INSTITUTE OF MATHEMATICAL BCONOMICS
WORKING PAPERS -

: - ~ No.218
" A Mathematical Note on the Structure of SYMLOG—Directions
Dieter Betten and Axel Ostmann
 April 1993

, University of Bielefeld
4800 Biclefold; Gemmany

{
|
|
{
!

A mathematical note on the structure of SYMLOG—directions
by Axel Ostmann & Dieter Betten

[n social psychology §YMLOG-methods as conceptualized by Bales and his
coworkers are valuable tools to measure the social field in a small group.
The usual SYMLOG-model is derived {rom a {actor—analysis of scores that
are sums of ratings in specific questionnaires {Bales 1970. p.of). These
score—vectors are represented in a three—dimensional real space, In
Berresheim /Ostmann/Schmitt 1991 it is argued that for use in multilateral
experimental  bargaining it is  necessary Lo redefine  some
SYMLOG—concepts. A main argnment was that the usnal SYMLOG—1onls
are adequate for group tasks but not for conflict situations that allow for &
strategic variation of socio—emotional aspects of communication. In
consequence in the bargaining situations a spheric SYMLOG—model was
used (computer programs for handling experimental data and explanations
can e found in Schmitt 1991). In Ostmann 1991 and in a short note
{Ostmann. unpublished) the structure of the modified SYMLOG—model is
explained and a sketch is given how this model can be derived [rom a simple -
set of axioms on 1wo relations called “heing opposite to'" and "heing nentral
to'. It was conjectured that there is c:m one medel that fits te those
axionss: the model on the real sphere, But there was no proof that all finite
models can be excluded. The present note closes this last gap.

In order to represent a single component of a judgement on the socio—emoticnal aspects
behaviour the SYMLOG—method uses 27 vectors of the three—dimensional teal space. Call
these vectors. defined by having components from the set {=1.L1}. standard unmits.
“orresponding to the locations of the 27 standard units Bales defines a sef of behavioural
types or group—roles. that can be idealized from experience with chservations collected
over more than twenty years. It can be discussed. i it wonld be better to conceptualize
those types as predictions on behaviour {and value—orientations. and personality factors:
¢f. Bales 1970, p.4) that are indicated by observed values in the curresponding regions
arcund the standard units; moreosver there is a discussion. if the type curresponding tu
{0.0.0) lacks a rational interpretation. In this paper we give another approach to model
the social field: this approach can be called an axiomatic one. whereas the standard
approach is score—oriented. The main consequence of this change is that we ask first. what
standard properties we can postnlate in the theory of social field and social ditections. and

have to solve the problem of measurement in a second step.

1. "'ypes and opposite directions

Let us first sketch some formal properties of the types. Bales 1970 nses the
following set of types: AVE (average type), U, UL UPF. UF, UNF. UN,UNE, UB, UPB.
P, PP, F, NF, X. NB. B, PB. D. DP. DPF. DF, DNF, DN. DNB. DB. DPB. This scheme

and the description of the corresponding behavior and gronp—tole suggests:



L. that there ate six basic types: U, P, F, D. N. B, and that the other ones can be seen as

combinations or as lying in-between:

2. that there is a lundamental relation *, read as "is opposite _‘c:A between types that
pairs all bypes except AVE: the relation is symmetric (that means X=*Y ifl Y= *X) and is
generated by U=*D, P=*N, F=*B by combining, for example we have UNB=*DPF)

3. that there is a fundamental relation 1, read as "is neutral 10", "is independent on'* or
g indifferent 1o that is an extension of the independence between the paired basic types
U-D. P-N, F=B. But within the usual cnbe—model it is not clear how this extension can
be 835:.4 defined. From the interpretation of the relation L it is clear that no type is
neutral to itself {except possibly AVE), and that Lis symmetric (XLY iff YaX) moreover
the relatedness is a property of the pair: (¥X LY iff XaY.

