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2. Mathematical notations

k
In the following let X, M, Xi’ Mi’ i=1, ..., k, be sets. Let T Xi denote the cartesian
i=1

product of the sets Xi and XM denote the set of all mappings from M into X.

k
M. L M
K& eX, ' i=1,.,kthenlet & x .. x & be that mapping in (I xi)‘=1 that is
i=1
canonically defined by the mappings \I'i, i=1, ..,k

For a subset V C IRM we define

V+:={xEV|x(m)20 ¥ m €M} and

V++:={xEV|x(m)>0 ¥V meM}.

Wewrite (x,y):= X  x(m)y(m)ifxy€ rM.
méeM

If M is finite then let A{M) denote the set of all completely mixed probability
distributions on M:

AM):={pe(@ M| = pm)=1}.
meM



3. The model

We deal with a two person model which is discussed in detail by Myerson [ 3].

There is a decision set of possible decisions the players may agree on and a conflict
outcome which results if the players don’t come to an agreement. This conflict outcome
is an element of the decision set.

Every player might be one type out of a given type set. A type is determined by two
components:

—  a von Neumann-Morgenstern utility function on the decision set which represents
the utility of the decision

—  a probability distribution on the type set of the other player which represents the
beliefs about the frequency of the types of the opponent.

The cartesian product of the type sets is called the state space.

We will restrict ourself to the case that there exists a joint distribution on the state
space which represents the beliefs of both players. This means that the belief of a player
is the conditional distribution induced by the joint distribution.

The formal model:

A bargaining problem I' is an object of the form
P=(D: d*, Tl’ T2r Uy, Uy, p)
with the following components:

D, T,,T, are finite sets with T, NT, =,

d* is an element of D,

uy and u, are functions from D = T, = T, into the real numbers R,

p is a probability distribution on T1 x T2.



D is the decision set, d* is the conflict outcome, T, (resp. T2) is the type set of player 1
(resp. 2), Uy and u, are the utility functions of the players and p measures the proba-

bility that a pair of types occurs.

We suppose that p(tl,t2) > 0 for all (tl,t2) €T, x T,

A pair of types is called a state and the product T, x T, is the state space. Speaking of

T, =T
two type sets we always claim them to be disjoint. If we have a function x €R 1° 72

we may write x(t,,t,) instead of x(t,,t,) for (t;,t,) € T; x T, without causing any

confusion.
To simplify the notation we write —i instead of 3 —i fori=1,2.

We use the following notations:
u(dt,to) =1 yy(d]ty o) =: u,(d]tyt,)

VdeD , t; €T, t, €T, , i=12.

2

Fori=1,2let g be the marginal distribution of p:

t:li(ti):=t .ET . p(t;:ts) Vi €T,
-1 ot |

and P the conditional distribution:

(t |t)-—-p(t1’t2) V(t,,t,) €T, x T
Pl =gy LA Tl 3
Let the function

q: Tl U T2 — R

be defined by
1



We say that the types are independently distributed if

P(ty:ty) =q;{(t;) - a5(ty) V(t;,t)) €T x Ty,
and write p =q, @ q,.
In this case it holds:

p(t_;lt) =a_;(t_;) V (t),tg) €Ty x Ty, i=1,2.

The set of all probability distributions on Tl x T2 of the type qy ® g is denoted by
I
A(T; x T,).



4. The bargaining set

See Holmstrém & Myerson [2] and Rosenmiiller [ 7].

In a given bargaining problem both players know both type sets, the two utility func-
tions and the joint distribution. Every player knows his type and his beliefs about the
probability of types of his opponent are described by the conditional distribution. Both
players know how the opponent generates his beliefs.

The players are able to perform joint lotieries over the decision set including the con-
flict outcome. Both are risk neutral.

They have to agree on a mechanism which determines one lottery for every possible
type combination. After the agreement both players announce a type out of their type
set. The lottery will be performed according to the announcement and the resulting
decision will be executed. After the agreement nothing can be changed. If they don’t
agree the conflict outcome is executed.

We want the players to reveal their real type in the announcement. Therefore we de-
mand the mechanisms to be incentive compatible. That means: For every type of both
players truthtelling gives the highest return of expected utility if the opponent always
tells the truth. Truthtelling is a Nash—equilibrium in the game induced by this mecha-
nism. Every incentive compatible mechanism defines an allocation of expected utility
for the types of the players. An incentive compatible mechanism which gives a higher
utility than the conflict outcome is called individual rational. The set of all those allo-
cations is called the bargaining set.

A mechanism g is a function g : D x T xTy— [0,1], so that

T pdtpty) =1 V(tyty) €T, x T

deD z

We write
w(d,ty,89) =2 pld[y,89) =: p(d]tg,t).
A decision d € D is often identified with the mechanism #3 defined by:
ﬂ’a(al 'yt ) =1.

