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Abstract

The paper provides a functional relationship between the amount of
information available to the players and an equilibrium payoff in a
game with statistically varying states of nature. Moreover, it 1is
shown that for a supergame consisting of independent repetitions of
a common matrix game equilibrium strategies are available which
provide oniy "few" sequences of actions with positive probability.



Generalizing an earlier paper of the author on two-person zero-sum
games [10] this paper is intended to present a functional relation-
ship between the amount of information available on the statistically
varying states of nature and an equilibrium payoff resulting thereof
in a non-cooperative K-person game. Supposing the states of nature to
vary according to some probability distribution may be viewed at as a
more thorough introspection of explicit normal-form games. These are
defined to be one-shot games in which a random move selecting a state
of nature is performed at the beginning of the play. They are usually
denoted by T = ((E),quu),Cﬁk,Ak,uk) where G:L,Cl,ﬁ) is a probability
space of states of nature,(lk denotes the information o-algebra of
player k, Ak his set of actions and uk:£} x'?:r A]-—-————9F% defines

his payoff depending on the state of nature and the actions selected.
In those well-known games the information structure CZk is given in
advance. Consequently, player k's strategies are bound to be the Cik-
measurable functions o : L2 ——n A (A ) defining a probability on

the set of availabie actions for each state of nature. (Of course,
some assumptions are required to ensure the set of measurable function
to behave well.) By means of the functional relationship of the states
of nature and the probability-distributions on the set of actions the
players make use of information. The information of player consists
of the knowledge of the least Cik—measurable'set containing a selected
state of nature w.

From a more long-run oriented point of view the information structure
must be considered to be subject to the strategical decisions of the
players, Thus, the players have to be endowed with some parameter
characterizing thejr ability of analyzing their environment in con-
trast to the assumption of a specific information structure given in
advance. We have to replace the fixed information c-algebra and shall
admit the players to choose their information structure. Quite triv-
ially, on the selection of information structures there are some con-
straints to be faced which are related to the coarseness of the infor-
mation c-algebras describing the amount of information provided by the
information structure. Consequently, we have to define the shape of



of the set of availabie information structures. Not deleting the
short-run aspects of information as to be used to select an action
depending on the information available at the moment, we allow for

a separate choice for the information structure and the mechanism
making use of the particutar information, the latter being the stra-
tegies in common models. This second part of the'strategy may be
viewed at as to translate the information on the unknown states of
nature into actions to be performed. Since no new information is put
in between the receipt of information and the choice of an action,

we may just for convenience delete the translation process. By now,
the information provided by the information structure takes the form
of an action, proposed to be carried out by the player. It is an easy
thing, of course, to put in these things separately inte the formulae
to be derived below. The crucial point allowing for this is known as
"Data Processing Theorem" in information theory and related to the
notion of a "sufficient statistic" in the field of mathematical sta-
tistics.

Our proceeding will be based upon the use of information-theoretical
methods. We shall assume that the players, among other parameters,
are characterized by a numerical upper bound to their ability of
deriving information on their environment. In order to be justified
to use the information-theoretical measure on information, known as
the entropy, we have to take care of the implicit assumptions related
to this approach.

A discussion of this point seems to be most important, since on the
one hand the field of applications of information theory is over-
estimated by far and frequently springs off an excessive interpreta-
tion of the notion entropy. As a consequence, rather philosophical
systems are erected than mathematical models are analyzed. On the
other hand, applicability of information-theoretical methods is
denied for economics and for decision-making in general. Both opin-
jons in their generality have to be rejected. To oppose the over-
estimation, we auote R. Gallager [ 4], p. 13 (any other textbook on
information theory contains a similar statement): ... the concept of
information is far too broad and pervading to expect any quantitative
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measure of information to apply universally...". The measure of infor-
mation, as provided by Shannon's entropy, is res?ricted to the analysis
of the amount and the use of information emerging from a statistical
structure. It is appropriate in probabilistic models and its usefulness
is intimately related to the usefulness of the probabilistic model as a
whole. The semantic aspects of information are completely left apart
and it is only the underlying probability measure, which defines the
amount of information via the entropy of the distribution. Thus, we
cannot be nerplexed by observing that information has no value for its
own, but only in connection with its use on allowing its users toc show
a specific variety of behavior caused by variable information. A general
criticism on the application of information theory, as e. g. provided by
R. A. HOWARD ([51), being based on the semantic aspect of information,
therefore has to be rejected.

In contrast to Marshak's approach, which regards information as a
particular kind of commodity having a value for its own (depending on
the user), we shall investigate the impact on the payoff, which comes
out of a specific amount of information. It is the alteration of the
payoff, which attaches a value to information. In our model informa-
tion shall only serve for defining the bound on the set of available
strategies. Thereby, we shall be much more in the neichborhood of the
common philosophy behind the use of Shannon's measure of information.
Thus, only the justification of the description of the abi]ities'of
the players, in terms of entropy, - within an appropriate surrounding -
is left to us.

* R.A. HOWARD has put it this way: '...If losing all your assets in
the stock market and having whale steak for supper, then the infor-
mation associated with the occurence of either event is the same.
Attempts to apply Shannon's information theory to problems beyond
communications have, in large, come to grief. The failure of these
attempts could have been predicted because no theory that involves
just the probabilities of outcomes without considering their conse-
quences could possibly be adeguate in describing the importance of
uncertainty to a decision maker.'



