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Introduction

This paper presents two procedures to construct all equivalence-
.classes of homogeneous n-person zero-sum games without dummies, in
form of certain canonical representatives, recursively on the number
of persons. The concept of homogeneous games was introduced by VON
NEUMANN und MORGENSTERN in [7]. In both methods only the weights of
these canonical representatives of the equivalence-classes are of
importance. '

The first method, as described in the second paragraph, produces some
unwanted objects, which only can be eliminated by testing whether
they are homogeneous. This method, however, shows that the number of
equivalence-classes of the n-person games mentioned above, grows more -
slowly than 3"’&, for each natural number k. Up to now no smaller
upper bound than (n-1)! was known ([2]).

The second method first divides the canonical representatives with
lenght at least three - with the length being the number of members
of the lex-max coalition (see [5,6]) - into disjoint sets, namely
into the set of decomposable and of reducible games. For the defini-
tion of these sets I refer to § 3. From the first method the con-
struction of the representatives with length two is kept, being
bijective. The resulting recursive construction generates all equiv-
alence-classes of homogeneous zero-sum games without dummies in an
injective way, so that no further tests are required.

In the last paragraph a set of representatives of n-person games
wifh Tength two is produced, whose cardinality grows faster than
each 2™K, with k being a natural number. ISBELL ([1]) showed that

2n-4 is a lower bound, but no larger lower bound was known up to now.



§ 1 Some Notations and Definitions

A simple n-person game 1is a pair (Q,v) with @ = {1,...,n}, which

is called the set of players, and v:F{a) + {0,1}, v(@) = 0. An
element of P (o), 1. e. a subset of q, is a coalition. A coalition S
is winning if v(S) = 1 and losing if v(§) = 0. If each proper sub-
coalition of a wjnnﬁng coalition is losing, this winning coalition

is called minimal.
The expression "n-person” is often deleted.

A nonnegative vector m = (ml,...,mn) € D@ together with a natural
number x,0 < A < m{Q) - where m(S) = z m. is the weight of
iesS :

coalition § - defines a simple game v by
1, if m(S) = X
v(8) = Yo, if n(s) < A,

or shortly by v = 1[k m(Q)]om, l1r is the indicator function of T.

The pair (m,») is a representation of (%,v).

A weighted majority game is a simple game which has a representation.

If a weighted majority game has a representation (m,A) such that ail
minimal winning coalitions have exactly weight A, then both the
simple game and the representation are called homogeneous. '

Definition 1.1: A vector m = (my,....m.) € N is said to be

homogeneous with respect to A ¢ N - written m hom A -
iff

It 1 <xsg
.i

my and
1

me1 =3

2: For Sc{l,..,r}, m(S) >, there is T3S
such that m(T) = X.
For this definition see also [4].



Thus a representétion (m,A) of a simple game is homogeneous iff

m hom A.

A simple game has zero-sum, iff v(S) +v {(&S) =1 for all S eR(a).
A simple game (Q,v) 1is equivalent to a simp]é game {Q,v'), if

v = v'or for some permutation = of Q.

The representations (m,») of a weighted majority game are ordered by
the total mass m(Q)}. The minimal elements with respect to the total
mass are called minimal representations. A member i of g "1is called
dummy of (a,v), if for each subset § of @ «containing 1 with
v(S) = 1 the equation v(S\{i}) = 1 is valid. _
OSTMANN {(3]) has shown that there is a unique minimal representation

(m,n) of a homogeneous zero-sum game (0,v) without dummies, which is
automatically homogeneous and satisfies m(@) = 2x-1. The term
"homogeneous zero-sum game without dummies" is abbreviated by

"h. o-s. game w.d.".

Thus the representation {m,x) can be identified with m, because

A= Ei%lil In this case we write A = A(m) and call it the level of m.
The equivalence-class - for short class - of (Q,v) is identified with

the ordered representative, i. e. with the representation

m' = (mﬂ(l),...,mﬂ(n))

such that

mw(l) _>_ mﬂ(z) 2> mn(n).

The vector m' is called ordered minimal representation of ({p,v).
If m'({l,...,k}) = x{m), then k is called the length of m -

written 1(m). In the sense of [5,6] the set {1,...,1(m)} is the
lex-max coalition of m'. In the following the class of a h. o-s.

game w.d. is identified with its ordered minimal representation.

Definition 1.2: A (n-person) court m' 1is a vector of N such

that there is an ordered minimal representation
and 2 j, 1 < J < 1(m), with

1 1

m' = (mj’ml""’mj-l’mj+1""’mn)’ m
court gj m.

is a



Without the restriction Jj < 1{(m) this definition of a court is
equal to that of [2].

The ordered minimal representation m 1is called associated with m'.
Each ordered minimal representation has at least one court, namely
itself. Theanumber of courts of m {is the number of types in the
lex-max coalition. Two players are of the same type, if their weights
are equal ([5,61).

Let 5, resp. Tn be the set of all classes of homogeneous n-pirson
zero-sum games without dummies resp. n-person courts and Sn resp.
Th the subset of classes resp. courts with length k. The length of
an ordered minimal representation and of a court, which particularly
are representations of simple games, was defined above.

The number of elements of sets SE, Tﬁ, Sn and Tn are defined as
k Lk
Sy tn’ s.n and tn‘

A member of SE resp. Sn sometimes is called game in Sﬁ resp. S_.

From OSTMANN ([31) and the "Basic Lemma" of ROSENMULLER ([4,51) and with

_ the help of the definition of Sﬁ we know the following
Theorem 1.3: m & Sﬁ iff
(i) my>my>...>m, m €N,

(i1) my = 1,

., J < Kk,

(ii1) (rnk+1 ,...,mn) hom m

(iv) m ({1,...k}) =m ({k+l,...,n}) +1
n
(v) If n>j>k then m,< I ms.
i=j+l
This important theorem will be used several times in the sequel and
has the following consequences:

For x € R define ([x] = max {z € 2|z < x}.

If k>[2], then s = 9 because of (i) and (iv).

S,k 1= ((La...1)} because of (i), (11), (iv).

{2k=-1)times



§ 2 A Construction of the Classes of the Homogeneous

n-Person Zero-Sum Games without Dummies from

Certain Courts with Less Persons Providing an

Upper Bound for the Number of these Classes.

In the sequel we presume n > 3. Indeed there is only one l-person
zero-sum game and none with two persons.

Lemma 2.1: Let m be in SE

and S be a proper nonempty subset of
K={1,...,k}. Then there is a r, k < r <n, such
that

r
I Mm. = L m..
ies vV jek+1 I

Proof: For each 1, n > 1 > k, define

S, = S U {k+l,...,i}.

Thus we have the following increasing chain:
Sk? Sk+1 < ... ?Sn'
' n

Sn is a winning coalition because X m; = A(m)-1 and S s nonempty.
j=k+1

Sk is Iosihg because m(S) < m(K) = a(m). If Sj is winning but not
minimal winning, then SJ._1 is winning because mj is the smallest
weight in Sj and the representation is homogeneous.

We conclude that there is a j with m(Sj) = A(m}.

J
Jjes i=k+1

If n > 4 define for eachm ¢ T,

(my=My , Mgse..om ), if my F M.
H(m) = ‘(m3,...,mn), ifmy = m,.

For example H(T,} = {(1,1,1)} because T, = {(2,1,1,1),(1,2,1,1)}

(see [21).