Let A (I) be the set of all mechanisms of the bargaining problem I We often suppress
the argument I



The utility of a mechanism 4 in a state (tl, t2) € Tl x '1‘2 is the expected utility of the
lottery p{- | t;,t5). We can denote this utility for player i by u;(p]t;.t,) and get an

extension of the function u, Dx T1 x T2 —[R to a function

v A T1 x T2-*R defined by
ui(»“:tl:tg) : =ui(#“’1:t2) : =d ?D pdft,.ts) ui(dltl:tg)

V (t,tg) €Ty x Ty, p€ A,

The expected utility of player i is the function

U : A xT, —R
defined by

Ui(”lti) : =Ui(ﬁ',ti) : =t . fT . ui(lu'ltlst2) Pi(t__ilti)
—i " =i

Yuee J(,tiETi.

Ui(u|ti) is the expected utility of the mechanism u for player i if his type is t, and both
players are announcing their true types. If the true type of player i is t, € '1‘i and he
announces s, € Ti while the other player announces truefully he will receive the expected
utility U¥(u.s;t;), where

U’;: .ﬂxTi-Ti—HR
is a function defined by

U’;‘(,u,si|ti) :=t . gT d ?D V’(dlsi:t_j) uj(dlti,t__,i) pi(t—ilti)
- —i

A mechanism u € 4 is called incentive compatible iff

* L
Ui(ﬂlti) 2 Ui(#:si [ti) Y Si,ti € Ti’ i=1,2.



To simplify the notation we define the function

U: 4 = (T,UT,)—R by

UIJ(:Tl::Ul and UIJJ:T2:=U2'

Let B(I) be the set of all incentive compatible mechanisms of the bargaining problem T’
and define

T,UT
% (D :={xeR 1 2|3 ueB(I)sothat x=U(u|-)}.

An incentive compatible mechanism u € B(I) is called individual rational iff

Ui(p]-}2Uy(d*]-)  fori=1,2.

Define
B () ={ n€B(I) | uis individual rational}

and

¥ (D) ={xe %(0) | x> U(d*|)}.

% (I) is called the bargaining set.

When we deal with a second bargaining problem ['all its components and the derived
quantities are marked with ~.

A bargaining problem I'is called regular iff there exists 2 mechanism gz € B(I) so that

U(plt) > U(d*|t) VteT,UT,

Let % be the set of all regular bargaining problems.

For a decision set D a state space T; = T, and a probability distribution p € /_‘.(T1 x T2)

let
- Y. Dbetheset of all regular bargaining problems with state space
1" "2

T, xT,

1



YD x Tox T, be the set of all bargaining problems in ¥ T.x T. With
1

1 2
decision set D

- 7p be the set of all bargaining problems in ¥ Tl" T, with distribution p.

Let ¥ I denote the set of all regular bargaining problems with independently distributed
types.



-10 -

5. Some operations on bargaining problems

In this chapter we look at some mappings which transform a bargaining problem into
another bargaining problem but don’t really change the described situation.

Renaming
For a given bargaining problem we may generate another bargaining problem if we give
other names to the decisions or the types of the players.

Given two decision sets D, D and two ttate spaces T, x Ty, T, T, and three
bijections

¢p:D—D, ¢ : T =Ty, ¢: Ty~ T,
we define the following functions:

¢:=¢Dx¢1x¢2:D:¢T1xT2—;DxT1xT2

$p:i=¢*@y: Ty xTy— Ty x Ty

and
¢O:T1UT2—-+T1UT2isdeﬁnedby
¢ |m =¢. fori=12.
O'I'i 1
Let ¢* : — ¥ _  _ _ bedefined by
DT 1, nyTIuTz

¢*(F) =(f):¢D (d*)’ Tl: Tz: ul o ¢—1$ u?, o ¢’_1) po ¢'E 1)

_ *
V P—(D, d l Tl, T2, ul, uzi p) E ?Dx Tlx T2

T

— R

T,UT

Ty UT,
We may also define the bijection ¢ : R

2 by

1

T, UT

Eb(x):xoqbal VxeR I 2

Of course we have

%, (¢*(1)) =¢( (D))
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This operation is related to the procedure *changing of types’ in [ 1] . Harsanyi & Selten
only look at type sets which are subsets of the natural numbers and are ordered there-
fore. We look at type sets without ordering. Interchanging the names of two types has
‘the same result as *changing of types'.

Interchanging the players

We may change the names of the players.

Define the mapping
vV: -9 by

YD) =(D, d*, Ty, T;, uy, uy, ) VI=(D,d* T, Ty, uj, u,,p)€ §.
with B(t,, t;) =p(t}, to) V(ty, t;) €Ty x T,

9is bijective and we have:
1/)=1,5"1 and
%(yD) = %(I) Vie ¢.