For coding the answers in the §Y MLOG-rating—questionnaires the numeric struc-
ture of a three—dimensional space is used with the following identifications: a count—vec-
tor near (n.0,0) is used as indicator of type U, near (0,n,0) {or type P, near {~n,n,0} for
DP. and so on (n is the maximal possible count). By these identifications the relations *
and L can be translated into relations on the numerical space. Counts in opposite direc-

tions are cancelled.

2. The twofold use of summation: intensity and mean direction

: One of the consequences of the use of the three—dimensional numeric connt—orien-
fed structure is that the count—vector allows for no clear statement on the intensity of
behavior in a specific direction and on the mean—behavior. The count—vector is a mixture
of both. Moreover the identification of the noav.nm:o:m of the letters U, N, P, etc. with
sums, included the cancelations like 15U+11D=2U. are not based on an owﬁﬁ.o: that is
defined on types or directions of behavior: the @Enmm:? suggests, that the combinations
are not entities like the basic types. In this sense it is suggested that the space of types is
not homogeneous in contrast to the use of the homogeneous structure of the real vector-
space. One possibility to avoid this strange inhomogeneity is to identify all type—cortes-
ponding combinations (except AVE) with vectors of the same length. This can happen by
rescaling: the basic letter are represented by unit—vectors or their negatives, a twofold
combination of non—opposite letters by the sum of such basic vectors divided by 2, and
the complete combinations by the sum divided by V3. But if we can find no non—data
oriented argument, why to use this specific identification and summation, the data aggre-
nm:o: Eoﬁ.&_:m based on this new and homogeneous identification is as well an arbitrary

. In the following we shall mras that it is possible to find simple axioms to describe
our knowledge on properties of the types such that we can justify a model on behavioral
directions represented on the unit sphere. This model will be the unique solution for the

axioms stated.

3. Neulrality and homogeneity

Taking the pattern of our empirical knowledge an types as found in Bales 1970, we
shall construct a set of abstract social hehavioral directions and relations based on axioms
that exhibit properties analognes to those stated in the verbal descriptions {found in the
above book. For example statements like "Somebody of type A shows (a) . but he never
shows (b) nor ()" are taken as indicating the following:

—a type can be represented by an (incomplete) list of behavioural descriptions

— the description {a) is element of the list A

— both descriptions (b) and (c} are "opposite'’ to (a)
l.%m..iv:.oz {b)is "neutral" to (c)

From this structure on descriptions we derive a structure on lists or tvpes, respectively.

As noted before these types are seen as an idealized subset of all possible behavioural
directions. Not knowing what set of all possible directions we should assume. we assume
that we can generalize the structure derived before: the relations "oppusite” and "neutral”

have to fulfill the same axioms as derived before. Formally we state:

Let V be the space of directions, L.e, the set of directions V endowed with the stincture
given by the relations * and L. As stated above we postulate the {ollowing three axioms:

A..y: s a cszol.Q—m mapping {rom V onto Vi ** is the identity and there is ne
m.umami.,.x of V that {ulfills X=*X. "
@ﬁ 4 is a binary relation on V., that is m.,,SEm:.wcv;b‘ HE YaXy and there is no
element X of V that fulfills X1X.

{A3) *and L are compatible, this means: (*N )oY

In order to guarantee a non—degenerate structure we further assume
(A4) there is a triple of elements that are pairwise related by L. and there is one more
element in V that is unrelated with those three elements according 1o 1. .

These first axioms are direct generalizations of the properties used in the usual
typology. An example {or a triple of types cortesponding to the triple in Ad is U P, Fr a
type 1~unrelated to all of them is UPF. Before we state cur next axiom let us examine a.
specific property of the type U in the usual model. In that model there exist one and only
one pair of types that are neutral to (" and X. for all types X not equal to U or cn:.nﬁ‘w
obtain the following list (it is enongh 1o look at {ypes that are combinations with U':

type X UPF UPB UNF UNB P UN UF UB
neutral _ PB PF PF PB 2 )
to both U and X NF NB NB NF m m m_ m




In generalizing this property we assume:

{A3) there exists some direction Z. such that fur all types X not equal 10 2 or *Z there

exist two and only two types Y and Y that are neutral to Z and X.