In our model the players use their partial information on the value of
parameters of the game, randomly fixed at the beginning of a play, to
choose well-adapted actions simultaneously. The value of the randomly
chosen state of nature and the selected actions of the player define

the payoff to the players. It is this assumption on the type of know-
ledge of the players, which divides the common semantic or qualitative
aspect from the less familiar quantitative aspect of information. This,
in turn, enables us making an appropriate use of information-theoretical
methods and results.

Since we are interested in the economic aspects of the usefulness of
information instead of the maximum throughput of & noisy communication
system, it is not sufficient merely to assume egual weight to all
reproduction errors on the states of nature. Thus, we are obliged to
make use of a generalization of Shannon's result on source-coding.

The so-called rate-distortion theory was originally concerned with the
investigation of the exactness of reproductions of the information
emitted by a source. Here, it will enable us to put attention to the
variable utility related to different states of nature. We will thus
be allowed to evaluate the expected quality of adapting the actions to
the unknown states of nature by using the information. The quality of
adaption or reproduction will be expressed in terms of payoff.

By an example, we shall now substantiate the usefulness of the infor-
mation-theoretical approach towards the measurement of information via

entropy within a game theoretical context.



An Example

To a large extent public contracts are conferred to the cheapest sup-
plier of some performance. To ensure competition, the bids are made
public simultaneously. Under those basic assumptions game theory is
well-established as an instrument of the investigation of the costs
bound up to some project.

Suppose performances 1,...T being advertised to be carried out within
some period. We may assume T to be relatively large by either consid-
.ering long periods or assuming small sized orders. As the type of
performances we think of: installing lamps of the street-lighting,
carrying out a few square-meters of paving, shifting a fire-plug,
transplanting some bushes and so forth., They originate from some 1im-
ited field of demand, are - without too much idealizing - of a similar
amount and may be viewed at as to reappear in each period.

The performances asked for, however, are not identical, since they
vary with respect to the specific situations. In particular, carrying
through a work, the supplier has to face, more or less expected, some
intricacies, which have to be coped with. Since we assumed a fixed
price (bid) for the work, the intricacies, augmenting the costs, re-
duce the net-gain of the supplier. The potentially arising obstacles
may be classified as elements of some finite set X, comparably small
to the number T of projects. We shall assume that it is only the de-
gree of intricacy, which specifies the costs of a work. It does not
seem to be overly restrictive, to suppose-the obstacles to crop up
independently according to some probability distribution, which is
common knowledge of all competitors. In fact, due to observations in
the past the competitors have some experience on the frequency of the
degrees of intricacy arising and, since we consider distinct orders,
we may assume independence on the occurence of intricacies. Thus, the
suppliers of the sequence of performances, marked by the numbers 1 to
T, are confronted with a sequence of x| of degrees of intricacy sub-
sequent to making their bids. The example as specified ti11 now, may
be summarized by the following glossary:



{1,...,k} = X

is the set of supp1iérs of

{1,...,T}

3

representing the (similar) performances. Each of the competitors
is characterized by his cost function

defining the cost related to providing work t subject to the

degree x of intricacy the rules of conferring the contracts

the payoff-function of player k ¢ K.
'uk T XX 'ETAI-————-—eJR
may be specified by
) Ry (x) - a,  iff a < min {ag[k#1}
) —

Uy (x,a
0 otherwise,

The investigations as provided by this paper, however, are not
restricted to the above form of payoff-functions, instead, we shall
admit all functions u, : X x Tt Aj——>R, k € K for
given finite sets X and A,, 1 ¢ "X . In suppressing the index t
within the definition of the payoff-functions, we express the costis
of filling the contract to be independent of the specific task, but
to depend solely on the degree of intricacy. It should also be noted
that the assumption of all competitors being able to provide any
performance, implicitly contained in our model, is not a crucial one:
a service to contract which physically cannot be supplied by compet-
itor n induces him to require a sufficiently high price.

The total payoff to competitor k obtained in the period is defined
by the sequences aE of bids, k € J and the sequence xT of degrees
of intricacy. We assume additivity, thus,

ae G5 o) = Ty B ()

In order to make the payoff resulting from finer or coarser descrip-
tions of tasks or depending on different lengths of periods comparable,



we normalize and consider the average payoff

1o T, (al

u (X, (a])).

The difficulties set in the course of filling the contracts are pre-
dictable to a certain extent by a thorough analysis. However, physical,
mental, and financial limitations on the analyéis invoke that the un-
certainty on the seguence X! may only be reduced, but not completely
removed. This implies that the information on the sequence x1, which
the competitors provide to themselves, may be assumed to be bound.
Since the information may be viewed at to be condensed in the bids, it
is the average information on the sequence of degrees of intricacy as
contained in the bid, which is assumed to be bound. The bound on the
average information is intended to describe the abilities of reasoning
and analyzing of the competitors and is assumed to be common knowledge.

Remembering the assumptions of our example, in particular those assump-
tions concerning the unknown parameter, we find ourselves within a
probabilistic framework, such that information theory becomes applicable
to provide a measure on uncertainty, known as the entropy of a proba-
bility distribution. Being given a measure for uncertainty it sounds
plausible to define the amount of information received in the course of
an experiment or by some analysis by the reduction of uncertainty.
Thus, since uncertainty in the context of information theory is meas-
urable by a number, we define the information contained in the bids of
player k on the degrees of uncertainty to be the difference of the a
priori uncertainty on the sequence of degrees of intricacy minus the

T, given aE. The main difference is de-

a posteriori uncertainty on x
noted as ayerage mutual information, the constraint on the capacity of
analysis of the competitors will consequently have the form of an upper

bound to the average mutual information.