Linear utility transformations

We ciaim both players to have a von Neumann-Morgenstern utility function. These are
only determined up to linear transformations.

Let T1 x T2 be a state space.

T.UT

T.UT 1
) AEIR++

K aeR 1 2

2 and i €{1,2} then let the mapping

T T

x T x T
i:ﬂil 2—+ER

- 1" *o .
Aa, A be defined by:

(Rg 3 (0] (t1:tg) =2(t;) X(t,t9) + aty) ¥ (t),tp) €Ty x Ty, x €R

(a,A) defines a mapping A;,/\ : yTI xT, — fTI « T, by:
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A D =(D, 8% Ty, To, Ay 5 181 A, 3209 P)

Y I‘=(D, d*, Tl’ T2, 111, ll2, p) € yTl x T2

If we define the mapping
T,UT

- ) 1
Aa’A.IR

T.UT
2—-‘1|R:l 2 by

T.UT

;\a,A(x)=)\x+a VxeR 1 2

we see immediately:

w(K; () =h, \(2(D).

Splitting of types

If we describe a bargaining situation in our model every player consists of various types.
One might take one type and regard this type as an aggregation of two subtypes which
have the same utility functions and the same beliefs. The probability of both subtypes
together equals the probability of the old type.

I Tlx T2 is a state space and { € T, Y T, U T, then one can define a mapping

T xTy  (TUGD T,

L _:R by

. . () (tl,.)=["“1") T vxen 1

x(t, ) if t1=i

and a mapping
T,UT, TlUT2U{t}

$ R —R by
i

. y(t)ifte T, UT T.UT
Sy @W={" . 102 VyeR
t y(t)ift =t
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If in addition we have v € (0,1) one can define a mapping

s : x — Uit} =
B AT T) = AT U () Ty

p(ty,) it €T,\{i}

(;‘— . P (tl,‘)= v P(E,') ift1=
bbY (1-v)p(t,) ift, =

Finally we define a mapping

z 2 I Tl

. . - by
t,t,v 1% 42 (T, U{t}) = T,

£ ()=(D,d% T, U{i}, Ty, &
t,t,v

¥I'=(D,d*, T

0
H we write I'=Z_ _ T'we have for the marginal probabilities

t,t,v

q(ty) ift; €T \{i}
Ell(tl) = v Q(f') if tl =E
(1=v)q(t) ift; =t

t12 =Q2
and for the beliefs

py(-1t) ift €T,
py( 11) ife =i

(5.1)  Byl-lty)= {

pyltyl) ity €T \(E)
f)g(t1|')= Vpg(fl‘) ift1=
(1=v)pylEl-) ift; =

_u
ii v

9r Ups Ug, P) € fTIx T,

Vp EA(TI x T2)

P)

2



1. Imtroduction

In 1950 Nash [ 6] formulated the two person bargaining problem and gave a solution,
the Nash value, determined by a set of axioms.

Harsanyi and Selten [1] generalized the bargaining problem to the case with incom-
plete information and proposed a solution which is a derivation of the Nash value. In
their model every player may be one type out of a given set of types. Both players know
their own type and have beliefs over the frequency of the types of the opponent. The
players have to agree on an allocation of expected utility for every type of both players
out of a given set of possible allocations — the bargaining set.

Myerson [ 3] presented a modified model for a bargaining situation. Again the players
have different types and beliefs. They have type dependent utility functions on a given
set of possible decisions. Both have to agree on a mechanism, which is a type dependent
lottery over the decision set. The players announce their type after they have agreed on
a mechanism and then the {(iype dependent) lottery takes place. Myerson demands the
mechanism to be incentive compatible, which means that it is optimal for the players to
announce their true type. The set of incentive compatible mechanisms together with the
beliefs and the utility functions define the bargaining set of all possible allocations of
expected utility.

Myerson claims that the axiomization of Harsanyi and Selten leads to the same solution
in his model. Later Myerson [ 5] proposes a different solution for his model.

As I tried to reformulate the axioms of Harsanyi and Selten in the model of Myerson
and to derivate the Harsanyi and Selten solution some problems occurred.

First it is not obvious that it is possible to applicate the IIA axiom (independence of
irrelevant alternatives). This can be treated with methods introduced by Myerson in
[4] . Secondly in a key step of their proof Harsanyi and Selten use the operation 'divi-
ding a type’. This step doesn’t work if the types of the players are not independently
distributed.

