— point functions.

The construction of certain elements of the core and the construction of von
Neumann — Morgenstern solutions has been particularly successfull when extreme

games of the above type are being considered. ([7])

Finally, there is evidence that our concepts may be useful also in the context of
equivalence theorems in equilibrium theory. For instance the L.P.—Game (in
which case the convergence of the Core to the C.E. is finite) has been studied in
[5], the continuous case was studied in [1], and finally the nondegenerate

case turned out to be related to both of the previous ones as have been treated
in [9].



In this paper we give further examples for the applicability of nondegeneracy
concepts to the main equivalence theorem of equilibrium theory. It is shown that non—
degeneracy can be meaningful defined in the framework of a T.U.—market game. In
marked contrast to the commonly used version, we employ piecewise linear utility
functions for the consumers or players. Using a version of nondegeneracy we shall
then be able to represent regions in the space N’ of distributions of players over the
r types in the market such that the core and the Walrasian equilibrium coincide.



2. Some applications

To make this paper self contained we shall consider a few of the examples mentioned

in the first section.

Example 2.1. For 0 < a < 1, let f*: [0,1] = [0,1] be defined by

(1) )= — (t—a)

I—a

(where 87 = max(0,8) (8€ R). If m is a normalized measure (m(Q) = 1),

consider the cf. given by
(2) e=e,=f om

Because f~ is convex, e is a convex cf. (see [6][14][15]). The (nonnegative)
normalized convex cf.s form a compact convex polyhedron (in [ET}, say C'. It is
well known ([7][14]) that ¢" is an extreme point of C' if m n.d. a. On the other

hand, if e* is an extreme point of C' and m = 1—a (i € Q), then nd. a.

The continuous analogue is found in ([6]): if m is a measure on the unit intervall,

then again e is extreme if m is nonatomic.

Remark 2.2. The general theory of extreme convex games is established in [15]. It
turns out that every convex (nonnegative, normalized) cf. v is
represented by

v(*) = max(m'(*)—ay,...,m(*)—a)
where m = (ml,.,,,ml) is a vector valued measure (i.e., m is a measure,

r=1,.tanda = (g,....a) €ER,.

By suitably redefining "m n.d. a” the connections between extremality and n.d. are

exactly equivalent to the ones stated in 2.1.



Example 2.3. A simple cf. is a "weighted majority” if there is a measure m = 0

and a € R, s.t.

(3 v=lgg0om
i.e.
1 msS) = o
v(S)

0 m(S) < a

In this case we write v = v, and (m,a) is called a representation of v. v is
homogeneous if there is a representation (m,a) with m hom a. Given the condition
that v is constant sum and dummies get zero weight (i.e. m; = 0 whenever i is not
in the carrier of v), the homogeneous representation is unique. In addition, in this
case we have m n.d. a ([8]). (On the other hand, m n.d. a implies always that m

and v have equal carrier.)

In order to emphasize the analogues between the convex case and the case of

superadditive cf. s, again let & = (o, _ ag) € R, with increasing coordinates and

ag < 1. Consider the function f, : [0,1] = ©

K=1

(4) i el o i

x=1

where ¢, € {0, I/N,2/N,...,1} =: © with a suitable large integer N. Pick a
(normalized) measure m or  such that the range of m is included in © and put
(5) =1 . am
Then the following holds true ([7]): if f* is extreme among the superadditive
(normalized) functions [0,1] = ©, then v°", is extreme among the superadditive
(normalized) cf.s on @, provided that (essentially)

m hom (a,.,;—a,) x=0,...K—1; a, := 0.

is satisfied (see [7]).



The continuous analogue (m a measure, say, on [0,1]) is not in the literature, but

apparently straigthforward.

Remark 2.4. Note that the general superadditive (normalized) cf. v may be

represented as

(6) v = max fcrnr

with suitable vectors ¢, a', 7=1,....,T. However, the general characterization of

extreme superadditive games (by means of hom or n.d. requirements) is not solved.