As far as the available strategies of the competitors are concerned,

it remains part of their considerations, how to divide up their capac-
ity of analysis on the particular tasks. This means that the derivation
of information on the degree of intricacy for specific projects is
subject to their will. As an extreme case some competitor could try to



determine the first Tk degrees of intricacy exactly to enable himself
to raise optimum bids for them. Due to the restrictions on his capacity
of reasoning, this necessarily carries along that for the tasks

Tk + 1,...,T he has to base his decisions on his knowledge of the a
priori distribution on X solely.

The subsequent investigation will provide an answer to the guestion of
optimum behavior of the competitors and to the paycff resulting from
those strategies.



The modei

The description of a game consists of two parts, first a list of the
parameters of the game and secondly the rules according to which the
game is played. In this paper, we shail investigate K-person non-
cooperative games where the parameters are given as follows. X is
a finite set of states of nature, which is endowed with some probabil-
ity distribution s&. We are given alse finite sets of actions. Ay for
each player k ¢ K and payoff-functions Uy : X X ﬁ‘fA]-—-————a R
relating the states of nature, the actions selected, and the utility
obtained by the players. We shall be interested in games being based
on T-fold replications of these quantities, namely X' - fl;T X,

uT(xT) = T:r u (x¢) for xT € JC'T and - with the canonical interpre-
T .7

tation - u {x', (a{)) = % U (Xgs (alt))'

The above parameters are also contained in the description of explicit
normal-form games. The difference will lie in the not yet specified
information structure, since, following the lines of the previous dis-
cussion, we shall assume the information structure to be subject to
the strategical considerations of the players.

We shall denote by (Bl) the actions as selected by the players, de-
pending on the observed accent of the state of nature in the periods
1,...,T. More formally, (Bl) is a vector of random-variables with
values in (AI) where its conditional probability given xT - the latter

T expresses the strategical behavior

being distributed according to u
of the players. The restriction on the set of available strategies will

be formulated as an upper bound to the "average mutual information":

1xXTAaB) < T-C, ke K

the definition of the average mutual information may be found below.
We emphasize that by the vector (Ck)k - its components are assumed to
be positive - the missing parameters of the games to be considered are
given; in analogy to explicit normal-form games the game will be
denoted as

PT o™ wh), e, A ), Te .
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The yet unspecified rules of the game define the relationship between
the parameters of the game. They are condensed in the set of available
strategies and the assumptive purport. The latter is expressed by using
the common notion of normal-form games: we look for equilibria.

In order to obtain the common normal-form representation for the T-fold
replicated parameters, we define the set of (mixed) strategies by

-1 T T

T
I (X' A Bk

- B /B T AT*)T ¢

and the average payoff by

-
(u] (X
(The average payoff is considered in order to make the equilibrium pay-
offs obtained from distinct lengths of periods comparable.)

Whereas the existence of equilibria for qames ro may be ensured along
the usual lines provided by aame theory, the dynamics of the equilibrium
payoffs may not be analyzed this way. In fact, due to the absence of
constructivity in the proof of existence, we are not allowed to see what
the equilibrium strategies are alike. Moreover, unless we find a bound

on the speed of convergence (?) of equilibrium payoffs related to periods
of length T, we may not compute the payoffs even for a modest size of T.

The way we shall proceed will provide the existence of an e-equilibrium
on the one hand, more insight to the shape of the equilibrium on the
other - the existence of code-type e-equilibria will be ensured for suf-
ficiently large T - and it will provide a computable formular for code-
type e-equilibrium payoffs.

*#) The symbol V| X =m=>A is meant to express V being a conditional
probability on A given any element x € X
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As an interesting feature, we shall also observe that a comparably small
number of actions will be endowed with a positive probability of being
used by the players. This reminds a 1ittie of the results of R, RADRER
and R. ROSENTHAL [8], R. AUMANN et al {1] and P. MILGROM and R. WEBER
[7] on purification and e-purification on strategies in explicit normai-
form games. Those results are derived under independency and non-
atomicity conditions on the set of events observable by the players.

A strategy-vector (BE*)ks Bl ' #AE, is called =-equilibrium,
if for all k ¢ K

1T T T T 1T
max (BT OB (By)yn - BTy (f

k

T*
> (B'I ))]I < €

By a series of intermediate results, among others, a source-coding
theorem and its converse, the existence of a code-type e-equilibrium
is ensured.

Theorem
I
Given any eauilibrium payoff vector (D (Ck))kej< of the one-shot game

T =({(X ,u),Ck,Ak,uk) with positive entities Ck’ there exists for
any £ > 0 and T sufficiently large a code-type e-equiltibrium (BL*)k
of TT such that

1T T ] d

up (X1, (By*))1-D

|E (T (C,) | < e forall ke X

The existence of an equilibrium for any one-shot game is readily
ensured thereby showing the claim of the theorem to be non-void. The
existence of an equilibrium for games f“T may also be performed along
the following lines:

1.1 Lemma  There exists an equilibrium for the game T.

Proof':
As it is well-known, I (X A B) is a convex function with respect

to the conditional probability defined by B for any X. Thus, we
conclude the convexity of 1, for any k, moreover, I (X A -) being
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continuous implies Ly to be compact as a closed subset of

x . . . .
(a (Ak)f I. We remark, additionally, that Uk is a multi-affin-
1inear function, thereby we find the sufficient conditions for

the existence of an equilibrium for /7= (I, U ) to be satisfied.

We shall first derive a technical result on the probability of a large
deviation from the expected value of the average of a sum of independ-
ent random-variables to be used in a random construction of codes. The
proof uses Bernstein's version of the Markov-equality and insofar the
lemma is folklore. ’

1.2 Lemma Let X, n=1,...,N denote independent, identically
distributed random variables with values in {0,1} .
Assume o > E[Xn] for all n.
Then for any x € [0,1]

-1, . log e
Pr{N %Xn < x} < exp{ N(x - a > yi.