In chapter 3 and 4 I present the model of Myerson. The next chapter is devoted to the
operations that are needed to formulate the axioms. The first problem (IIA) is treated
in chapter 6 and 7. The axioms and the proof of the uniqueness of the value is presented
in chapter 8. At last I discuss the problems that arise in the non—independent case.
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Specially it holds:
(5:2) Po(t]) =By(t]-) + py(tl")

This operation ’splitting of types’ can easily be defined for player 2 too.

Lemmal: % (X D= _(% (D).

Proof: We write I'=X | X

»

Let € B(D).

We define € A (I) by
B by, to) 3 (1, 1) €Ty =T,
u- 1t ty) it =t, ty € T,

(- |t1: tg) = {

Player 1 has no incentive to lie in % because the beliefs of t and { coincide. Player 2
won’t lie because of [ 5.2].
Therefore we have ji € B(I). One sees immediately that

Ual-) ==, - (U(el-))-

So we get:

2£ : (D) wX, _ (D)

t,t,v
Now let 1z € B(T).

In T"the types t and { has the same beliefs and the same wutility functions. Therefore we
have:
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This shows that equality holds everywhere.
Therefore we have:

(5.3) U, (Bl1) =0,(g|t) and

0,05 T1E) =0, (1)

We define a mechanism z € A4(I) by :
- Itl,' ) if tl € Tl\{i}
F‘('Itp')= _ - [PV .
Vﬂ('lt,')'l‘(l """V) #('lt,-)lft1=t.
We now show that u € B(I).
We have:
Uilusylty) = = B pldlty, s9) ugld]ty, to) Polty Ito)
222tlET1dED 12 72 1’ 727 ¥2Vi11 2

= X - )y I"(dlt]_:sg) 112(d|t1, tz) pz(tlltg)
t,#t d

+ (v I‘(d|£a52) +(1-v) ﬁ(dlil:sg)) ug(dl iytg) pg(£ “2)

Y, X ﬂ(dltl,s2) ﬁ2(d|t1) tg) f’g(tlltg)
tl #t d

+ ﬁ(dlissg) ﬁg(dl E:tg) f’g(iatg)
+ ﬁ(dﬁ,sz) ﬁg(dli’tg) ﬁz(f,tg)
=U§(ﬁ, sz|t2) Vigs, €T,

because of {5.1).
Therefore player 2 has no incentive to liein .

Also we have
(5.4) Uy(a-) =Uglel-).
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With the equality (5.1) we get:
(5.5) U (a8, 1) =0 (Rs; 1ty) Vit €T, s €T \{t}.

We have for all 1;1 € ’I‘I:

(56) Ui(milty)= z dED(VI"(dH:tg)"'(l_v) d]t,t5)) ug(d]ty,t0) py(tg 1to)

LLel,

=v tz gﬁ(dli,tz) i, (d]ty,ty) Byt |ty)
2

+(1-v) ’ﬁE a‘-“p'(d[i:tg) ﬁl(dltlstg) ﬁl(tlltg)
2

=v U(ailty) + (1 =v) Ti(ailty).

We get

U’{(ﬂ’i Itl) v ﬁl(ﬁltl) +(1—v) f]l(ﬁltl) =U1(#|t1) v i € Tl\{i}

because [ is incentive compatible, and equation (5.5).
(5.6) and (5.3) give :
(5.7) U, (sl t) =Uf(nit 1)

=v O}(B,t]t) + (1 —v) O}t 1)

=0, (5l1).
Incentive compatibility of Z and (5.5) lead to:
UI(H,SI I £) =ﬁ;(ﬁ:sl I i)
< U (811) =V, (ulD).

Therefore 4 is incentive compatible. (5.4), (5.5) and (5.7} show:

wE. . DeE (D).

t,t,v f,f
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6. Pareto optimal mechanisms

Definition: Let I'e f

An allocation x € %(I) is called pareto optimal (in %(I}) iff for all x’ € %(I) it holds:

X' x=x'=x.

A mechanism g € B(I) is called pareto optimal {in B(I)) iff the allocation U(ul|-) is
pareto optimal in #(I).

The presentation below is inspired by Myerson | 5] .
In the following let I'=(D, d*, T Toyuy, uy, p) be a fixed bargaining problem in ¥%.

T,UT

1 2
For )\E[R++

consider the following linear program LP(A):

ila)ecirél%%e (AU(g]-) ).

TlUT2

A mechanism g € B(I) is pareto optimal iff there exists a A € R, .

so that p is an

optimal solution of LP(A).

Define the sets

2
Ai={ai€IRIi | e(t]t)=0 VieT}, i=1,2
and ,
A={a€R | angEAi fori =1,2}.

i

For i =1,2 define the mapping

T, T,UT
WiR xR,

T

2, A—R 1 by
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(Wi(x,)\,a)) (ti) =( A(ti) + 5 §Ti o(si‘ti)) X (ti) —Si EAi a(tj | Si) X (si)

T TIUT

i 2
Vi €T, Vx€R ,a€A deR,, °

Wi is linear and in Lemma 1 of [ 4] Myerson proves that the mappings

) T, T, T, UT,
Wi(-,ha): R " —R "arebijective forall a€ A, AER, | .