Kemark. Consider Y and Y’ as defined in {(A&). I {A3] is fulfilled we'get Y1X and
(*Y)LX. Hence Y'=*Y.

A valuable tool to evalute the structure of V and to generate something like
coordinates is the group Aut Vol its automorphisms, A one~to—one EmE::,m from V onto
V is called automorphism if it preserves the relations of the structure: formally:
: Definition 1 The bijection { is called an automorphism (denoted as {€Aut V) if
,:*%T*:AM: and XY Hf {(X)L(Y) hold for all X.YeV.

Remark. * itself is an automorphism.

The next definition states the homogeneity condition in terms of the automorphism
group,

Definition 20 A structure S on a set § is called roEomgmcza, if the group Aut § of
its automophisms acts transitively on S: this means for all pairs s.t€S there-is an element
feAut Sthat "translates" s into t, formally: {(s)=t.

The interpretation of this homogeneity is that no single element in S plays a special role
in the structure. We propose to fix this property as axiom for the structure V. .

W»f_,.; V is homogeneons.

In the following we use the set \V of all paired directions x={X.*X}. XeV. and
compress the structure of V into the m::v_m_., structure W defined by that set and a
relation extending .. Because of axivm A3 the {ollowing deflinition gives rise to a direct
translation of the above stated axioms A2 Ad and Ad on V into the corresponding ones
on W.

Definition 3: The set of all paired directions is denoted by W, and ifs elements are
called points. For all x,y€W we set x.y if and only if there exist Xéx and Yey fulfilling
XY If x1y we say "x is neutral to v'",

Remark. Because of A3 we have x.y if and only if X1Y for all Xéx and Yey.

Proposition 1: The structure W=(\V,1) has the {ollowing properties:
(B1} 1is a binary and symmetric relation, and no element xeP fulfills x.1x
{B2) there is a triple of elements that are neutral to cach other, and there is one more
element in V that is not neutral to any of those three elements.

(B3) the structure is homogeneous

]

Proof. If there would be an element x={X,*X} fulfilling x1x. then either X1X or X1*X: in
the latter case axiom A3 hmplies XX, So property Bl is true. Property B follows
directly from A3 and the remark. Now let y={Y,*Y} with xfy. According to axiom A
there exist an automorphism {€Aut V such that f{X)=Y.

Define the mapping g by glza)={IZ)I(*Z)}; since f€Aut V we got the equality
f(*Z)=*{(Z), and g becomes an bijection on W. Moreover g(x)=y, and all will be proven if
we have shown that geAut W. i.e. 2512, iff glzg)1g(z,) for all 2) 2., €W. By the definition
of Lon W we know that there are 7€z, i=12 fulfilling 244Z,; by feAut V we know
(Z2))(Z,) and the definition of g implies g(z)1g(z,)- The other direction .of the proof

-

works analoguously.

Remark. As a group Aut W is isomorphic to the factor group Aut V [ {id.*}.
Proposition 2 The structure W=(W.1) has the following property:
(B4) for two different points there is one and only one that is neutral 1o hoth.

Proof. For x let L_UHT: there is no z such that xtz1y} and
- x™:={y: there are w#z such that x1z1y and xawiy}. According to axiom Ab we get
:: and 1™ are empty. Since the space is homogeneous, ,.: and x™ have to be empty ton.
for all x€P. Now let x and v be two different points. The emptyness of the two sets /: and
x.S implies that there is cne and only one point z .M.—m_: ral to both x and v.
. Definition 4: Define the operation x*W7—diag-W by xxy being that unique

element neutral to both'x and v.

4. First consequences

In this section we derive the following results: the space of direction—pairs can he
Is the

structured as projective plane: furthermore there is no finite madel that
neutrality conditions.