Theorem 2.2: Let m be in TF, n > 5. Then there is a natural

jek+1 9

r
number r, k < r < n, such that min {m, m,} = = m,
and H{m) is either a court in T;:i or a

N 4
h. 0-s. game w.d. in Sp-o

Further the two mappings
H and H

|5k

ke <k
n Tn\sn

are injective.

Proof: Lemma 2.1 guarantees the existence of r. Let my be different

from Mo . (The other case can be treated analogously.}

In order to finish the first part of the proof we show that H(m)

the properties (iii) and (iv) of Theorem 1.3 and that the inequality

my=Mmo| 3-m}+1

is valid.
The fact
Iml-mzl = max {my,my} = min {m;,m,}
implies
Iml-m21+m3+...+mr = max {mp,mpr+a(m)} - my - m,
= a(m) - min {m,my} =m {({r+l,...,n}) + 1
and
my-mpl 2 me

Define R = (mr+1,...,mn). In this first part it remains to show
(a) R hom [my-my| and (b) R hom my, ktl < j <,

because the assertion

R hom mj, J<j<k

is obvious.



ad (b): Let S be a subset of {r+l,...,n} with m(S) > m, for
some Jj, k+l1 < j < r. Then there is a subset T of S, such
that ms < m{T} < mHm,, because the weights mi, t €5, are
at most m..
Assume m{T) » mss then
m{({k+l,y...r}\ {jHUT) > min {ml,mz}.
By the homogeneity of m this superset of T has a subset S'
with m(S") = min {m;.m,}. Because of the fact m(T) < m.+mr

J
the form of S' must be )

S' = ({k+l,...,rIN\ {jH) U T

for some T'<& S.
This implies m(T') = mj, thus R hom M
The case {a) can be treated analogously.
The injectivity remains to be shown.
Let m be in Sﬁ, ‘H{m) in TnJ1 Define
(mi,...,mh_l): = H(m).
Then we conciude )
- 3 } t 1 1 i 1
m = (m tmp gttt mj, L ms Moy +ous mn_l).

If H(m) is 1in Sn 93 define

(1, ot ) =-H(m)

and conclude _
= J J 1
m= (131 i 1zlm s ml, ces mn-Z)
The other function can be treated analogously, thus both mappings are
injective.
g.e.d.

With the help of the function H two other mappings will be defined
which allow us to construct 1nduct1ve1y all Sk TE and which delijver
upper bounds for the cardinalities of S and Tﬁ

Formaily, let k > 3, n > 2k. Then def1ne for all m ¢ SE:



H(m), if m ., ¥ m,

the ordered minimal representation
associated with H(m), if m _; =m, % my

k+1+1
2 o

L | 1<1=<k-2

i i

As for the expression "ordered minimal representation associated with
H(m)" the passage after Definition 1.2. is referred to.

Under the prior assumptions k > 3 and n > 2k define for all
k.

m & Tn.‘

. k

X (0, c{m)), if m¢€ Sn

T(m) =

(1, H(m), if me TN sk

First it can be noticed that both mappings are well defined because
for each m with My = My > Mysd for some 1,1 < 1<k-2,

[k+1+{]
the term "H 2 (m)" is defined. In the definition of ¢ no
m € Sk was "forgotten' because in view of Theorem 1.3 the case

n
My = My, _q Can only occur if mp, 4 =1 and therefore n'= 2k-1,

which contradicts the assumptions.

The "artificial® definition of = guarantees that certain restric-
tions of < are injective, which is very important for the enumera-
tion.

Lemma 2.3: let n >2k, Kk > 3. Then

n-k-1+1

25 sy [ ]

2 2 k2 2
k k h] J J
s{Sp) =35, U U Th-1 Y J SN U S

j=k+l j=k =1 §=k-1



3
2 .
(T @ (101 x o(s5)) U (113 x ;:{ ™)

and the mappings

both are injective.

Proof: Let m be an ordered minimal representation in Sﬁ.

Distinguish the following four cases.

Loomy g my = myyy

The ordered minimal representation associated with H(m) is of

the form
(Mys Moy «ouy My, M s eeaa M)
1 2 2’ Tk+2 n
{k=1) times
or ,'
B ———] 0
(m2, cevs Moy Mys Moy s mn)

for some weight mi.
Notice that my equals |m1 - mzl.
As the total weight of H(m) is 2x(m)-1-2m,, the length of H{m)

k

is k, thus Sn—l contains o{m). The injectivity of o

restricted to such elements is an obvious consequence of
Theorem 2.2.

2. mpo=my ¥ My
Pick t € N such that m 4 +...+ mg =my (see Lemma 2.1).
Then it follows from Theorem 2.2 that

¢ t-2

o{m) S0

Moreover it is seen that the restriction of o to such minimal
representations is injective.
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3. My i m, + my .

From Theorem 2.2 it is clear that o{(m) € Tg_l for some j
and the restriction of o to such representation is injective.
It remains to consider the case ' '

4.omyo=mp .y > My, for some 1 <1 <k-2.

Assume that k-1 is even (the case "k-1 is odd" can be treated
analogously).
By definition of H it is clear that

H(m) = (ml, ey m‘l: mk+-|+1, fer s mn).
(k+1-2)times

Successively applying H we yield the following equation:

H (m) = (m1+k+1, ...,mn) =:m'.
This new representation m' equals o(m) because

[k+1+1J 1 4 K by the assumption.
2

2 _
The fact that m' is an element of 5__, _; is obvious.
The level of m' s (Ell) T my, thus ymp k-1 because

5 i

M2 Mertel * Meale2r ™12 Meare2 + Meirag
The easy proof that o restricted to these representations is

injective is left to the reader.
As the images of o restricted to these four cases are disjoint,
the injectivity of o K is shown.
S
n

It remains to consider the mapping ' .
If m 1is a court in 'TE\\ Sﬁ, then H{m) is in Tn-l because

' my and m, do not coincide.

The assertions concerning +t are now direct consequences of
the definition of 1, of Theorem 2.2, and the preceding proof.

g.e.d.

We proceed by defining the "inverse" of o K2 k > 3, in order to

S
k . l N
construct Sn from Sﬁ, Tﬁ, nt < n,
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Formally define

(ml+m2,m2,...,mz,mk+1,...,mn_l) if
k-times
m = (ml’mZ""’mg’mk+l”‘"mn-l)
(k-1)times K
or m = (m2,...,m2,m1,mk+1,...,mn_l) and m € S, 4
(k=1)times .

S{m) = (m1+mk+...+mj,mk+...+mj,m2...,mn_1) ifme T%-l for some j> k-1
(mk-1+"'+mj’mk-1+'"+mj’m1""’mn-l) if me¢ S%_z for some j > k
(ml"'"ml’ml""’mn-k-l)’ if me¢ Sg—k—i for some 1 < 1 < k-2,

j> k=1, where m, = k-1-1
- L 2n(m)
==/, if k-1 even.
k-1
Define the following subset Et_l of Sﬁ_l by
<k k .
Spep = Im €S, _;Im is of the form (my,mys....mosmy g, oM )
. or (ml""’ml’mZ’mk+1""’mn-l)}
Consequently the image of cl K is a subset of the domain of ¥. A
S
n
simple computation shows that % is the left-inverse of o, 1. e.
F(o(m)) =m
for all m esﬁ.