Example 2.5, The L.P.—game provides a first clue towards the connection of n.d.
and the (first) equivalence theorem of general equilibrium theory
(i.e., the "equivalence™ of the core and the Walrasian equilibrium) :
in this case nondegeneracy serves as a “surrogate” for either the

replica version or the nonatomic measure space of agents (see e.g.

[1] [3] [9D).

Let A > 0 be an m x | matrix and let ¢ € IE]+. Also, fix a vectorvalued measure
b = (bl,...,bm], i.e., b* (u=1,...,m) is a measure on . Then a cf. v = v e
defined on Q by '

v(S) = max {cx | X € [F:’]_,, Ax = b(S)}
and (Q,P, v'"™) is called an L.P.—game. This game was treated by [5] (with a
replica setup) while [1] considered the case of a nonatomic measure space of

players.

Now, if }rﬂ = (yul,..,,yum} is an optimal solution of the "dual {I—program”, i.e.
v(@ = y’b(@) = min {yb@ |y € R",, yA = ¢}

then the measure m’ ;= yub{-} is an element of the core of v, say m’ e Cv).



Define

(7 Q := {z€R", | minfyz |y e R",, Ay = ¢} = y'z}
and a system Q of coalitions (subsets of {I) by

® Q:= {S€P|b(S) e Q, bS) € Q}.

Now we have ([9]): If Q is n.d., then Cfv) = {mu},

Thus, if there are sufficiently many coalitions having shadow prices equivalent to
those of the grand coalition, then the core and the competitive equilibrium coincide.
"Sufficiently many” means "in order to determine m’ uniquely” — and will later be

translated into "there are sufficiently many players”.



L

3. Sufficient conditions

Introducing n.d. and hom, as has been argued, is a unifying procedure as well as a
"finite surrogate” for the nonatomic measure space. However, the idea serves to little
purpose unless (as a second step), we are capable of understanding our concepts
structurally. By this we mean that operationable conditions should be specified e.g. in
order to test whether a specified measure m is n.d. a or hom a. If such conditions
or tests are sufficiently enlightening, then they should, simultaneously, provide
additional hints concerning an interpretation of our concepts as versions of a player

space with many small individuals.

These problems have been dealt with in the framework of several of the above
mentioned papers, e.g. [7] [9] [14] [15]. Here we shall shortly review the
n.d. —results related to Examples 2.1. and 2.5. Also, we want to hint at the (related)
results concerning the minimal homogeneous representation of a homogeneous simple

game. (Example 2.3.)

By well known reasons (see [14] [15]) we know that we may restrict ourselves to
the domain of reationals when dealing e.g. with the question of a sufficient condition
for m n.d. a. Of course this means that (by leaving the normalization of type m({})
= 1) we may deal with integer —valued measures, say M (and integer constants, say

A, instead of rational a).

Next, it is reasonable to introduce groups of identical players, i.e., elements i,j €
such that their measure or weight is equal. As types are generally considersd to
consist of players which are identical w.r. to the game, we use the term fellowship

for a group of players with the same measure.

Up to permutations of players of the same fellowship a measure is then completely
defined by specifying the distribution of the players over the fellowships and the

(common) weight of (every player of) each fellowship.



= i =

This induces the following alternative formulation of our basic definitions.

Let k = (k;,...,k,) € N'; k; represents the number of players in group or "fellow-
ship™ i where i € R = {1,...,r}. A vector s € N', is a profile feasible for k if s<k

(coordinate — wise).

Let P= {s | s € N', s = k} denote the profiles; any profile enumerates a number of
players within every fellowship — i.e., there are s, players of fellowship i. A cf.
(again called v) is a mapping taking profiles into th reals, i.e.,

U it
or

v: P {01}
(the "simple” case). A game is given by the tupel (k,P,v). Frequently, however it is

not necessary to mention P explicitely; so (k,v) is considered to constitute the game.