For i =1,2 define the mapping

T, xT

T.UT
Wi:m1 2. g 1

++

T, =T

1™ %2

2, A—R by

(Wi(x,)\,a)) (tl:tz) : =(A(t1) + S-ET- Q(Sih'i)) X (ti’t—i) '“'s.

e T O’(tilsi) X (si’t—i)
17 i~ "

TIUT2

Forallae A, )\EiR_H_ , 1=1,2 the mappings

W(-,A\a):R !

are linear and bijective because the mappings Wi(- ,Aa) are bijective and linear.

Define for i =1,2, the mappings

TIUTZ
Vi:DlexszlR_H_ x A —Rby

vj(d: tl’ t2: A: a) : =Wi(pi : uj(dl' r ),A,&) (t]_atz)

T,UT

1772
theTl,tzeTz,dED,aeA,Aem++ .

Because of our assumption

p(ty,ty) > 0 ¥ (ty,8)) €Ty x Ty

the mappings w, + Wi(pi . ui(dl- " hAe) = Vi(d,- ,»,A0) is bijective for all a € A,

T UT2

reR, 1 =12

++
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_ TIUT2
Wehaveforl=1,2,aEA,A€R++ :
(6.1) t ZT Vi(d,tl,t2,)\,a) =Wi(Ui(d|-),,\,a)) (ti) VtiETi.
o D
TlUT2
DeﬁnefortIETl,tzeTz,AE!R++ ,a€A:
( ) ; ( )
v(t,, ty, A, @) = mdx Y V.d, t,, t,, A a)
2 d eDpi=1 ' 172

In [ 5] Myerson showed that p € B(I) is an optimal solution of LP(X) iff there exists an
a € A so that

(6.2) i) Uklt) > Ulus|t) = ofs]t) =0 ¥(s,t) € T2 U T2, and

2
i) pdltpty) > 0= B Vidtytyha) =v (i)

Vi €T ,t,€T, deD.

1t
The value for LP(}) then is:

) v (t,,t9,A0).
(tl’t2) € Tl x T2 12
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1. Extension

Definition: A bargaining problem ['=(D, d* T 1 2, 1, 2, Ple ¥
is called an extension of a given bargaining problem I'=(D, d¥, Tl’ T2, Uy, U, P)EY

iff Ty =Ty, Ty =Ty, p=p, d* =d*, DD and i, T, =T, =% =12

Now let I'=(D, d*, Ty, Ty, u;, uy, p) € ¥, p € B(I) be pareto optimal and an optimal
solution of LP(A). Let a be chosen, so that (6.2) is fulfilled.

All this is fixed in the following and the arguments A and a are suppressed where no
confusion is to be expected.

Lemma 2: There exists an extension I' of I’so that:

TlUT
% () ={xeR | x2U(d*|-)and (x, A) < {U(ul-),A)}.

T, UT

. T,UT,
Proof: Because %(A;ﬁ ] =Aaﬁ (%(D) for all a €R 1

2[jEIR We

might restrict ourself to the case U(d*|-) =0.
We extend the decision set D by the set

D={d, | teT; UTy}.

The utility of these decisions have to be defined. The extended utility function will also
be called u.

Let w=( U(u|-),A).
We claim for all t € T1 U T2:

C1 U(dilt)=0 Vie(T UT)\{t}
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C2 U(d, |t)=—"—
i XD

2
C3 i 21 Vi(di’ b to) =v (t),1,) V(t;t,) €Ty x Ty,

The convex combinations of the dictatorial mechanisms induced by the d 's and d*
1
generate the right set.

2
Because max { £ V,(dt,,t,) |deDUD}=v (t;:t,) the proof is closed if the claim is
i=1

fulfilled.

Now we fix t € Tl U T2 and show that the equations C1, C2, C3 have a solution.
Let t € T, (without restriction).

The claims C1, C2 can be transformed equivalently by application of the bijections Wi’
i=12.