Thus T allows to construct the elements of S

ik

_ O ke2
mavUsi,u U

|
; from those of

U

J>k-1

J .
Sn—k-1'
1=1

The fact that not all elements of the image of ¥ are actually

ordered minimal representations in
this mapping T

tations inductively by applying ¥,

Sﬁ is the main disadvantage of

In order to construct all minimal ordered represen-

those elements which are not

representations have to be eliminated, a very difficult task.
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The advantage of considering o is that this mapping together
the mapping H , yields an upper bound of \Sﬁl. The next
S
n

with
1emma

shows that at least Sﬁ can be constructed in a satisfying way.

Lemma 2.4: The function

H UT31uUs

|5n j>2 j>2

is bijective, if n > 5.

Proof: By Theorem 2.2 this function is injective.
An inverse of this function remains to be defined.

Let (ml,...,mn 1) € Tn 12 then ﬁ:=(m1+...+mj,m2+...+mj,m2,...,mn_1)
is an element of Sﬁ and H(m) = m.
Anatogously we have for (ml""’mn-l) € Sn 9
_ J i 5 .
m = (rilmr’-rilmr, ml""’mn-Z) €S, and H(m) = m.
q.e.d.
Up to the end of this chapter the maps o, T, H are used to give an
upper bound of {Tﬁl resp. ISﬁJ.
Corollary 2.5: (i) 5, . =t . =1, if k> 2
Y £-9: 2k-1 T “2k-1 T z e
[Eig] il EE:E:lig]
' d . k-1 2 .
. . k+1 k+1 J J ¢J
(ii) s <s + £ t T s, + I 5
n+2 n+l j=k+2 n+el jok+1 1=1 j=k-1+1 *n-k-1+1
and k-1
k+l < _k+1 N J J
t - S + 2t + I s.+ I z ST ..
n+2 n+l1 k2 n+l okl Nl jrk-1+41 n-k-1+1
if k> 2, n > 3,
s 2 J J
({i1) s = I t T S,
n+2 i»2 n+l * i2 n
2 J J
t =2 t + I s,
n+2 i»2 n+l J>2

ifn> 3.
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Proof: (i) is obvious from the remark following Theorem 1.3.
(i1} is a direct consequence of Lemma 2.3.

(i1i) follows from Lemma 2.4 because _

two courts, ifm ¢ LJ T

. n+l
H - )_l(m) has exactly J>2
'Sn+1 one court, ifm¢ LJ gJ
j>2 “n+l’

g.e.d.

In order to define an upper bound of sﬁ resp. tE we need the following

Lemma 2.6: If n>5 and n < 3k-3, then

K k-1 k k-1
Sp 2 Sped and to <t 5.

Later it will be shown that these inequalities in fact are equations
(at the end of § 3).

Proof: Let m be an eiement of SE and define

W= (MyseeesMy oMy os.-sm ).

k-1
n-2
and the number of courts of W is still the number of courts
of m. If all elements of Sﬁ have this property the proof is

ifm_;=m =m_,, then W is an element of §

finished because the map m+ W 1is injective and preserves
the number of courts.
. _ k
It remains to be shown that m _; =m ., for all me S_.

Assume m,_; tm .1, then we have:

Mol 2 Mea1 s Mo 2 MeatMigge- s M 2 Mo go2y41 M3k-2
This is a consequence of the expression for the level of m, i. e.

k n
T m. = L m.+l.
j=1 9 ekl ?

The last inequality shows that n > 3k-2, a contradiction.

A(m) =

g.e.d.

Now new sequences which majorize 55, tﬁ can be defined in the

following inductive way:



W R R B
S3 - 54 - t3 - ]., t4 - 2
[2] [5;—1-] k 2[”""“11
) . - 2
<k _ =k 2J 5 =d §
s . =5 + I t + T s + z T s and
n L S Bt S SO Lo SR B R O n-k-1
B
-k, g T L ifn> 3k-2, k> 3
n- °n Lo tpepe TP N2 SkmL, RO2 S,
i=k
e T T, i k23, n <33, n 2 2L,
[21 . {—“;13 [%]
~2 ~j nj a2 ~j ~?
s = I ¢t + ¥ s , t-= ot +'s°,n>5.
n j=2 n-1 522 n-2 n j=2 n-1 n -

A direct consequence of Lemma 2.6 and Corollary 2.5 is

Corollary 2.7:

The seguence 'EE resp.'%ﬁ majorizes sﬁ resp. t&,
i. e. '
kK o~k Lk ~k
Sp S Sy Ty Sty
if n>3 and 2 <k g_[n+1}
2
Some of the EE, Eﬁ are tabulated in the supplement
. ~3  ~4 ~k ~n-4
Lemma 2.8: S; < S .0 < «e0 €S o 6 < et € Sg0 s
=3 =4 ~k ~n-4
b < T2 < oo < Yraokes <t < Uane14e
if n>7

Proof (per induction on n):

If n =7, nothing has to be shown because in this case
3n - 14 = n.
Assume the assertion is valid for some n > 7, we are going to verify
it for n + 1. Observe the following inequalities which follow from
the inductive hypothesis and the definition:
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' k-2 .
g§+2k-5 ~h+2k 6% .~ f31+2k 6% 2Ky t BT S
j>k+1 J_k n 1=1 j>k-1 “k-1-
> 31 o, vz @ kz3

Sn+2k-8 * ik n+2k-$ jok-1 Sn+2k-9 T » 141§ k 1-1 n+k 1-6 *
= £ 3

n+2k 7t j>k-1 n+k-6
> 'S oy foreach 4 <k <n-3.

The last inequality is strict because

~J ~k=-1
L S > 5 > 0. .
k-1 n+2k-6 n+k-6
The inequality EX > k-1 can be shown analogous]
9 Y Yne2k-5 n+2k-7 9 Y.
g.e.d.
Define
2 _ .2 _ .2 _ 2 _
a3 = a4 = b3 =1, b4 =2,
(0 [ty
2 2 2 .
ar=a, = Ib ¢ E hops 1fn>5
j=2 =2
B ety
pA Z-,
b:=b%=2a- zal,, n=>5;
n n 3»2 n-2
k k-1 .k _ k-1
a, = a, 5, by = b if k>3, n>2k-1.
Theorem 2.9:
The sequence aﬁ resp. bﬁ majorizes Eﬁ resp.’%ﬁ
. ~k ko vk k. n+l
- i.e. s <a resp. to<b - 1f 3 <, 2 < k< (1.

In the sequel this theorem allows us to give simple upper bounds of
k .k

Sp> s S, and to.
1f Sn 12 an 1’ tn < by then Spip < 3nupe thep £ Ppape

which is a consequence of the definitions of these sequences.

%+k €
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Lemma 2.8 suggests the following procedure: By the definitions of
3 tJ, a% bJ in the case n >3j-3, j >3, it is realized that
Theorem 2.9 is proved once the inequalities
~k k k
Yz < ahp and By, < b5

are established. In view of the definitions of Eﬁ, %k it is suffi-

n
cient to show the following

Lemma 2.10: )
k-2

k k J J J

85, 0 >dq ~+t E b + I a + I T A5,_1_0 >

3k-2 = “3k-3 okl 3k-3 ik 3k-4 1=1 jiﬁ'] 2k-1-2

. k-2 .

k k k J ] J
b > by +2I b + z a + I L oay, 1.
3k-2 =~ "3k 3 7 33k-3 okl 3k-3 i 3k-4 1=1 jok-1 2k=1-2 ,
if k> 3.