Proof: We have

ProiNl s X < x)
n n

= Pr {- ¢ Xrl > ~Nx}
n

Pr {exp {-% Xn} > exp {-Nx}}

| A

exn{ Nx} E [exp {-z X_1}1.
n N

We proceed by upperbounding the expectation:

E lexp {-2 Xn}]
n
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Summarizing we infer

1

Pr (N~ % X_ < x}
n n

héaN

exp { N - x} *~ e

A

i

exp { N - (x - o 1248,

Prior to the application of this lemma within the information-theo-
retical context we have to provide some notation:

N(xle) denotes the number of occurences of x within the sequence
X', . e. N(xle) = |{t/xy = x}|. The vector (T-1 N(xle})X cx
defines a probability distribution on X , denoted as P T.

X

The set of all probability distribution constructed this way is
denoted as AT(3£ ). We define :K) to be the set of all sequences
%1 giving rise to the same distribution v ¢ AT(CE ). As a natural
Lonxozixtaz')), 3

defines a conditional probability on 3 given x € X,, which is

g We define TN e 2 P2T|XT _V for

extension we observe that (N(x|xT)'

denoted as P T
z |

T

VIEE:======#f3 , X € JCT.

For convenience we recall the definitions of the entropy:

H(u) = —i u{x) log u{x) foru € a( ),

of the conditional entropy:
HVIW) = 2 u(x) - HOV(-1x)),  where VX =—= 13,

and of the average mutual information I(u,V) = H{Vou) - H(V|n),

where V o pis defined to be a probability distribution on
given by V.o u (z) = g u(x) V (z]|x).

We shall make freely use of the well-known inequalities on the
terms given above, as provided by information-theory. For more
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details any textbook may be consuited, see, for example the book
of IT. CSISZAR and J. KURNER [ 3 ]. Just for convenience we cite:
For any £ > 0 and sufficiently large T

T

la ()| < exp {T . e},

exp (T (H(u) = ej} < | T | <exp {T " Kb, for w e o(X),
exp {T - (H(Viu) - €)} < | TV(XT)I < exp {T = (H(V|u)},

for Viﬁg N XT € ‘:Tu.

Since the lemma to be derived now will investigate the abilities of
some fixed, but arbitrary player, we shall delete the index and denote
A= Ak for his set of available actions. As an application of the
foregoing ilemma we prove that for an appropriate random mechanism the
probability to find only a low number of codewords suited to encode
some sequence of states of nature js super-exponentially-small.

1.3 Lemma let 0 < e < Toge, vea(x) and VE==pA be given
such that V o v € a1 (A), I{v,V) < C - 3. Assume
N > exp {T - (C-3e)}. Then there exists T (| X |,[A].¢)
such that for 7T 3_T0 and independent and uniformly
distributed random-variables Yn= n=1,...,Nwith
values in J Voo the inequality
Pr { Z’Tn.(Yn) < exp {T « e}} < exp {-§ exp {T - e}}
n
T
y(x )

holds for any xT € ':Tv.

Proof:  Observe T} Tog N > I{v,Y¥) and define o by
a =exp {-T « (I{v,V)- 2¢)}. Due to a folklore inequality

AY

« 2 E[4 (Y)) ) foralln=1,.. N and x| € .
[ o N

J,eh
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We infer by the preceding lemma

Priz (Y} <exp {T - e}

V(X )
<exp (N (NTexp iT - ) - o - 188
< exp { exp {T - ¢} ~-19%—9 exp {T - 2¢}

whence the claim follows.

We continue to investigate the payoff from player k's point of view
and thus regard his opponents as a whole. Therefore it is appropriate
to define A = A

The subsequent lemma provides the basis for taking into account the
opponents' behavior. Given any (K - 1) - vector of sequences of

=1

actions 8 ¢ AT we shall show that most of the sequences used for k's

encoding of xT induce jointly with 5!

a conditional independent
distribution on A x A, given x. The independence is formalized by
the following definition:

Given & > 0 we set

T .7

Tah,al) - v(a|x)N(x,a[x ,&')]

T (xT,aT) = {aT/[N (x,a,8[x ,
< T +« 68 for all x,a,d}.

By ( tfs(xT,éT))c we denote its complementary set within Al

1.4 Lemma For 1,8 > O there exists T (1 1,]Al ]EJ,T,
such that for T > To,aT € AT, xT ¢ 3( and Y
uniformly distributed on V(xT)

{

E [<1 > 1 -+,
(xT,aT)
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Proot:

E Pl (Y) ]
Téx"a")

pri AT Nana vt - el - nxalxTET) ] < 6
X,d,d

1= Pt \/ INxea,3 1% Y,80T) - V(alx) - nGoalxtah)| s Ted

I

T 21T

Due to the assumptions on Y, for any xT,a N(x,a a[x ,¥,877) is a

hypergeometrical-distributed random-variable with expectation
N(x,&|x . ) - V(alx)

and variance bounded from above by

(,3]x1,8") - V(alx) - (1 - V(alx)) < (x,81x",3").

=

Thus, by Chebychev's inequality

Pr{\V/’ N(x,a ale aT,aT - V{alx) - N(x,éle,ﬁgl > T -8}

= N(x, alx!, AT)
Al . (A . DiX.31X .3

| A

| A

¢ for sufficently large T.