Next, suppose that'g = (g,,...,2,) € N’ (frequently we assume g, < g, <...< g,).

g is as well regarded as a function on profiles via

(1) ps) = L sg (se P

thus, g sometimes is referred to as a "measure” or a "weight vector”. The pair M
= (k,g) is (by technical reasons, see [11]) somewhat sloppily, also called a

"measure” — although 1t 1s rather a game.

Given A\ € N and M = (k,g) such that g(k) = X, the triple (k;g:h) = (M,h)
generates a cf, v = vM;.l by
1 g(s) = A
(2) v(s) = (s=k)
0 g(s) < A
and (M,)) is a representation of v.
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The familiar framework as established in sections 1 and 2 is closely related: put

ni= L k
i=1
and define a decomposition of @ = {1,...n} by specifying subsets of 0
appropriately, e.g.
i=1 i
3) Ki:={we | L k<ws= [ Kk}
i=0 i=0

(where k; := 0). Then, if v is defined on the profiles feasible for k,
w(S) := v((|SNKy|,...[SNK..1))  (SeP)

provides a cf. w in sense of section 1.

Let us now rephrase partially some of our previous formulation concerning surrogates
for nonatomicity. E.g., we say that M n.d.A if g is the unique solution of the linear
system in variables y,,...,y, given by

Ls, ¥ =M\
where s = (s,...,5,) is taken from the set of feasible profiles such that
E S, &, = A. In other words, given M = (k,g) and A, n.d. is ensured if we can
construct r profiles (integer vectors) s (o=1,...,r) satisfying

I 0= s <k =1 .7

(4) 7 s is nonsingular

Thus, the problem "find integer vectors s° € N’y such that (4) is satisfyed” amounts

to testing n.d. (say in the framework of Example 2.1.).



Similarly, Example 2.5 (the L.P.—game) is rewritten as follows: with a suitable
"tableau matrix” A, the set Q; (cf. (7) of section 2) may be written
Q, = {zeR", | Az = 0}.

The vector valued measure b of initial resources in 2.5 amounts to a vector valued
measure, say

G=(g,8)
such that gj € N’ describes the distribution of factor j over the fellowships 1,...,r.
The required nondegeneracy of Q (in (8), section 2) is reflected by the assumption
that profiles

F r

Y o6 =0 AT 1k -ai6 =0

g=1 Q:]

r F

= 0=ATF 06 248 & ko]

g=1 e=1

constitute a matrix of full rank. (Of course, we use G, = (glg,.,,,gmg}, ie.,

fellowship g holds this vector of resources 1,...,m).

Thus, if we can solve the problem

"Find integer vectors s’€N'y, o=1,...,r, such that

. B=w =<k (o, p=1,....1)
(5) L. Bwmis L is nonsingular
3 A=A s =A F kG "

then we have "Q n.d.” — and hence the core and the c.e. of the L.P.—game
coincide. Note, that in (5), G specifies the distribution of factors over fellowships

while A (the tableau matrix of the linear program



T e

: e : f 0
¢ G, ¢, corresponding to "the” optimal dual solution y

W

e=1
(cf. (7) in section (2))) represents the production process involved with the

L.P. —game.

The combinatorial (number theoretical) problems suggested by (4) and (5) obviously

are of similar type. Similar problems arise in the framework of Remark 2.2.

It remains to find reasonable sufficient conditions in order to establish that solutions

to (4) and (5) exist.

With respect to (4), this completed already in [14]; the result is, roughly speaking,

as follows:

Given g = (g;,...,&) € N, there are "reasonable” bounds R,, L, (¢=1,....,r) € N

(depending on g in a constructive way) such that, whenever

(6) k, = L, (e=1,...,1)

and

(7) R.=A= L kg-R

as well as

(8) A = 0mod gcd. of g,....8

then (4) can be solved, i.e., there are profiles 51,“.,5' with the properties required
for n.d. In other words, if there are sufficiently many players (see (6), k, is the
number of players of fellowship g), then there is a nonempty (reasonable) intervall
[R,, g(k)—R,] (see (7)) within the ideal spanned by g,,...,g (see (B)) such that all A\'s
within this intervall allow for M n.d.\, i.e. e.g., such that " ((m,a) obtained by

normalizing (M,))) is an extreme convex set function.