Preliminary Remarks:

From the definition it can be seen directly that

k k  _
(1) &y =3, 50k-2y> (2) By = By pppy 2and
(3) a,,q =23,y + by (4) by = b 4 +2b +a ;, if n>5.
From (3} and {4) it is easy to see the following equation:
(1) apyy = 24y - 30, - 20, g,

thus

(IT) b =2b 4 +3b _, - 3b_

] 3 - 2 4, if n > 8.

Proof of Lemma 2.10:

£I+1]

k=2 - 2

Put x, = I T a .
k 1=1 j=1 1-2+4

According to the preliminary remarks (1),{2) it must be shown that

ez > fet T Prezger 2542 %k

z
J=1

- b A X

As2 ~ Okl

def.

resp. by,o 2 b -b + a * Xy (k > 3).

k+2 k+1 k+1
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- Consequently it is sufficient to show that

Byl ~ A4l T Xk 2 0.

From the preliminary remarks {1),(3) and the definition of bn we get
for each n > 6:

disy
LN R L T
j=1
thus
n-2
(II1) xp = 2 (2(ag,q + 2y43) = Ayyp)
n+l
= 2a4 + 4a5 + 31£6a1 + 342 " A3

The case k < 12 is checked easily with the help of the 1ist of the

ag, bﬂ (n < 16) in the supplement.

Let k > 12. Then we have the following eguation:

k+l
z,: =b - a -x%x, = b - a + a - a - 3% ay - da.-2a
S T B T B L A 574
. ) :
= bk+1 - 4ak+1 * 8,3 " Ao T 315681 - 4ag - 2a4
‘;)bk+1 m 8byyy *12by * Bby g+ 2Dy = 3Byyp 7 ZDyyy - 2By
) :
+3b,q *+ 2y - 31)56(2bI - 3by_q - 2by_y) - 14
- k-2
= 2b, 5 - 5by 5 - Bb 4 + 14b + 8b _, - 6b, + 3b_, - 126%.I
+ 15b; + 6b, - 14
- k-2
= 2by 3 = Sby 5 - 6 4 + 8D +1lby 4 - 1569b1 + 15b, + 6by - 14
k-10
10b, _¢ + 53b,_; + 50b, _g + 19b, 4 + 126 9b, + 15b, + 6b, - 14,
. if k> 15
= 10b8 + 53b7 + 50b6 + 25b5 + Gb4 - 14, if k = 14
1Ob7 + 56b6 + 56b5 + 16b5 - 14, if k = 13,
thus z) > 0.

In this last equality the equation (II) is successively applied nine times.
The general case k > 16 is illustrated in the following diagram.
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k-1 Ik-2

k-3

Application of (II) to

number of bj k+3 | k42 | k+1 k-4 | k-5 [ k-6 | k-7 |k-B {k-9 |k-10|...[6} 5|4
former expression for 7 - 14 2 -5 -6 8 11 9 ] 9 9 9 9 9 9 9 ... 9 15 &
Application of-_(II) ; B —T ]_ l _] l | | I —|_ | I -_I T ]_ I T l
the bk+3 y‘ié]ds . . -1 . i 7_ 9 __9 -2" 9_“ 9 _9 i 9_ 9_._.. 9_15 6_
Apphcatwn of (11} to | | | | | l | | | | | | | | | I !
the bk+2 yle_lds -2 -1 10 ° 11 9 9 9 9 9 9 ] 9 .. 915 &
Applicati f (II) t .
PP 1cat:!2nbz+1(y‘ié)3'idg I E | -5 l 4 I 17[ 13 | 9 | 9 9 I 9 I 9 I 9 I 9 I | 9 I15 |5
Appli i f (11 *
°P 153%;}2“[}2 (y‘ig'idtg | l | l - | 2| ZSl 19| 9! 9| 9| g I g l |l9 |15|6
Applicati f(If) t
i 1catﬁgnb;_l(yi;1dg oLl ol wlegale] of s o 1 ool folse
Application of (I} ta T - N
t_hEbk:_E_yI,Mf_j_s'_ _ -]— L |—__| J- |—_10| LI SIJ__ZQI.._QI __J 9_L L— |9|15|6
S
+
! }

the b, _ 1d -13, 21, 59, 29 9 9 ,...19 (156
F P VIS - 4 =R 4RIy
Apphcatwn of (II_)];o s a0 6 " 6
_ Henggvields ] o
Appiication of (II} to I -I_ | I + I —1- —'—— I—{-
the b, _ yields ‘ 16 &3 50 19 9 ... 2 15 &
I s t 1 { L ] ! i 1 [ T | L 1
q.e.d.
Lemma 2.,12:
(1) 2 <b 1, n > 4
(1) . 285, > By M2
(111) Zan < A0 n> 4
(iv) bn+1 < 3bn, n 3_3
(v) 341 < 3a,s n>b5,
Proof:
(1) by = by * b+ a3, > 2, ifn>5
(4)
(the case n = 4 is trivial).
L. J
(i1) b = Z2a_- Ia) , < 2a
n+l def. n i»2 n-2 n

(iﬁi)

For n < 5 the assertion is valid.
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If Zan‘1<an‘_, then by (i) we have the following
inequaltity:
2241 (;) 2(eay g + bp) < 2ap + by = Anyp

Thus the proof is finished by induction.

The 1ist in the supplement shows the assertion in case

n < 7. If the inequality is valid for j <n>7 then
b + 3bn__1 - 3bn_2 - 2b

n+l1 (13 " n-3
(?) by * Bpy 7 g - Ppg
< 3b_ -2
< 3bn

and the proof is finished by induction.

Lemma 2.13.

a = ?2a + b < 2a + 24
n+l (3) n-1 n (i1) n-1 n.
< 3a,-
(iii) "
g.e.d
b, <2 - 7% and
byryy <50 778, ifn 2.
a5 £_7n-2 and
Qo041 < 3 7n-2, ifns>2

For n < 4 the assertion follows from the Tist in the
supplement. For n > 5 the inegualities are implied by
induction on n with the help of Lemma 2.12. (iv):

b

-I Zb]"l + 3b-]_2 = 3b~l_3 - Zb']_q'

Tby_p + 3by_5 = 8by_4 - 4by g

f A

7by.p
because (iv) guarantees

8by 5 + 4by

1 = 2n resp.

_5 > Iy_gq > 3by_5s
1

where = Zn+l.
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(i1) Again for n < 4 the assertion follows from the list. For n > 5
the inequalities are implied by induction with the help
of (1) and the preliminary remark (3):

- . an=2 o 5n-2 _ on-1
Apn4n = 2a2n + b2n+1 <2 -7 +5 7 =7
resp.

_ n-2 n-1 _ n-2
Bop43 = 2a2n+1 + b2n+2 <37 +2 -7 =17 - 7 <3 -

A consequence of the last lemma is

Lemma 2.14: Let k > 4, n > 3.

(1) If n > 9-25, then b < 3",

(i1) If n > 9k-29, then a_ < 3n=k,

Proof of (i) if n is even {the other cases can be treated analogously):

k - Tn3 - Tn49 + In2

Put n =21 3‘9k—25? then 1 > RO = Tn7 » which
is equivalent to 2 - 71-2 5_321-k, thus b, §_32]'k by the last
Temma. S

q.e.d.