We get with the help of (6.1)

Cc1 L V(d.,t,1,)=0 Vi,eT
b €T, P 2% 72
and
C2 T V. (d,t t,)=0~ I aoft,|s;) U (d. |s,) =—oft, |t) 2—
1\0 M1t 11717 V13519 1
ty €T, 1 85 €Ty t A('t)
theTl\{E},

C2> & Vi (d,tt)=(Mi)+ I ofs,|t)) —
1V 72 1
t, €T, t 5, € T, A1)
If we find a solution (Vl(df" ")y V2(d£,- , )) for the equations C1’, C2a’, C2b’, C3 we
have a solution (ul(dil' v )y u,(d: |- ,)) for C1, C2, C3 because p(t;,ty) > 0 for all

(tppty) €Ty x Ty,
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From C3 it follows

2
z T Vd,tt,)= & vt t)=w
N2 172
(1.1,t2)eT1UT2 i=1 t (t;:t5
and together with C1’, C2a’ we have

; { ) ( )

w= p) T Vd,t,t)= ¥ V. (dt;t
. L TR 12 1V7271072

(tyty) €Ty x Ty j=1 7 ¢ (t;,ty t

K ?T t }gT Vl(di'tl'tz)
16T €T,

= T V(d,tt,)— T oft,|t) 2
QET, 1 & 2 t €T, 1 A(d)

In the last equation we used the fact o{t]t) =0.

Therefore the equation C2b’ follows from the equations C3, C1’, C2a’.

We have shown:
Forall t € T, the following system of equations is equivalent to the three equations Cl,

Cz, C3.

D1 ) Vo(d_,ty,t,) =0 Vi, €T
1 €T, 2%t 2% o
D2 > V,(d_ty,t) =—aft, 1) — Vit eT \{t},
ty €Ty 1 12 ) 1771
2
D3 121 Vi(di’tl’tQ) =v (t,t5) V(t;ty) €T, x Ty,

Now we show that this system has a solution.
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1. case |T;I=1, T;={t}.

According to D1 we choose
V2(d£,t,t2) =0 Vi €T,

and according to D3 we choose

Vl(di,tl,t2) = v (t)ty)-

Equation D2 is empty.
2. case |'T,| > 1.

To fulfill D2 we choose

Vl(di’tl’t2) =—a’(t1 I i) A_(‘;;) . Pl(tzl i)

D3 determines Vz(d{,tl,tz) for all (t,,t,) € (Tl\{i}) x Ty

V(tpte) € (T \{1}) x Ty,

We compute V(d. ,E,tz) with D1 and finally Vl(d,,f,t2) with D3.
t i

Tke choice of V,(d:,- ,-) corresponds to the utility

0 fort €T, \{i}
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8. The axioms

Now we want to characterize a solution for the bargaining problem, which is a function
that determines how the expected utility should be allocated in every bargaining prob-
lem.

Harsanyi and Selten [1] gave a set of axioms which uniquely determined a solution in
their model.

One step of the proof cannot be carried over to our model. We drop one axiom and have
to restrict to the case of independently distributed types.

Let # be the set of all functions L: y' — U . #(I) with L(T) € #%(I) for all T g1

Te ¢

Our solutions L € & should satisfy the following 8 axioms.

For all bargaining problems

I
I'=(D,d* T}, Ty ,u,p) € ¥

we claim:
Axoml: Let ¢p:D—D, ¢ Ty — Tl, ¢o: Ty — T, be bijections of

decision sets resp. type sets. Then L fulfills:
L(¢*(D)) =4(L(D)).

Axiom 2: L{y(I)) =L(I).
Axiom 3: For a bargaining problem T'¢ fp with ?Jr(f‘) = % (I)
L fulfills: L(T) =L(D).

ur T,UT

1Y 2
By

L(’\;’)\(I)) =i\a,,\(L(r))-

T

Axiom 4; If (a,\) €R 1

2 it follows

Axiom 5: L(I) is pareto optimal in #%(I).
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Axiom 6: (L{D)) (t) > #%(d*|t) VteT, UT,.

Axiom 7: If Tis an extension of Tand if L(T) € %(I) then it holds:
L(T) =L(D).

Axiom 8; Ifte T, { £ T, UT, and v € (0,1) then if follows:

L(Z. _ (D)=Z _(L(D).
ti,v R

We now define the Harsanyi & Selten value L*.
IfT'e § then the set % (I} is convex and

{x€ () | x(t) > U(d*|t) VteT UTy} 40

T,UT

1 2
Fora.lleIR++

the function

TIU T,
Hbl-.:IR — R  defined by

T.UT

X)= - * b(t) X 1
Iy, p(x) CeToU T (x(t) =U(@*]1))"" vxemr

T,UT,

is strictly concave.

Therefore the maximization problem

max I]b,[(x)

xe % (D)

has a unique solution.

We define L*(I) to be the solution of
max O (x)
xe % (D) q’[(
where q denotes the marginal probabilities.

Theorem 1: L* satisfies the axioms.

Proof: See Harsanyi & Selten [1].
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Theorem 2: L* is the only solution that satisfies all axioms.
We will prove several lemmas which together show the theorem.

Let T; x T, be a state space and p € AI(T1 x '1‘2).