We learned that, given any éT € ﬁI most sequences from trv(xT

)

induce a conditional independent distribution on A x A, given x3

i. e. most sequences lie within the bounds of fTa(xT,aT) Let us
now choose a sufficiently large number of sequences according to

the uniform distribution on TTV{xT). Then the probability of

their share with .15( T T) being apart from one is exponentially
bounded.
1.5 Lemma Let e,6 > 0 be given and assume log (1 + 1) < %u

Then there exists T (| X [, 1AL, IA],e,8, r) such that
for all T > T, and 1ndependent on J, ( Ty, uniformly
distributed random-variables Y, 1= 1,...,L,

L>exp {T - e} the inequality
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pr (L7l 2 4 (1) <1l-e)<expi-l -
T -
76T 8Ty

T

¢ Al

NSRRI

holds for any &

Proof: Using the Markov-inequality, we abtain

Pt g (Y <l
]

> L e}

]
e
1
——
™~

——

—

—
L

(yixaTne

.}].
))©

| A

exp {-Le} Elexp {Z.j (Yy)
! 5 T 4T

(T,

Due to the independency of the random-variables Y], 1=1,...,L
and using exp {t} <1 + t for t ¢ [0,1] we infer

E [exp { §11 (Yy) 11 < (1 + ELj (Y9) ])L
(7o"aT)° Téx".a")e

As a consequence of the preceding lemma we may summarize

-1
Pr {L b (Y;) <1~ ¢}
! 1 ~8, T 1T
J o (x,3)
< exp {-L (e - log(1 + 1))}

whence the claim follows.

We have now provided all the material necessary to prove a source
coding theorem which shall enable us to describe the abilities of
the players as far as achieving a maximum payoff is concerned. The
original version of this result, being occupied with deterministic
encoding, dates back to 1959 when C. E. SHANNON [ 9] started the
investigation on what information should be transmitted within a
communication system. Our random encoding rule of the "source"
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emitting the states of nature will represent the type of analysis as-
being performed by a player. Given xT, the outcome of the player's

analysis is represented by one of the player’'s codewords for xT.

As far as the formulation of the coding theorem is concerned, a comment
seems to be necessary. Since thesequences xT of states of nature are
randomly selected according to a product distributien, it is a compa-
rably small set of sequences which almost carries the total probability.
It is given by

76;3-2 s C/INGIXTY - w0 < T o6 forall x €X )

In fact, by Chebychev's inequality it is easily derived that for all
e >0, § >0 and sufficiently large T (| X |,e §) : uT( frﬁ) > 1 - €.

Observing tfs = k_.j tfv for o(u,sv) = max {|u(x) - v(x)}

AV
D(U5V)<6

we find restricting the attention on those sets TTv for which
p(u,v) < 8 to be sufficient. - The formal argument with respect to
"sufficiency" will be given subsequent to the proof of the theorem.

1.6 Theorem

Foranye>0,68>0 yc¢ a{x )} and V|3 == A such that
I{us V) < C - 2 there exists T0(|:[ | |A],{A],e,8) such that
for T > T, and for v ¢ AT(:{ ) such that p(u.v) < & there
existsﬁv c AT such that |Cv[ > exp {T - (C - 2¢),

U B cexp (T 0}
v

p(Hsv)<d
and for all v satisfying p{u,v) < &:

=y 1C, " T,00) 0 Tdah)

1-c¢

for all x' € fIv and 3" ¢ AT,

Henceforth inequality (*) will be called joint type condition.
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Proof: At first recall I(v:V) to be a continuous function with
respect to the probability v € a( X ) and the conditional
probability V| X === A. The compactness of a( ) and
(A(A))I"x | thereby yield I{-3-) to be uniformly continuous;

as a consequence to every £ > 0 we may find a §_ > 0 such
that p(u,v) < 6_ implies [T(v;V) - I{usV)| < e for all
VIX —==3A. Thus, I{u;V) < C - 2¢ gives I(u;V) <€ - ¢

for all ¢ such that p(u,v) < 8,

Now the Lemmas 1.3 and 1.5 will allow for proving the existence of
sets € = AT with |C’\)| < exp {T(C - <)} such that for all

X! ¢ T, and aT ¢ AT the inequality

eon Ty 6 n T ah)

] 6\)n TV (XT) l

holds. In fact, let NU ¢ IN be defined such that
exp {T(C - )} = N_ > exp {T(C - 2 ¢)}. Suppose Yoo n= 1.0 to
denote independent random variables, uniformly distributed on

T, A", Then

Vo
Priz /] - (YY) < (1-¢) rz] i . (Y9)
"0 T Loy
for some x| € (Tv or 3 € AN}
<z ¢ Pri{iz 1 (Y;) < (l-e) = /] (Y)!
xle a'e V(X )nT(x ,27) v
v

The latter probability may be rephrased by introducing expliicitly the
sets of indices n such that Y: € (.TV(xT). We obtain the expression
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N

v vV v
T L Pri/ (Y)=1,(n), L ~ 2 (Y') < 1-e}
L=1 Al .. K} 7] oA - s n

(Y7) < 1-e |/LJ_~ T(v:) - IA](_n)}

1
Ty T T )

n T T Lah

Referring to the size of L we may upperbound the latter expression by

{T.e}
e;p Do Prig (V) = 1p(n))
L=1 AL f&(xT) L
[ALl=L
+ I T Prif. (Y\r)l) = 1,(n)}
éx;{T-e}AL JV(XT) -
' %L‘=L
-1 v v
- Pril ~ 2/ _ (Y') < 1-¢ | /15_ (Y') = 1A(n)}
SENPUTE AU Leh T