Now the aim to construct simple upper bounds is reached and can be
expressed in form of the following

Proposition 2.15:

Assume k > 4, n > 6.
If n > 9k-27, then s 4 <3

Proof: With the help of the preliminary remarks (1),(3) and the Tast
lemma the following inequalities are implied:

n-4
=71
S1-3 2 T fneggel T Pl T Pz T A
n-k-1 . aN=k=2
<2, 4 t2, 5= 2«3 +2 -3
. g . 3nk2 3n-k
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The other'inequa1ity follows from the fact that

b < Z2a < 3a_.

g.e.d.

We have shown that the number of equiVa1ence-c1asses of the homoge-
neous n-person zero-sum games without dummies is less than 3n-k, for

n sufficiently large.
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§ 3 A Procedure to Construct all Classes of

Homogeneous'n-Person Zero-Sum Games Without

Dummies From Those With Less Persons.

Unless otherwise specified, assume n > 5.
The games in Sﬁ can easily be constructed from those of S, and 5, -

by means of
-1, 2
n -

Indeed, Lemma 2.4 guarantees the bijectivity of this function.

k

Definition 3.1: For m¢ Sn define

R{m): = (mk+1,.".,mn).

A representation m' of Sj is called subgame of m, if the following
conditions are fulfilled:

(i) Merrsd = m%, i€ {1l,...,j}, for some not negative integer r

(especially n > k + r + j).

(i) m.

;= 0mod a{m'), if 1<i<k+r.

If i<k and k> 3, we call m. small in m, if

n i m'i+k’ mn_mi-'_l = |’]‘|i’l_“m‘i_|_2 R mn = 1
: k-1
and | (myseeeomy_gs mi+1"“’mn-m1.) ¢ Sn-rni’

For example the representation m = ( 3,3,3,3,2,1,1,1) has the subgame
(2,1,1,1) but m (i = 1,2,3) 1is not small in m although

m 1 andn z.mi+k.

n-m;+1 ~
’ k
If m' = (mi,...,ms) is a subgame of the game m € S , then

n-s=c¢ - x(m') for some ¢ € N.

In the following certain representations are "decomposed".
This decomposition is based on the next important

Theorem 3.2: Let m be a game in Sﬁ for some k > 3.
If m has no subgame, then m, is small in m.
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3,4 are trivial because then Sg = = Sz.

Proof: The cases n

5,6 can be seen easily because all classes

The cases n
of homogeneous 5-resp.6-person zero-sum games without
dummies are well-known (compare with the supplement).

The proof proceeds by induction on n.

Assume the assertion for j < ny > 6 and put n = ny + 1.

The following six cases are distinguished:

1. There is a natural number i, 3 < i < k, withm,_; =m. >m, ,:

.1 s constructed in order to apply the inductive

A game m' €S
hypothesis:
If i < k, then there is a number j with i < j < k such that

e . -
.= (ml,...,m_i_l,m_i_!_l,...,mj,mi mk+l,mj+1,... ,mk,mk+2,...mn)

k . .
n-1+ If 1=K, consider

m

is a member of S

ml: = (ml,...,mk_l,mk'mk+1,mk+2,-..,mn),

which is an element of Sﬁ_l, too.

If this newly formed game m' had a subgame m", so would the old
game m because with '

— 1]
Moy = 0 mod x(m''), m,

; = 0 mod A(m")

T M
it is also vaiid that
m; = 0 mod A(m") , m,q = 0 mod 1(m'j as my_q = m,.

By hypothesis m, is small inm' and therefore in m as well.

2. k>4 and my = My!
Then
m' = (m1+mk, ml,m3,...,mk_l,mk+1,...,mn)
- is a game in Sﬁ:i and has no subgame either, thus my is small in
this game as it is inm.

3. My T Mg T My
If k> 4, then
m' = (ml""’mk—l’mk+1""’mh)
k-1

s in S 5. This game m' cannot have a subgame, otherwise m
would have it as well. With the help of the inductive hypothesis
it follows that m, is small even in m.
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Now consider the case k = 3 and m > 1, the case mg = 1 being
obvious. It is my + m,, otherwise

(m5,...mn)
would be a subgame of m.
In view of § 2 it is clear that o(m) is a game in Si_l and o(m}
has no subgame. As c(m)2_= m,, wWe have shown that Mo is small in
o{m) by the hypothesis, thus m, is small in m.

My > My
Take j 3_k+1°such that my = mk+1_+...+mj and put E%: = m3—mj.
If the game

mf = (ml,mz,m3,m4,...,mj_l,mj+1,...,mn)

which is in Sﬁ_l, has no subgame, nothing further has to be shown.

Assume m' has a subgame
t
s-i+1

t
s-1'

m' = (m.,...,ms) €S

3 resp. S

If i < j-1, then t+s < j because of the fact
my = 0 mod A(m"').
This implies

n

n k
Us+] f

=1 and T my>m, +m, +
T=5+1 =" 2

thus Mo is smatl in m.
If i > j-1, then because of ms £ 0 mod A(m") we have

My =M q +...4my for some x > i. This and the fact that

my = 0 mod x(m'') has the consequence

my = Mg +...+mj_1+mj+l+...+mi+t_1+c-A(m )
for some not negative integer ¢, implying the following

equation: N ivte1
I m., - m, + I ms
jessl 3 8 gai
k
='M3 + rm, + (c=1) * Aa{m") + A{m")
s J -
j=4
k
= ¢ - A(m") +W, + I m,.

By the inductive hypothesis the proof is finished in this case.
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5. m, > mz > m3 =My, k = 3.
Put ﬁi = my-m_, where my = Mgt...+m , and

m: = (ﬁl,mz,...,mr_l,mr+1,...,mn), which is a game of Sﬁ_l.
The case m' having no subgame is trivial and the case m' having a
subgame m"=,(mi,...,msj with 1 < r-1 can be treated analogously to
4. and is skipped here. .
Assume 1 > r+l, which yields My = Z(mr+1+"'+mi-1) + k-x(m') for some
k > 1, thus m({s+1,...,n})+2x(m") =l-my =m g cHms kA" ) -1 > om
and My *e e -+m =My = m3-1. It remains to be shown that m

r+l

n-mo+1 = L0
If i>r+lori=r+l and my > 2x(m") the proof is finished "directly.
Otherwise m' = (ml,mz,m3,...,m3,mi,...,mn). Observe that m,-m; is
J<ytimes
small in the came {m, =M, ,M,=T, My e ooyl 4. ..M ). as it has no
. 1737273 .% 3 n-ms
y-1times

subgame, thus m, is small in m.

6. m1 =my > My = My, k = 3.

! = -
Put 2 = {2m; m3,m3,m3,m4,...,mn)
in Sn. The following two cases may occur:

and consider that m' is a game

(A) m' has a subgame.

(B) m' has no subgame. ‘
ad (A): Letm" = (mi,...,ms), mf' € S:_1+1, be a subgame of m.
Take r ¢ N such that My = Myt.. 4. The fact that
i+t-1 € r means that M is small in m.

Now, assume f+t-1 > r. It is easy to see that i < r,
otherwise m" would be a subgame of m.

The fact 2m; = 0 mod A(m")  implies

Put ms = ¢ - x{m') and observe the following equality:

3 1]
g4 Teeet My =My 4 (c - E)A(m ).

Thus m, is small inm if ¢ > 2.

If ¢ =1, then My = oo =My g = A{m"). Concerning the
case i-1 > 3 look at

(ml-m3,m1-m3,m3, . ,ms,m_i 5 s ,mn_lel )) s

(i-4)times
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which is a game in S3 and has no subgame (otherwise

n-m3-1
m would have the same).
The inductive hypothesis guarantees that my = My is small

* in this newly formed game, thus my is small in m. The case

i-1 equals 3 can be treated analogously by looking at the
game ' |

]

(m3,m1-m3,m1-m3,m5,...,mn_m3)

. A 3 .
which is in 5 ) again.