Similarly, the question of solving (S) leads to a problem in geometric number theory.
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For, the set
E' ¢ = {xeR'|0 = x = k,0 = x AG = k A G}
defines a compact convex polyhedron in R'.

Obviously solving problem (5) is equivalent to finding r integer vectors within this

polyhedron.

Given the date of the L.P.—game and the distribution of a factor with the
fellowships (i.e. the tableau matrix A and the matrix G), we may therefore attempt to
specify regions in N’ such that, if keN' is an element of such a region, then the
corresponding Ekﬂlﬂ admits of r linearly independent integer vectors, hence (5) can be
solved, hence the core and the Walrasian equilibrium coincide. The tools for this task
are provided by geometric number theory; in fact MINKOWSKY's (2nd) theorem tells
us that the number of linearly independent integer vectors in a compact convex
polyhedron can be linked to the volume of this polyhedron. Now, obviously, if k
increases then the volume of the polyhedron E, g will increase, hence we conclude
that for large k (that is, "many players”) we solve problem (5) and establish the

equivalence theorem for the core and the Walrasian equilibrium.

In the case of the L.P. —game the convergence of the core towards the equilibrium is
finite; this fact of course depends strongly on the linearity of the model. The question
is indeed, whether the method produced in order to describe this type of

conversions can be extended to nonlinear models when the convergence is not finite.

This is the aim of the present exposition: We want to show that, for a side payment
(transferable utility) market game, similar mechanisms can be established. We shall
use a simple model (and assume piecewise linear and convex utility functions), so the
existence of core and equilibrium as well as the shrinking of the first concept towards
the second one are well established facts. However, we do neither hinge on the
replica nor on the non atomic measure space agents. Instead, we shall argue that the

appropriate version of nondegeneracy ensures that for large k (distribution of players



o

over the various types of fellowships, in a suitable sense) any core payoff equals the
payoff in equilibrium. Hence, our arguments are referring to utility space: as yet, it

is not clear whether the procedure may be employed in the space of allocations.

Let us close this section by a few remarks concerning the connection between the
concepts of homogeneity and nondegeneracy. Speaking in terms of profiles, "M hom
A" is of course specified by requiring that g(k) > A and, whenever g(s) > A, then
there exists t such that g(t) = .

If M hom A, then consider le (cf.(2)). The representation theory of homogeneous
simple games as developed by OSTMANN [4] and ROSENMULLER [12] shows
that it is possible to recursively label fellowships, the labels being called “dummy”,
"sum”, and "step”, and referred to as characters. This in other words leads to a
decomposition of fellowships into three classes of characters. The role of the
dummies is clear. The role of a sum is described as follows. In certain minimal
winning coalitions a sum may be replaced by a specific group of smaller players (not
the immidiate followers), the weight of which sums up to the weight of the “sum”,
As for steps, they are of quite a contrary nature: They dominate their successors in a
way such that in every minimal coalition including a smaller player, all preceeding
steps must as well appear completely. Steps in a sense cannot be replaced properly

by groups of smaller players.
For the details compare the theory as presented in [4], [12], [13].

The process of introducing characters has consequences, the most important one
being the existence of the unique minimal representation of a homogeneous game.
This representation is as well computed recursively. As a byproduct of the theory, it
turns out that the smallest player is always a step. If there are no further steps then

M nd. A A particular interesting case is presented by the zero—sum simple
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homogeneous game; here we have the theorem that there are no steps but the players
of the smallest type. Hence, the minimal representation yields the unique
representation of von NEUMANN and MORGENSTERN [3].