Delinition & x'={weW:wix} defines the neutrality set of the point x {temember
that according to definition 3 a point corresponds to a pair of directions). The set L of all
neutrality sets is also called the set of lines.

Remark. x-x* defines a one—to—one mapping from W onto L.

Proposition 3: The structure G=(W.L,€) is a projective plane, i.e. it fulfills the
following axioms: R

{P1) Any two different lines have one and only one point in commen

(P2) any two different points are connected by one and only one line

(P3) there are 4 different points. such that no 3 of them are on a conunon line




Proof: For the proof of Pl and P2 we use property B4, Any two different mo:;m x and
are .”E::#..m_,_ by ;x.i - and the intersection of any two different lines, say x L and ¥,
contains only the element xxy.

For the proof of P3 we use property B2 We denote the pairwise peutral elements of the
triple by u.p.f and the element not nentral to all of them by w, There three points u,p.f
cannot lie on one line: assume u is element of-the line connecting p and f: but that line is
u™ and this is a cuntradiction to property Bl (no point is neutral to itself). Now take two

points of the triple w.p.f and connect them by a line. This _Em is the neutrality set of the

remaining point of the triplet. but w is not neutral to all of them. This completes :5

pro of of P3.

Definition 6 Let us consider a projective plane (W.L.€). A one—~to—one mapping 4

"y
from \¥ onto L and from L onto W is called a polarity if a~=id and il x€(' implies
al(")ea(x) for all points x and all lines (. Any point x such that x€o{x) holds 1s called an

absolute point (w.r.t. a).

mm:&; The definition of a polarity is equivalent to the following:

_a=id and af BJe( implies af ('}€B for all lines B.CeL. ‘
Proof: Far alB)e put x=a{B) and use the original  definition: this implies
o CYeals J=0f o B))=B. Conversely. suppose x€C and put x=ua(B). The second description
of a polarity then implies af .uwmmnn&mvui o B))=a(x).

bm:::m The relation 1 induces a polarity a on the projective plane of paired
m:ﬁ:ozw
Prool: Let i.iux.r for x€W and of B)=x il mnx.ﬁwon BeL. Note that the latter expression
is well-defined (Remark following definition &). For B=x' and xe('=y' we get
ol Cy=a(yv )=y, By the symmetry in (B1) we get vex™ and therefore E.A..‘._n.,,mx‘_,nm.

Theorem A: The projective plane G of the paired directions is not finite.

Prool: Assume G to be finite, According to Lemma 12.3 of Hughes/Piper 1962 any
polarity 7 on a finite projective plane has at least one absolute point. But an absolute
point x with respect to a fulfills xex™. This is a contradiction to property (B1) (and (B2))

of proposition 1.

Remark. Theorem A has the consequence that the space of directions is infinite too. In
order to handle this space adequately we will introduce some topology and use methads of
topological geometry. One possibility to do this is the following axiom:

~2

(AG) V is a connected topological (Hausdor{{--}space, the correspondence kXt is upper

hemi—continuous and closed—valued: mereover * is a homeomorphism.

Remark. [t is clear that some continuity should be assumed. We (ind it natural to assume
the closedness of the neutrality regions too.

Remember: A correspondence [:Z--Z':z-f(z) is a set—valned mapping with flz)#h A
correspondence { is said to be upper hemi—continuous (ulic) if the strong nverse image
{7(G)={2€Z;(2)cG} is open for all open sets G in Z°. The property uhe ensures that the
only possible discontinuities are implosions at certain points (see Lex. Hildenbrand 1974,
pp.21-6). A single~valued upper hemi—continuous correspondence that maps z to {z'})
induces a continuous mapping zrz’

. Proposition 4: The topology on V induces Smo?mwmm on the set W of points and on
the set L of lines of G. With respect to those topologies the geometrical operations of
intersection and joining are continuous (i.e. G is a topological geometry). Moreover the

polarity a is a homeomorphism.