: In this case (3) guarantees that my is small in m',

thus
. . o2
m' = (ml,ml,ms,m5,...,mn_m3) is a game in Sn-m3-1'
Put - - i -
. (my-my,my m3,m3,m5,---,mn_m3)s if my-mg > mg.

(m3,m1—m3,ml-m3,m5,...,mn_m3), otherwise.

Consequently m is the ordered minimal representation of

a (n-m3-1)-person game of length 3 and there is no subgame
of M, otherwise m would have the same subgame. We conclude
that (my-m;) must be small in m, and therefore m; is small
in m.

Each game 1in Sﬁ, k > 3, has at least one of the previous properties

{1}-(6), so that the proof is finished.
In this proof Theorem 1.3 has been used several times without being
mentioned explicitly.

Definition 3.3:

g.e.d.
k
Llet m € Sn’ k > 3.
Then m is calied reducible, if
k-1
(i) n> % ms * k +1andm | _, = 1.
Jj=2 n-com. + 1

j=2
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.. 2
(i1) (mysmym 45...sm €S°
kel n-kzlm ) n-kzlm.-k+2
j=2 J j=2 J

m is called irreducible, if it is not reducible.

Lemma 3.4: Letm¢ Sﬁ, which has a subgame.
If i resp. s is the minimal resp. maximal number
such that there is a subgame of the form
(mi""?msJ resp. {mi.,...,ms)
then
(mi,...,ms)
is a subgame, too.

Definition 3.5: With the notations of Lemma 3.4 the subgame

(mi,...,m

S) is called maximal subgame of m.

Proof of Lemma 3.4:
2 = (m-.,...,ms).

Put ml = (mi,...,msl), m ;
The fact my,_, = 0 mod A(m?) and the existence of at least two
personswith weight one in ml imply s' > i'.
If i' is not a member of the lex-max coalition gf ml,
)

i.e. i+ 1(m1) < i', then Merhoot Moy = C A{m™)-1 for some

natural number ¢. If ¢ > 2, then s' >Ss, a contradiction.

If ¢ =1, then Mii_g > My Foot Mo, which is a contradiction,
too {see Theorem 1.3(v}).

Thus, we have ¢ = 2 and s' = s,

If 1+ 1(m}) > 1", we conclude i + 1(m¥) < i' + 1(n°)

, as s' < s,
thus ms = 0 m?d A, 1 5_% < i, where A is the Teast common
multiple of A(m”) and A{m~). The facts m, , < m, +...+ m and

A 3_21(m1) imply the existence of some p > s' such that

mj +. .+ mp = ), thus (mi,---smp+A_1)

is a subgame of m, which is a contradiction to the maximality
of s.
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Lemma 3.6 Letm € Sﬁ, k > 3.

Then m is reducible, if and only if m has no subgame or the
maximal subgame
m' = (mi,...,ms)
of m has the property
My +m > M qFe. A

Proof:

ISt STEP:  Suppose that m is reducible.
Assume the contrary, i. e. m has a subgame and the
maximal subgame has the property My My < My gt D
- This last inequality is actually proper because of the
congruence
ms = O mod 2a(m'}, 1 <j <i-1.
As the total mass of m is 2)\(m)-1, we have the following
inequality:
m{{s+l,...on}}) < myt...4m g = A(m'),
thus
m{{i,...,00) = my=...-m_q < A{m')}-1.
The reducibility together with Theorem 1.3 shows that

| A

mi_l m({-i,...,n}) - mz_-.._mk_1,
but

ms_q = 0 mod A{m'),

which contradicts the assumption.

2"% sTEP, Suppose that m has no subgame.
The assertion follows by induction on k.
For k = 3 the assertion is valid by the last theorem.
Assume the assertion for kg < k-1 > 3. From Theorem 3.2
we know that

m: = (ml, m3,...,mn_m2)

k=
n-

H

is a game in S -1
o~1.

The case m having no subgame is clear by the inductive
hypothesis.
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Now consider the case m having a subgame m' = (m.,...,m
Pick a nonnegative integer r such that My = My -+ -4
then j < r, otherwise m' would be a subgame of m.

We conclude that there is a natural number ¢ such that
My = Mpyq +eetmy g ¥ A(m') - ¢,

thus . :

gp1Te ety = Mote.m +(c-2) a(m' ),

which implies the inequality
m_i+. . o'i"mn"mz_'- . ."mk_l i mk,

thus k-1

n- Im;>s+l
j=2 3

and the proof is finished.

Suppose that m has a subgame and the maximal subgame

m' of m has the property
my +m > mk+1+l..+ms.

We proceed by induction on n.

If n is less than six the assertion is certain]y valid,

since all such games are explicitly known.

Assume the assertion for r < n-1 > b,

Let m be a game in Sﬁ.

If My > My gty the proof can be finished directly.

Otherwise Took at

m m.
B o= myse e s 1haoosl)
. m: sW‘)s 8=y ]
n-s .
(iTﬁFj + 1)times
which is in s
. n-s
i+ )

If m has no subgame resp. only subgames (mi,...,ms)
with s' < i-1, thenm {s reducible by the 2nd step resp.
the inductive hypothesis, consequentiy the assertion is
true.

If @ had a subgame W' = (M;ise..omg.) with s* > i, then
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(Mi1sensmgals. sl

(A(m))- (s'-1)times

would be a subgame of m with level a{m')a(F').
This would be a contradiction to the fact that m' is
maximal because i' < i or s' > 5.

g.e.d.

Now "the decomposition" of irreducible games in Sﬁ can be defined.

Let m be irreducible and m' = (mi,...,ms) be the maximal subgame
(m' exists because of Lemma 3.6).
Thern n .
m: = ( It 1.....1), where
Afm*) A(m")
(e+l)times
n-s =c-am), is in sk, .

Definition 3.7: MWith the previocus notations m is called

decomposable (with respect to i), written

~S
m=m @ ; m'.

In order to “compose" two representations, first define for each

% ¢ 5K, k > 3, the following:

At

1 1

there is a subgame (ﬁﬁ,...,ﬁ&_l) of M for some i}.

J
p(m) = max {j € {k+1,...,n+¢l}[m M, = = or
LR NS e

In view of the last lemma and Theorem 1.3 we know that

it w = 1.

Mo(m)-1 = To(m)-2

If p(f) < n, a natural number i, p(f) < i < n, and an arbitrary game
m' € Sn' define the composition of M and m' resp. i by

fad

m= (a(m') - W, (m') - ﬁ}_l,mi,...,m'n.,1,...,1).

(n=1).x(m')times

Lemma 3.8.: With the previous notations m' is the maximal subgame
of m and m is decomposable with respect to 1,
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in addition
m=m @, m.

Proof: From the definition of p(M) and the last lTemma it is easy to

see that m is irreducible, so it suffices to show that m' is
the maximal subgame of m.
The fact m' being a subgame of m is a direct consequence of
Definition 3.1.

Let m'' = (mi.,...,ms.) be the maximal subgame.

Assume i' < i, then

(ﬁi.,...,ﬁi_l,l...,l)

(s'-s+1
A(m")
is a subgame of T, thus p(fi) > i+l, a contradiction.

Jtimes

Moreover m. equals one, that means
Mo (f)-1 €9

Notice that p(m) = i+n'.