In order to give a bound on the first item we use Lemma 1.3. The
bounding expression is just

exp {- % -exp {T - €1},

Bounding the second term is slightly more complicated. Given

Y: E'TV(xT) we find the random variables Y; to be independent
and uniformly distributed on h]'V(xT)! Thus, an upper bound to
-1 v
max {Pr{l " I 4;5 (Y)) <1- e}
L 1 . (XT,ET)

L>exp{T-c}
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for independent uniformly distributed random varijables Y] with values
in j&(xT) is required. The appropriate bound

max exp {- L - =}
L 2
Leexp{T-e}

< exp {-- %-exp {T - e}}
is provided by Lemma 1.5,

Summarizing, we obtain

Priz /. (Y)<(1-eyzdq, (¥)
"M "

for some xT E'Tv or aT € ﬁT}
) exp{né exp{T-e}l} + exp{wg - exp{T-e}}

€
E}

-

|A | - exp {- exp {T + e}.

exp(-7 . exp {T-e} + T(log| X | + log ALY

A

1 for sufficiently large T.

The above calculations ensure the existence of a set fQ such that
all sequences xT etTvnmy be encoded by elements from‘YV(xT) from
which most generate a conditional independent distribution with
arbitrary elements of AT. Forming the union of all these ensembles
of codewords €, for those v € a( X ) for which T, # @and

ofusv) < &, we find an ensemble € for which

J€f =1uC | <exp (T - e} exp {T - (C - e}
v
< exp {T - C}.

(The first factor comes from iAT( X )< exp AT - €}.)
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On the basis of the foregoing source-coding theorem code-type
strategies may be defined. They are given as random encoding rules

BI T AT
such that
1
Pr {Bl(xT) = aT} = —
levﬂf\_j(x I
for xT € h_fv and al ¢ e\) n TV(XT).
Since T L (X A BE)
< Ty (BE)
<17l fu €)7)
Vi
p (Hsv)<s,
< Cy

the code-type strategy defined above falls within the bounds of
the strategies available to player k.

We shall now provide a result on the consequences of using code-
type strategies as far as the payoff is concerned. Define for
ViX=A a function dy : X x 1 A>T by
1#k
)

d.(x,8) = =V (alx) - u (x,2,8)
1 L

Assume d? : :(T X ET————alR to be additive, which means
d{(xT,aT) =7 d](xt,at). On deriving a bound on the payoff
t

derivabie we shall make heavily use of the "joint type condition”.

*} We omit the mark of the player in accordance with our proceeding

on the source-coding theorem.
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E denote a code-type strategy as given above. We find:

2.1 Lemma Suppose T to be sufficiently large, then

Proof:

T e (T BLaTy - alixTLaT) |«

for all 1€ W, x' e Tand 3 ¢ YA .
m#1

Denote max u{x,a,3) = ||u|! and define & > 0 such that

Since

|~

A

2% - ol <.,
Assume & > 0 to satisfy

- T i
x| - EI| A | - & < e..Then, for x ¢ I,

£ [uT(xT,B¥,§T)I
= z \Civ ﬂ'IV(xT) J-l uT (xT,aT,ﬁT)
aTE
~ T
CvﬂJV(x)
S ICfv ﬂtrv(xT) [-1 u (xT,aT,éT)
aTE
e T, (xHn T )

T
a €
e n T, T )°
10T (xFal,eh) - 4\ (x'.ah) |
Tl s (N(x,a,§|xT,aT,§T)- N(x,a\xT,éT) - V(alx)) - u(x,a,.8)]

X,3,3
XTIl -6 [lull
m

g - | U]
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- where the second to tast ineguality follows from aT € jﬁ(xT,aT) -

we may infer, using the "joint type condition®,

-1 T T el aTy- of («7.aT)

T E [u (x ,B],a NE d1 (x ,d )

< (1 -%) - (E+E) - [|ull

Assume now all players with potential exception of player k to use

a code-type strategy. Those strategies are defined with respect to
conditional probabilities V, [X===%A; , 1 # k. We shall show
that player k is faced with the probiem of encoding a "discrete,
memoryless source" {X,,} along a "single-letter fidelity criterion”
d.

Define
d=dE:IxAk-———>IR by
dr (x.a,) = (az)T‘f Vo(aqix) - U (%535 (a7))
171#£k
T,.T.T
and d (x ,a,) = & d{x;,a, ).
k + £k,

The preceding lemma may be applied iteratively to give a Tower bound
to himself - provided the opponents stick to their code-type strategies.
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2.2 Lemma Suppose T to be sufficiently large, then

T, T ,.T T, T T

-1 | E[uk(x ,(51)]#k,a1] - d (x ,ak) ] <« K. e

T

for k ¢ X, xTE_:T('S and aIEAE.

Proof: Assume without lToss of generality k = K.
Using the identity

T T, T T T
Viay Ixp) ue (05 (ap)p qs2qa () 0000

we may paraphrase the preceding lemma to read

T T, T.. T, 1
T o> | Elu (x4 (ag)qoBya(a) 1)

T, T ,.T T ,.T

il
aIt t

.
for all (ap),,q and k eK.

Consequently,

T e > | Elug(x s (B])g 402,)]

T /&l T

- (I Vk—l(ak-1!xt))E[“k(x (B9 )1 k-223k-12

T't
Ak-1

Yy (a Ixt)) U O (B dnersars (Bl 1) |

;
H |
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~ Continuing we find

;
¢

i
RO (Br)y2)

- T T o7 T
771 [ E[uK(x ’(B?)T#K’a - d{x ,a;) |

< 7l (| Elu

| T, T o7 T
ai 2(2 VK‘Zt(aK—Zti Xt)) By (x ’(Bm)m<K-2(am)m>k—2)] |

T, T T T
(I Vo Lageg 1 XD B0 By o (3 Do)

+

%

Ag-2
T, 7 .7 T.