Concluding, it is seen that nondegeneracy, in a sense, is a special case of
homogeneity, given additional requirements. In fact, in a homogeneous simple game
the weight of the steps may be chosen more or less arbitrary within certain constrains
imposed upon by the representation theory. The weight of the sums, however, is
dictated uniquely by the structure of the game once the weight of the steps is fixed.
Hence, a homogeneous game has as many “"degrees of freedom”™ as steps are present.
If there is just one degree of freedom (only the smallest type is a step) then the game

is nondegenerate.

In other words homogeneous games with the minimal degree of freedom are

nondegenerate.

As for sufficient conditions in order to render a given pair M = (k,g) homogeneous
w.r.t. a certain A, compare the theory of the "matrix of homogeneity” as introduced
in ROSENMULLER [11]. Here again it is seen that essentially there should be many

small players in order to induce homogeneity.



4, T.U.—market games

A T.U.—market ("transferable utility”) is a pair

u = (U,A)
where U = (ui}iek; u e
and A = {al}-,ER; a e B a represents the imitial allocation of each player of
fellowship 1i. u' is the utility function of (each member of fellowship) i. u' is assumed
to be (weakly) monotone, continuous, and concave. However, we do not assume

differentiability, rather, each u' is required to be piecewise linear. More precisely, we

assume the existence of finitely many affine functions

(1) plll 2 cE p“{x} =c'x +d

(foEm+, c“E[FEm“ di]EﬂE‘}, iER leL (where L is a finite index set which, w.l.o.g.,
does not depend on 1) such that

@) u' = min p’

leL

We denote by
P' = {xeR",Ju(x) = p'(x)}
and P" is the interior of the convex polyhedron P

Given u = (U,A), define the function
f=1:E.>F
f) = max {L tw'G)x'eR", (eR; L tx = [ ta)}
ieR ieR ieR
Whenever keMN', then v' = v denotes the restriction of f to the feasible profiles of
k and (k, v') is the market game generated by u (and k) where k; players of
fellowship i are present. For any feasible profile s = k, vk(s} denotes the maximal

joint utility players in a coalition with profile s may obtain by pooling their initial



=

allocations and redistributing them. Therefore, for teR’,
’LL; i {x = Exi]:i=] rlxtERm+r {]EE}! E ILi"'{i. = E t|al}

ieR iER

is the set of "feasible allocations for t™.

Clearly, the function f' is continuous, concave, and positively homogeneous (the
proofs given in SHAPLEY —SHUBIK [16] apply at once). However, we have to
spent some time for exhibiting the structural properties of f resulting from the

piecewise linearity of the u'.

A feasible allocation X' is optimal for t if

i 0
f) = L)
ieR
i.e,, if X" is a maximizer in 1). Let
(5) X, = {XeA, | X is optimal for t},
this is a convex, closed set which is compact for t > 0. It is a well known

consequence of a "Kuhn — Tucker” principle that we have

Lemma 4.1. X'€A, is optimal for teR', if and only if there is p’eR", such that,
for any yeR"™, :

(6) i) - vy = p'"-y)
holds true for all i such that > 0.

p‘:I represents a joint hyperplane supporting the graph of each u in x'; also if
t=keN" then pu can be interpreted as an equilibrium price vector (normalized as to
let the m+1—coordinate ("money”) appear as the numeraire; see [16] [8]. Clearly,
if x"eP” for some i and |, then, in view of the special form of uj, we have

necessarily p°=c" (see (1) and (2)).
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Definition 4.2. [JDE[Em.,_ is a A—price for [E[E!Li if there is XDEAl such that (6) is
satisfied for all 1 such that t > 0. If s0, then J{'::'E)(l
automatically and we say that ]'_'rﬂ corresponds to -

Lemma 4.3. Let p'eR™, then
Tp:= {teR’, |p’ is a A—price for t}

1S a convex cone.