Corollary 3.9. Letme¢ Sﬁ, k > 3, irreducibie. Then m is decompos-
able and the decomposition is unique, i. e. if
m=?ﬁ1®1 mi=’|ﬁ2®_i
1 2
then b =W, i, =i, andm' =m
! 2

m -,

Furthermore i, 3_p(ﬁ1).

The last results can be summarized in the foilowing important

Theorem 3.10: Letm E.SE, k > 3.

Then m is irreducible, iff there is exactly one

"complete decomposition" of m, that means:
3
ne(n® )@, 1)@, ...)@
—y— 1 2 3 r
{r-1}brackets
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with a reducible game m1 in Sﬁ and games mt € Sﬁ and
1 t

. 1 , . s .
i > p(m~), Tg 2 Ty 0 In addition the parameters r, feam

t

are uniquely determined by m and vice versa.
This ‘theorem yields a procedurge to construct all games in Sﬁ, k > 3,
which are irreducible from the sets Sp» M < n-2.
It remains to look at the reducible games of SE, which may be constructed

in another way, shown in the sequel.

Remark 3.11: If m is a reducible element of Sﬁ for some k > 3,
then as well

f{m): = {Tlfma""’mn-ml)

‘o Sk-l as
is in n-m2-1

g{m): = (ml,mz,m4,...,mn_m3)

is in sk} and in addition f{m) and g(m) are
n"m3"1
reducible, if k > 4.

The other way round, if
k-1

m s in %1 and m2 is in S
N Ny

if k > 4, such that

m% = m%, mg 3_m%, mg mé,...,mﬁ =m_  (especially

, both are reducible,

N, > ny}) then

1 2 1 2 2
m = (ml,mz,mz,m3,...,m »1s...51)

Mo, times
. . . k , s
is a reducible game in Sn2+m§+1 and in addition
f(m) = ml, g(m) = mz.
So we have proved the following
Theorem 3.12: Let m € Sﬁ, k > 3.

m is reducible, iff there are two -in case k > 4
1

reducible- games mt ¢ 551 with n, > n, and ml = me
n2 2 =1 1 1

for all i ¢ {1,3,...,n1} such that



Mo times
Moreover these games m1 and m2 are uniquely determined by m and
vice versa. We say that m can be reduced to m1 and m2.

The last two theorems together with the bijections (H 2)-_l
S

yield
n

a procedure to construct all classes of homogeneous zero-sum games

without dummies successively.

The last section of this chapter refers to Lemma 2.6 in order to

show that the inequalities in fact are equations, applying the

previous results. More precisely it must be shown that sﬁ and sﬁ:%
resp. tﬁ and tﬁ:% coincide, if 3k-3 > n > 5. In view of the proof of
Lemma 2.6 it suffices to show that m. equals m _; ° ¢; for all

k-1

1 < i < k-2 (for some natural numbers ¢;) and all m € S5 - because
then ' |
(M _qs---sm,) hom m., 1 <i < k-1,
thus
(ml""’mk—l’mk—l’mk~i’mk"“’mn)
is a game in Sﬁ, implying the other inequalities.
This can be done by induction on n:
Assume the assertion is true for all 1 < n-1 > 5 as it is for 1 = 5.
Let m be a game in Sﬁ:é.

1St STEP: Propose m is decomposable, let us say

that
m = m]' @ . mz,
J
n! € s51 for some 1< n-3, by induction hypothesis
m} =Cy m&_l, i < k-1 because k 2_1;2, The fact

m, = A(mz) . m} for i < k=1 finishes the proof in this

an STEP: Propose m is reducible or k = 3. Assume there is

i < k-2 such that m; # O mod m __,, thenmy >m +m ;.

thus my > m +m, and m_, > 1.

+1
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Consequently we have

k-2

L m, > 2(k-3), _

i=2
thus

n-2 > 2(k-3) + 2 + k = 3k-4
because

(ml,mk_l,mk,...,m k=2 )

n-2- t m.
j=2

is an ordered minimal representation by the fact that m is

reducible resp. k = 3. This shows that n must be greater than
3k-3, a contradiction.

As all cases were treated the proof is finished.
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§ 4 A Lower Bound for the Number of (lasses

of Games with Léngth Two

At first the definition of a set of n-person games of length two,

introduced by ISBELL ([11), is recalled, from which he derived the

well-known lower bound 2n-4, i. e. the cardinality of this set.

Let
m = (ml’TZ";"mgﬂ?B";'m3j""mj";"mi)
(k2+1)t1mes kytimes kjt1mes

be a vector in IN", such that

(1) k2+"'+kj = n-2, I<-I > 1, for 2 <1 < J;

J
(2) m = I k]m1 -my + 13

1, if j-1

1t
o
=
O

a
™

r k *m +
rel 1+2r-1 1+2r-1
j-1-1 ' , 122

L oKipopel " Mypp-p > 1F 071
L r=1

mn
=
=
(o]
(o %
r

Then m is a game in Sg.
Exactly these games possess a "minimal" incidence-matrix, 1. e.
one with n rows. For this property and the definition of the
incidence-matrix I refer to ISBELL ({1,2]) and OSTMANN ([31).
Define

C, = {m ¢ Snlm has a minimal incidence-matrix}.

It is known from the paper mentioned above [1],

that  C, = {(1,1,1)} and [C | = 2% in case n > 4.

The rest of this chapter is used to enlarge the sets Cpye
Continue the composition @ K of the last paragraph formally on Cn,
Which yields a mapping )
" e K0T
(m,m') —=m @ I(rn',
where

m ® kml = (ml)\(m'),...,mk_l)\(m’),ml,...,mi).



- 36 -

Lemma 4.1: A game in C_ has no subgame.

Proof: Assume the contrary and n > 4, the case n = 3 being trivial.
Let m' = (mj,...,ms) be a subgame. From the fact that m, = m,
we know that j must be larger than three.

"Put

Am') A(m*)
It follows from Theorem 1.3.{v) that ¢ is a positive and c' a
nonnegative integer, such that

c' > c-1
The game m has the property (3) of the beginning of this paragraph.
Applying (3) twice it follows that

n
r om.+ 1,

m.
r=j+l1 r

Jj-1

thus

mi_1 = 2 > a(m") + c'am') - ms.

On the other hand m._q = cx{m'), which Teads to
) (c' + 2 - cla{m') = m
thus
m > atm'),
which contradicts the fact that.m' is a game in some St.

q.e.d.

Corgllary 4.2: The mapping is injective and the image of
Py Pn

does not contain any game with a minimal incidence-
matrix, formally

1'mcpnﬂCn=§3.

Proof: The second assertion is implied by the last lemma because
of the fact that m' is a subgame of @n(m,m‘). The first
assertion follows directly by considering m' as the maximal
subgame of @n(m,m'), otherwise m would have a subgame, too.

g.e.d.
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Consequently the set Sﬁ contains two disjoint subsets
n-2
C, and g, (kg3 Ck * Sp-ja1)-
Now we define subsets of Si, which contain cn,'inductiveTy by
I~ ~ —~— n—l ~
G =Gy G =G Cpnt = G Vonan LU S Oniad
Let ¢, denote the cardinality of Cn'
Remark 4.3: In the case n > 7 the set C_  does not contain the
image of ¢ because the game
(1,1,1,1,1}
is 1in 55 but not in CS.
In order to get a lower bound of the cardinality of Sﬁ, the

cardinality of Cn is determined in the next

Lemma 4.4:
. (1?' ¢y = ¢y =1, c5=3,
(i1) If n > 5, thenc 4 =2c +¢C 1 - ¢ o
(1i1) Cn+1'3-2Cn’ if n> 4.
Proof: ad (i) The equation Cy =Cy = 1 is obvious.
The fact Cg = 3 is a direct consequence of the
last corollary.
ad {(ii1) The last corollary implies for all n 3;5 that
n=-2
c, = 24y Ty ok
k=4
A simple induction on n shows the assertion,

n-k+1 ¥ Cp-2-

applying the last formula.
(ii1) is a direct consequence of (i1}, since the
increase of Cy with respect to n is obvious,

g.e.d.