LI Vi {ageg Ixg)) B Dup (s (B vogs (B ) pagos) ]

al 5t t -

NV (a x,)+ Elug(x s (B])x(al) )]
(aT) m>2 t
m’m>2

+
™1

-z TV (a_ |x, )
@y mit M K
m/m>1

| A
~
™

Having analyzed the situation player k € X is faced with when his
opponents use code-type strategies, we now have to investigate his
payoff in order to provide a lower bound.
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A dual of this problem was already lTooked at by C. E. SHANNON [9] in
1959. He was then interested in minimizing the distortion whence
reproducing a discrete, memoryless source and was able to give a
computable formula for the symptotic minimum distortion. Since we are
interested in the maximum payoff achievable for the players instead
of the minimum distortion, the formulae of SHANNON and the one de-
rived here differ by the operator. Transformed to one type of prob-
Tem SHANNON's result reads {informally):

for deterministic encoding

D(C) = max {E[d(X,B)1}
IYﬁ;V):ﬁ
is attainable as the average payoff.
Here the joint distribution of the
random variable (X,B) is given by
p(x) « V(alx).

In our game theoretical context SHANNON's result is not completely
satisfying, since a deterministic encoding allows for taking advan-
tage of its structure destroying the equilibrium property. However,
our approach as given by Theorem 1.6 takes this into account and
will thereby be used twofold: Firstly, in order to show player k to
be faced with encoding a discrete, memoryless source (on the basis
of the opponents of player k sticking to presumable equilibrium
strategies) and then, as usual, to provide a code for player k.

2.3 Theorem:

let d : X x A—-aR be any fidelity criterion.

For any e, > @ and sufficiently large T there exists a
code-type strategy Bl | IT=-‘;AT for player k,
satisfying I(XT A BT) < C

such that

T

e 1a"(x".87)7 5 D(C) - ey
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Use the continuity of D(-) in order to find e such that

D(C) - ;g-f_D(C*ZE)*)

Assume V to be chosen as to achieve

D{C-2e) = max {E{d(X,B))}
I(u:V)<C-Ze

subject to the constraint I(u;V) < C-Ze.

Then Tet for v € A{X) such that ep{uv) < 8 (to ensure
DI (V) = 1 (viV) | < ¢) sets of codeword €= be given,
in. accordance with the conditions of Theorem 1.6. The code-
type strategy 81 now encodes x' E'Tv by elements of

Cv ﬂTV(xT). Consequently for those pairs (xT,aT) we have

N(x,ale,aT) = T - v{x} - V(a|x). Thereby we may infer
TN xTal) = 5 ow(x) - V(alx) - d(x.a)
X,a

Ex
i EU:V [d(XsB)] "'”"37"

= D(C - 2¢) -

> D(C)—ge*,

where the first inequality is provided by continuity;
summarizing, we get

-1 T
Tade) > 00 -2,
for all x' €U :Tv = ']"6, where & = ¢ _.

Ve
p (1av)<s
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~ Define ey (sufficiently small) such that

“ept luli+ (1= ) () - £ c)

> DB (C) - ey, then, since for sufficiently large T

T, uT(j'é) > 1 - e s We find

;
LE ta(x™.8™y3

Troud) ¢'xTeN)
T
X

fv

- e Mull + (1= ) (D(C) - £ ¢,)

| v

D (C) - ¢* , completing the proof.

As a corollary we obtain abound on the payoff achievable by player k,
provided the opponents stick to their code-type strategies.

2.4 Corollary:

For any ¢ > 0, sufficiently large T and code-type strategies
for the opponents of player k be1ng based on (V )1#k there
exists a code-type strategy Bk | X ===$AT of player k,
satisfying I(XT A B ) < C such that

7T
LE u (X 2By, (B 1)1 2D(C,) - <.

Proof: According to Lemma 2.2 we may assume

-1 - T T 7
P el (e (B 401 -4 (e | < 5
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then applying the foregoing theorem with e* =

M| ™

yields

-1 T,,T T ,.7
T E {uk(X ’Bk’(B])]#k)j

T Ty, ¢

-1 T
T E ld(X ,B )1 - =
(x'B)1 - 2

| v

[ v

D (Ck) - €.

In order to prove the equilibrium property of code-type strategies
we have to show that no player can gain by unilateral deviation.
Such a result is provided by the companion piece to the source-
coding Theorem 2.3 and is called its "converse”. The impossibility
result on achieving higher payoff (or lower distortion) was found
by J. WOLFOWITZ (111 in 1966. In its information-theoretic context
it defines a bound on the distortion which cannot be transgressed
by any technical system. What makes the coding theorem and its
counterpart, the converse, so important, is that the two divide up
the payoffs either to be achievable or non-achievable, tertium non
datur. We shall give a very short proof of WOLFOWITZ's result taking
pattern from a proof given by T. BERGER [21, pp. 71 - 72.

We first have to mention that

D () = max {E[d{X.B)1}
T(XAB)<-

is an isotonic and concave {n) function.

3.1 Theorem:

Given any fidelity criterion d: X x A—R,
then for any T € N and encoding rule BT E:)CT=—A;AT

satisfying T-1 I(X' A B) < C the inequality
1 e dx".8T < oo

holds.