Proof: Ty is a cone because of the positive homogeneity of f. Convexity follows

by means of a standard procedure (employed in [16] [8]) as follows:

Suppose, t and t' are such that pu is a A—price for both of them, corresponding to
the maximizers X €X, and X'€X.. Define,
for i€eR (and t,+1t", = 0)
it
X 1= e—
5+
x*" = 0if t+t’; = 0). Then clearly X" € A,, . For any y € R". we find (i € R;
L+t > 0)
W) - u' @)
gl
=u  (—) - vy

L+l

y i
2 — W)y + — @) -ue)

LEL; L+t

5 v
= — -+ — P& -y
L+ L+L;
e putx+j—y],
meaning that pﬂ is a A—price for X €X,, .



P

Note that any boundary point teR™, of T,» with strictly positive coordinates belongs
to T2, i.e., for any ¢ > O the set Ty M {t = (e,...,e)} is closed.

Lemma 4.4. Lett € R', and let pﬂ. p] be A—prices corresponding to Xﬂe)ﬂ and

X'EX; . Then pﬂ corresponds to x' as well (and vice versa).

Proof:  Because of

ul(xm) hat uj(}"} > pﬂ{xﬂi_}?}

V) — u) = px —y)
we have
) p]{xm—xli} a uj{xm] i u'[xn} = pu{xm_xn)
for all ieR with t; > 0 and yeR" . . Clearly, any > — sign for some i in (7),
t. > 0, implies

L e > L ’a®-x"

ieR iER

contradicting the fact that X’ and X' are feasible for t.

Thus, (7) implies
®) sabo il o ga® - e = gt
for all i€R such that . > 0. Hence, for yeR", :

ui{xﬂi} =i pixﬂi s u]{x“] o pixh = I.[I[}"} Si) pl}’?

meaning that p is a A—price for t corresponding to il

Remark 4.5. Let teR', and define
(9) A = {puEEm+Epu is a A—price for t}.

The set A, is a closed convex polyhedron, the extreme points of which are elements
of {c'[ieR, leL}. If, for some X’e€X, we have x > 0 (i€R), then A, is indeed

compact.
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Given p’ € A, define
(10) b= = )
by
v'x™ — pPx"-a) (iR, t; > 0)

Py =
0 (€R, t, = 0)
g s interpréted as an “equilibrium” payoff (for t at price pn). As indicated by
Lemma 4.4. (and by (8)), &' does not depend on the particular choice of XDE}K}. If A
is a singleton, i.e. if some Xﬂr’:'){1 satisfies meFﬂ“, then u is uniquely defined (i.e.,

does not vary with pﬂi

Next, introduce the sets
T' = {1eR", |c'eA,}

= {teR"|c" is a A—price for t}

- il
Itisseenatonce that R, = U T.
ieR

leL
Thus, fE."+ is covered by finitely many convex (and hence polyhedral) cones.

Moreover, we have

Lemma 4.6. f restricted to T is affine. Within the interior of each T“, f is
differentiable and, if teT", I!f{ﬂEJi'l and p-rﬂI = (a A—price for t) then
ar
— ) = v - P -a) = 4
&,



= 3

Proof: Lett and KD, po as above and consider any I'ETﬂ, XEE)Q which also admits

'as a A —price. Because of

p =g
i(x) — u@) = p'’—y)
v(x) - u'y) = p'x'—y)
(yeR™.) we have as usual
ui(xm} - ui{x”} = pﬂ{xm—x“}
and hence
fith —f® = Len'e’) - w'a’y
= Ira'a") - P’ —a))
~- Deu'e™ - p'a™—a))
= Lti-t) ') - p"—a))
+ e’y - pPa"—a)—['a" — p’a"—a))
- )
=k t’i{ui{xm] - pa{xm—a'}} + const

= L - ti].“ti-

After having delt with the structure of f = f as resulting from the piecewise
linearity of the utility functions, we now turn to the properties of the market games
induced by the T.U. market u. Denote by v* = v** the restriction of f to the set of
feasible profiles of k; thus

V")
is the market game generated by u (and k) with k; players of fellowship i (i€R).
Now, v'(s) indeed denotes the maximum joint utility players in a coalition with

profile s may obtain by pooling their initial allocations and redistributing them.