Furthermore in case n > 5 we have - by applying Lemma 4.4(71) twice:

c =5c, +Cp 1 " 20 o

n+2
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This equality yields the following inequality by Lemma 4.4(iii):
Chyo 2 9C» 1 > 6.

From the list in the supplement it can be seen that C6 = 6 and
¢, = 14, thus ’

Copo. > 6 - SJ, J > 0.
d
“7+2j 214 -89, j2o.
With the help of the preceding results we can give a real number n,
such that 2'*K is at most the cardinality of C; for a111 > n.

Indeed, the next theorem yields this natural number.

Theorem 4.5: It

(k+4)1In2 - 1n3
L AT T e

k > 1 fixed,

then

. 2n+k_
n - -

The proof can be treated analogously to the proof of Lemma 2.14
and is therefore omitted.
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SUPPLEMENT

Some lists: —T

In List 1 the entries in the rectangles represent " | “n f{k
k n
In List 2 they represent " 4 bk

List 1:
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-
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. . .
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1

1
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1

1

1

1
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n
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by 0 |
oo
o
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ot —————

-
—_——

L] .
- -
‘5 |- 1
LD St Tt s
oo o a o - -} a o - -4 -3 o
o o o o ¢} o Q -3 o -] o |.‘ ] o
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In the marked area of List 1 theré are only entries with respect

to k and n with'gﬁ ='§ﬁ:% and ?ﬁ = ?E:% because there the inequality

n_i3k—3 is valid.

list 2:
k .
1
3 1
1
4 2
3 1
5 5 1
7
6 13 2
19 3 1
7 34 5 1
s |8 7 |
88 13 2
g 126 19 B3 !
229 | 34 5 i
o |35 hs f7 1
so4| 88| 13 2
" ga6 126 119 |3 1
1543 2290 34 5 1
»  |2193 Bas e 17 1
2005 | 594! 88 13 2
(5697 as has {19 B 1
10399 | 1543 ] 229 34 5 1
. |14785 [193 P25 a8 7 1
56996 | 4005 | 594 88 13 2
s 38398 ee7 4 [126 W9 13 1
20088 | 10399 | 1543| 229 34 5 1
o | 9958 l1aes Rio3 |35 487 1
181057 | 24906 | a005| 594{ 88 13 2




Next the first eleven <,
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n I 314|5|6L_7l 8| 9l 10‘ 11| 12| 13

) T|1]3] 6] 14]31] 70] 157]353] 793[ 1782

are tabulated (see §4):

As an example all games in Sq with length at least three are

[N S T
a . -

Tisted with the help of the results of §3, the sets 83,...
being explicitly known from ISBELL ([2]).
The reducible games in S;, k < 3:
(3:3,1,1,1,1,1,1,1) € Sj can be reduced to (3,1,1,1,1)
(3,1,1,1,1).
(4,2,1,1,1,1,1,1,1) ¢ * = " u "o(4,1,1,1,1,1)
(4,2,1,1,1,1,1)
(4,2,2,2,1,1,1,1,1) E . v " " " (4,2923131,1)
(4,2,2,1,1,1).
(5,1,1,1,1,1,1,1,1) ¢ » " " n "o (5,1,1,1,1,1,1)
(5,1,1,1,1,1,1)
(3,3,2,2,1,1,1,1,1) ¢ » " v " v(3,2,2,1,1)
(3,3,2,1,1,1).
(3,2,2,1,1,1,1,1,1) ¢ * » " "(3,2,1,1,1,1)
‘ (3,2,1,1,1,1).
(5,2,2,2,2,1,1,1,1) ¢ » » ¢ " "(5,2,2,2,1,1)
| (5,2,2,2,1,1).
(2,2,1,1,1,1,1,1,1) € 5¢ " """ (2,1,1,1,1,1)
(2,2,1,1,1,1,1
(3,1,1,1,1,1,1,1,1) ¢ » » " " "o(3,1,1,1,1,1,1
(3,1,1,1,1,1,1
(1,1,1,1,1,1,1,1,1) € sg nooow “ vo(1,1,1,1,1,1,1
(1,1,1,1,1,1,1
The decomposable games in Sg:
(1,1,1,1,1) Qﬂi(l 1,1,1,1) = (3,3,3,3,1,1,1,1,1) 7
(1,1,1,1,1) qu(a 1,1,1,1) = (4,4,4,4,3,1,1,1,1)
(1,1,1,1,1) G% (2,2,1,1,1) = {4,4,4,4,2,2,1,1,1)
(1,1,1,1,1) @% (3,2,2,1,1} = (5,5,5,5,3,2,2,1,1)
(2,1,1,1,1,1) G% (2,1,1,1) = (6,3,3,3,3,2,1,1,1)
(3,1,1,1,1,1,1) @, (1.1,1) = (6,2,2,2,2,2,1,1,1)
(2,2,1,1,1,1,1) @} (1,1,1) = (4,4,2,2,2,2,1,1,1) ]
(1,1,1,1,1,1,1) @L (1 1,1) = (2,2,2,2,2,2,1,1,1)

357

€S

WO

4
€ 59
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As last example the elements of Cq are written down:

(7,1,1,1,1,1,1,1,1)
(11,5,5,5,1,1,1,1,1)
(13,4,4,4,4,1,1,1,1)
© (14,5,5,5,4,1,1,1,1)
(13,3,3,3,3,3,1,1,1)
(14,7,7,7,3,3,1,1,1)
(15,4,4,4,4,3,1,1,1)
(18,7,7,7,4,3,1,1,1)
(11,2,2,2,2,2,2,1,1)
(16,7,7,7,2,2,2,1,1)
(17,5,5,5,5,2,2,1,1)
(19,7,7,7,5,2,2,1,1)
(14,3,3,3,3,3,2,1,1)
(19,8,8,8,3,3,2,1,1)
(18,5,5,5,5,3,2,1,1)
(21,8,8,8,5,3,2,1,1)

(7,6, 6,1,1,1,1,1,1)
(11, 6, 6,5,1,1,1,1,1)
(13, 9, 9,4,4,1,1,1,1)
(14, 9, 9,5,4,1,1,1,1)
(13,10,10,3,3,3,1,1,1)
(17,10,10,7,3,3,1,1,1)
(15,11,11,4,4,3,1,1,1)
(18,11,11,7,4,3,1,1,1)
(11, 9, 9,2,2,2,2,1,1)
(16, 9, 9,7,2,2,2,1,1)
(17,12,12,5,5,2,2,1,1)
(19,12,12,7,5,2,2,1,1)
(14,11,11,3,3,3,2,1,2)
(19,11,11,8,3,3,2,1,1)
(18,13,13,5,5,3,2,1,1)
(21,13,13,8,5,3,2,1,1)
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