The proof uses the following lemma (Hildenbrand 1975, p.23f. proposition 2): if { and g are
upper hemicontinuons and closed~valued then fng is upper hemi—continuous too. By this
lemma the operation x of Definition 4 becomes continuous (where defined).

@8& The topology on the direction space V induces a tapology on the paiut space. TcW
_m open if ?maﬂ there exist some x such that*X€xeT} is an open set in \'. According to
_..i_.v %_,..x is uhc. Axiom (A3) implies Nt=(*%)% Hence xex*
stated above (x,y)rx™ Ny is uhe, Moreover by :w: and the definition of x AN Lme W

is uhc. By :,1 Lemma

for x#y xxy is the only element of x Mg, Hence x (/;lmﬁmxﬁ is continuous. In
proposition 3 we used that joining and intersection can be defined by using operation x.
Since L is closed—valued L induces an homoeomorphism between \W and L. The continuity
of {the geometrical operations) intersecting and joining and the continuity of the polarity
follow. (Remember that according to the remark following definition & i induces a

one—~to—one mapping and a polarity as defined becomes a homeomorphism).




5. Introducing local coordinates
Ve find it natural to add the following axiom:
{AT) The region of neutrality Ut is locally homeomorphic to the reals.

Remark. Another equivalent assumption would be an axiom that gives a local linear urder
on that region. Consider a behavionr NeUt and some slightly different behaviour yeUt.
then we know the two directions A and B neutral to both X and U, and we can ask if Y
deviates from X in direction A or in direction B. We assume that we can answer these
¢estions. Locally this gives an order on equivalence classes of U+ By practical reasans it
makes no sense to distinguish directions that cannot be &mz.zmimrma by the relations L
and *, S let us assume these equivalence classes to be singletons. After having introduced
a local linear order we can assume that for all two points on U™ it is possible to find some
point between. Together with the technical assumption of locally completeness of the
order it is possible to show that the induced topology on U* would {ulfill axiom {AT).
Proposition 5 Any line in the geometry of the paired—directions is locally
homeomarphic to the reals. The point space of the plane is a 2-manifold.
The first property follows directly. The second part follows by the continuity of the
geometrical operations: the space is locally the product of two distinct.lines.
By Theorem 2.0 of Salzmann 1965 we know: = ;
. Proposition 6: Bach line is woamcEQ.an to the circle and the point space is

homeomorphic to the point space of the ordinary real projective plane.

6. The main theorem

Proposition 7 (Salzmann 196
projective plane is isomorphic to the (Desarguesian) real projective plane if the group G of

main theorem, pdl8): A two—dimensional

automorphisms acts transitively on the set of points; moreover G contains a subgroup
isomorphic to the group of spatial rotations «mo.wv.

Proposition 8: There are no more automorphisms that preserve the neutrality
relation. i.e. the space of paired directions is the usual elliptic geometry.
Since the set {u.p.d} forms a polarity triangle it is possible to use the usual coordinates
and the usual scalar product to represent the neutrality—relation L by <x.y>=U. This is
equivalent to the usual definition of the elliptic geometry.

Theorem B: The geometry A/._ﬁ_?..ém/,‘f is isomorphic to the usual geometry of
the sphere (having as point space the D—sphere and as distinguished subsets all great

circles).

Proof: Let p:V=W be the quotient map which identities every pair U,*U to one point. By
the assumiptions on * the map is a covering map, the number of sheets being #{id.*}=2.

see for instance Stécker/Zieschang 198, 6.1.7. We have assumed thal \" is conpected and

“we know that W is the real projective plane with fundamental group =~__ a/..bnmm. By the

classification theorem for covering spaces (Sticker/Zieschang 1903, £0.6.3) the covering
spaces over W correspond to the conjugacy classes of subigroups of =HA. W), e toid or N‘s
e
Since the covering is 2-sheeted we have the first case represented by V=07 (
directions) and p:V-W identifies cach pair of opposite directions. The preimages of the

lines of the projective plane under p are the great circles of 5.

space of all
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