A bargaining problem I'e¢ ¥ P is called norm bargaining problem to p iff

(0 ={ T1UT2| T (t) < 2}
w“ (D) ={xeR x (t) €2}
I + teT,UT,

Let ¢ II;I denote the set of those bargaining problems.

There exist norm bargaining problems for every distribution p. They can be constructed
by methods used in the proof of Lemma 2.

In the following let L € . be a solution that satisfies all 8 axioms.

N
Let L T’e )
et I, y P
Because of axiom 3 we have
L(T) = L(I")

T.UT

Therefore we may define e er 1 2

= N
by et = L(I) where I'¢ ?p'

Lemma 3; Let T, x T, be a state space and p € AI(TI «T

Then it holds:

1 2)'

c)IiTe ¢ P then L(T) is the solution of the maximization problem:

max I (x(t) —U(d* |t))ep(t)
xe ¥ (I) teT;UT,
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Proof: a) and b) are immediate consequences of the axioms 6) and 5).
For I'e ?p define $r: %I(I) — R by

¥ (%) = Tfu 1, e (t) a(x(t) —U(d*]t)) Vxe w (D).

Then the maximization problem in the lemma has the same solution as the maximi-
zation problem

max ¥PH{x).
xe % (D) [(
We call the solution LE(T).
Now we prove LE(I} =L(I) Ve fp'

. . N
First consider the case ['e .

ir nsi ﬁ D
Solving the maximization problem

max ¥ [(x) under the constraint

z x(t) =2
te Tl U T2

yields the solution x =e.
Now consider the case of a linear bargaining problem I'¢ fp, that means:

T,UT

. 1 2
There exist AE!R_H_

and we€R sothat

T.UT
#(D={xeR 1 "] (xA)<wandx> U(d*|-)}

These bargaining problems can be derived from a norm bargaining problem by a linear
utility transformation. A simple computation shows together with axiom 4 that

L(1) =L(D).

Now let I'e P be arbitrary.
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e(-) T, UT,

DeﬁDEA:=Le(I)(-) oG EIR_H_

and w: =9 {L5(D)).
A is the gradient of ¥ in the optimal point LE(D.

4 I,is strictly concave and therefore

T,UT,
% () CX : ={x€R | (x,A) ¢w and x » U(d*|-)}.

(See Harsanyi & Selten [ 1] for a proof.)

A simple computation shows that the maximization problem

max ¥ n(x)
x €X r

also has the solution LE(I).

Lemma 2 shows that there exists an extension T'of I'so that # (I) =X.

T'is a linear bargaining problem. Therefore we have L(I} =Le(f‘).
Because LE(T) =Le(l‘) € %(I) we can apply axiom 7 to close the proof.

Lemma 4: Let T1 x T2 be a state space and p € AI(T1 x T2).

[s]
fteT,t¢T,UT,, ve(0,1)and p=X__ p thenit holds:
1 17 %2 -
B |
. ={ es(t) Vie(T, UT)\{t} |
P e5(i) +e5(f) , t =t
Proof: Let T¢ g\ and T:=% _ T
Proof: D E

v
Then axiom 8 yields

1(f) =5; ; (L) =5 ; (&)
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Lemma 3 yields
L(T) =L%(D).
We know by Lemma 1 that

¥ (1) =%; ; (#,(0)

T. UT, U {t} . )
={xeR 1 2 x(t) =2, x(i) =x(1)}
teT, U T,
A standard computation shows
ex(t) ,  te(T; UTy\{i)

L5® ) {

eﬁ(i)-i—eﬁ(f), t e {t,t}

A comparison with f)i i % closes the proof.

Lemma 5: There exists a function ¥ : (0,1] — R, so that for all state spaces and all
distributions p; € A(Tl), Py € A(T2) and for i =1,2 it holds:

ep:l ® Pz(ti) =¥ (pi(ti)) Vit €T,

Proof: First we want to define ¥.
Let T, ={a,,3,}, T, ={b} be type spaces and r € (0,1).

The distributions p, € A(T,) and p, € A(T,)) are defined by:
1 1 2 2

pp(B)=1,  py(E)=r,  py(Ey)=1-1
Define ¥ (1) by

and define ¢(1):=1

Now let T; x T, be any state space and p, € A(T,), py €A(T,).
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In view of axiom 2 it suffices to prove the lemma for player 1.

Let b € T, and define T : ={b} and P, to be the only element in A(T;). We can derive
the distribution p =p; ® p, by iterated *splitting of types (of player 2)’ from Py ® 3.

The preceding lemma shows

Vi, eT,.

We can restrict ourself to the case T, =T} ={b}, Py =Pj-
Now take any a, € '1‘1.