The core of a characteristic function v, defined on the profiles of k is
(11) Qv) = {meR", | m(k) = v(k), m(s) = v(s) (s<k)}.



e

Intuitively, we impose a restriction on our treatment by introducing definition (11):
we shall only consider “equal treatment elements” of the core. However, by
symmetry reasons it is advisable (see [9]) to require that the greatest common
divisor of k is a multiple of 2 and thus (see e.g. GREEN [2]), equal
treatment in the core will be a consequence.

kxp':'

. k ‘ * : .
Next, if some p = p = is considered as a function on {s<k} via

r
k k
p(s) = L 5 u;
i=1

as usual, then, for any )(U'EXiE we have
12) #@® = Lk = Thue™ = v
and, if pn is a A—price for k and X! €X, for some profile s = k,
(13) w) = Ls g
= Ls") - p'x”—a)
> Lsux) - px'—a)
Lsu(x) = v's)
is also satisfied. This indicates the well known fact that (see [S] [9])
u e o).

Define now, for keMN', ieR and leL
(14) E' := {teR'|t<k, teT", k—teT }

Theorem 4.7.  Let keN" and keT'. If there are r linearly independent N'— vectors
(i.e. profiles) in E',, then
av) = {u'}.

Proof: Clearly, pﬂ =c'isa A —price for all SEE”k as well as for k.



Fix some profile sEEﬂk and let XLEXk, XEEXS. Then
vi9) = fis) = L'
Smaet. PD o —al)
(15) = Lsu'")-p'x"—a))

= u'(s)

Therefore, any mECIvk} satisfies

(16) m(s) = vi(s) = u'(s).

However, as k-sEEH,, as well, we have also
m(k—s) = u'(k—s)

ie., m(s) < u(s) as mk) = p'(k) = vK).

Hence, we come up with

(an m@s) = p'(s) seE",

Now, if s°(g=1,...,r) are r linearly independent vectors (profiles) in E“k, then the
system of equations

k
E Sqim'i = E s‘Ei.n':i {E‘=1,...,T)
i=1

shows that m = ,u.k : the theorem follows now. g.e.d.

Remark 4.8. f, regarded as a function on R', is affine in any T“; thus, if
T™ % 0, then f (a concave function) admits of a unique gradient at
sO0rme I:ETD“, this (by Lemma 4.6.) is p[.

Clearly, if it so happens that ISR 0, then f has the same gradient within
both sets. Thus, by omitting some of the i necessary, R', may be decomposed
into a finite number of convex sets with nonempty interior in each of which f has the

same gradient, clearly, those sets are polyhedral.
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Now, if keT", then 4" represents the unique gradient — and the equilibrium payoff
for v* as well. If the vector ,uk is uniquely defined by the values _uk{sl, s vary through
the profiles of E',, then C(v") = {,u.k}.

Now, T" is a convex polyhedral cone with 0 as a boundary point. Suppose A" is an

r' X r—matrix such that
T' = {teR™,|A" t = 0}.

Then
(18) E, = {teR"] 0=t =<k
0=<A"t=AK

1A

Thus, in order to check for C(v") = {,uk} we have to solve the following problem:

"Find r integer vectors s €Ny, o=1,...,r

such that
1. =5 2§ {g=1,...71)
(19) R e DT is nonsingular

T e A e Ay

This obviously corresponds to (5) in Section 3. Accordingly, we may classify any
keR', (any distribution of players over the types). In order to have the "equivalence
property™ (i.e. C{vk} — {,u;k}], k must be within the interior of some T and the
volume of (18) must be sufficiently large in order to admit r linearly independent
elements (MINKOWSKI's 2nd theorem) i.e., a solution of (19). Thus, we may
characterize the set of distributions k with the equivalence property in a geometrical
way which essentially involves the boundaries of the convex polyhedron T' and the
volume of the E“k.
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