Proof:

The converse may be directly applied to the fidelity criterion as
induced by the code-type strategies as assumed to be used by the
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Due to the additivity assumption we get

e rd'(x",8T)

= i E [d(Xt,Bt)l.

Now, using the definition of D(-), we may give an
upperbound to the Tatter item by © D (I(Xt A Bt)),
t

which, by concavity may be bound by
~1
T D(T i I(Xt A Bt))‘

As a consequence of DOBRUSHIN's inequality
ix' Ay > 3 I(X, A B,)
t
- valid for independent Xt -, we infer, using

isotonicity of D(-), the claim.

opponents of player k.

In fact, since the fidelity criterion d. as defined preceding

Lemma 2.2 and the payoff to player k differ by an arbitrary small
amount “almost everywhere", provided T

we may use the converse to give an upper bound to the payoff

attainable by player k.

3.2 Corollary:

For any e > 0 and sufficiently large T and BI [ 3(1;==bﬁ
satisfying 71 I{X

T A BI) < C  the inequality

- T T
T 1 E [UI(X ’(B-}E)’(B'l)]#k)]

< D(C) * e,

holds.

is sufficiently large,
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£ .
Proof: Define & = =2 and observe that by Lemma 2.2

ZN
for all - X! ¢ and al € AI

T,.7T.T .7 T, T.T
| u (x ’ak’(B])1#k) - dp K

Assume further ¢ to satisfy

£

Q
u < —
ulf <

Then

T e (xTBy, (BT)]#k)

1 T, T T T
1

E {U (X sBkS(B ))] * M (X )

s 5 THE [ul(x.8].(8

T LT
T k**1

(1-¢) - (T E tdl(x".a)) + 2+ e [l

i~

£ £
T T)]+'_0'+2'_03
2 4

| A

1 I
E [di(x
which proves our statement by application of Theorem 3.1.

By now, we collected all information-theoretical material to
infer the e-equilibrium property of code-type strategies as
claimed by our main theorem. Its proof consequently is an easy
thing to perform.

Proof (of the main theorem):

Following Lemma 1.1 there exists an eguilibrium in the game Fl.
*
Let it be denoted as (vl*...vk ). Let us analyze the presumable
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equilibrium property from player k's point of view. The
equilibrium property yields for him the payoff

E, %y [U 17 = max {E ey lu 1,
v T e om
L(XAV, )<C,

where the latter expression is equal to D(Ck)' (Observe, since we
analyze from player k's point of view, we suppress the dependence
on the other players strategies.) Given e > 0, Coroliary 2.4 -
the coding theorem - shows that the average payoff D(Ck) is g=-
attainable for player k, provided the opponents stick to their
code-type strategies based on (V*f)Hk assuming T sufficiently large.
On the other hand player k cannot achieve an ascertainably higher
payoff than D(Ck) + ¢ due to Corollary 3.2 - the converse. Thus,
(D(Ck))ke.3<is an e-achievable payoff-vector and no player can
obtain an ascertainably higher payoff by unilateral deviation,
proving the equilibrium property for code-type strategies being
based on an equilibrium (V;) in the one-shot game.

Two remarks seem to be useful. In the course of deriving our
existence result on e-equilibria we did not intend to suggest the
impression that those are obtained constructively in contrast to
the existence-proofs on equilibria via fixed-point theorems. Of
course, we needed a fixed-point argument to ensure the existence
of an equilibrium in the one-shot game by ourselves. This, however,
could be argued to be not as bad as that, since an equilibrium may
be found by numerical analysis by some effort depending on the size
of the strategy sets and the number of states of nature. What is
more counteracting the constructivity is that also the code-type
strategies are obtained non-constructively via a probability
argument. These are for "practical" purposes, though bad enocugh,
considerably to be preferred to a proof of existence via fixed-
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point theorems. Also, as was already mentioned, we inferred some
structural properties in contrast to the usual derivation of
equilibria in supergames.

Our second point concerns the synchronization assumption related

to the investigation of periods of fixed length 7. It is easily
observed - but takes pains within its formalization - that the
fixed-length periods only facilitated the analysis, but are of no
relevance as far as the validity of our results is concerned.

Thus, since every player may use his own length of period, no game-
theoretic problems arise from a selection of the length of periods
which are to be considered. '

Let us conclude with an easy consequence of the main theorem.
Consider a K-person matrix game T = (Ak,uk). An equilibrium vector
of this game is given by (Pi,...,PE) € (A(Ak))kej{’ say. This
probability vector may be viewed at as consisting of conditional
probabilities (Vi,...,Vi), for which V, X ==>A, with a one-
elementary set X . In this case I(e V) =0 for all v [x==>A,
where €y denotes the unique probability distribution on X . Thus,

the inequality I(EX;V) < C provides no restriction on V or P,
respectively. Consequently the equilibrium payoff-vector D(Ck) = Dk
is independent of the vector of capacities (Ck).

Now let FT denote the T-fold replication of the above game as
usual. Our main theorem shows that the equilibrium vector (Dk) of

- the one-shot game may arbitrarily well approximated by code-type
strategies in supergames PT for sufficiently large T. Moreover,
since the equilibrium payoff in the one-shot game did not depend on
the capacities Ck’ there exists an e-equilibrium code-type strategy
for which the carrier contains less than exp{T - e} elements.

Thereby we derived
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Corollary

Let us be given any K-person game T = (Ak,uk). Then, for any > 0
and sufficiently Jarge T there exists an e-{code-type) equilibrium in
the T-fold replicated game - (AE, T'lul) such that for each
player k € "X the cardinality of those set of seguences al used with

positive probability is bound by exp {T - ¢}.
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