1. case: T, ={2,}
This is the case with complete information and it is clear that

G, ep,8) =1 = 2(1) = £(ry(a,))

2. case: IT;| > 1.
Take a, € T,, a,#a,, and define T{ ={a, a,} and p; € A(T}) by
Pi(a-l) =P1(31) ) Pi(ag) =1 _P(a]_)-

We can derive the distribution P, ® Py by iterated splitting of type aq from the distri-

bution P ® Py The preceding lemma shows
epi ®p, (2;) =epl ® p2(a.l).
Because of axiom 1 we have
s 0.5, (21) = (2{(2)

and that closes the proof.
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Lemma 6: ¥(p)=p Y pe(0,1]
Proof: We know ¥ (1)=1and ¥(p) > 0 Vp€(0,1] (seelemma 3a)).
Next we show
¥ (r) +15) =P (1;) + #(15) Vg >0,1+1,¢1
1. case: r+r, =1.

If you split the case without uncertainty you get the result from Lemma 4.

2. case: I +15< 1.
Take the type sets

Tl ={31:32}: T2 ={b}
and the distributions

P, € A(Tl), P, € A(Tz) defined by
pl(al) =1 —I, —Iy pl(ag) =y + Iy, pz(b) =1
Now split a, and you get the result from lemma 4.

¥ is nonnegative and additive. Therefore ¥is monotone.

Because ¥ (1) =1 and ¥ is additive we know

?(p)=p Vpe(0,1] NQ.

The monotonicity closes the proof.

The four lemmas together show that L =L*.
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9. Some problems with the non-independent case

In their paper Harsanyi and Selten didn’t restrict to the case that the types are inde-
pendently distributed.

They defined two other operations which enable them to prove the uniqueness of the
value with the help of an additional axiom. In Myerson’s model these operations and
the axiom bear some problems.

Harsanyi and Selten model a bargaining problem as a ﬁajr (X,p) where p is a probabili-
T,UT

2

ty distribution on a state space T1 x T2 and X CR 1 is the bargaining set repre-

senting the possible allocations of expected utility for the types of both players.

Given two bargaining problems (X,p’), (X,p”) with identical bargaining set they define
the mixture of these bargaining problems to be the bargaining problem (X,p) with

1
p=3(p+P)
We try to carry over this operation to our model.

Let T’ =(D,d*,T1,T2,u1,u2,p’) and I'” =(D,d*,T1,T2,u1,u2,p”) be two bargaining

problems which only differ in the probability distributions. Then we can define the
mixture of these bargaining problems to be the bargaining problem
I'=(D,d*T,,Ty,u; ,u,,p) with distribution p =g(p’ + p”).

Harsanyi and Selten demand the following axiom to hold for the solution L:
Let (X,p’), (X,p”") be two bargaining problems and (X,p) be the mixture of them.

B LX) =L(Xp7)  then  L((X,p)) =L((X,p"))

This axiom cannot be transferred to our model. It is not clear that I'’ and I'*’ (defined
as above) do have identical bargaining sets. Even if we demand this as a necessary
condition for the axiom it might be the case that the bargaining set of the mixture
differs from that of I'* and I'".
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Let D:={d*d;,d,}, T; ={a;,a.}, Ty :={b;,by}
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and define u; and u, by the following schedule

{uy,05) d* d, d,
21,0 0,0 1,1 0,0
al,bz 0,0 0,1 1,0
32’1’1 010 1!0 0’1
3y 0,0 0,0 11
Three bargaining problems are defined by
I =(D,d*T,,Tyu;,u9,P)
I =(D,d*,T1,T2,u1,u2,p’)
' =(D,d*,T1,T2,u1,u2,p”)
. 1
with p()=p
, 1 s 1
P (' Jbl) =B’ ) P (' :bz) =§
”n 1 ] 1
p7(-.b) =4 p(- by) =1
We will now prove
() = %(r”).
If we define the three bijections
¢p:D—D, ¢ : Ty =Ty, ¢y : Ty — T,

by
¢D(d*) =d*, ¢D(d1) =d2, ¢D(d2) =d1

¢1(a’1) =3.2, ¢1(32) =a’1:
¢’2(b1) =b2: ¢2(b2) =b1,

then it holds fori =1,2:
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i) w180 ) ) =g 1),
i) (- 1(-)=pil- 1),
(- 14,(-)) =p(- ),
i) u(dp(- )iy ( )do(- ) =ny(- |- ),
iv)  pi(6_;(- (D) =pp(- |+)-
Let we B(T?).
Then incentive compatibility i) and ii) imply for i =1,2 , 8,4, €T, :
Uilwlt)  =UP(wyls) < Tiwlsy)

S AL T 3 40t
"Uj (1 ;Silti) < Ui(ﬂ' Itj)
Therefore we have equality everywhere.

We now define a mechanism g’ € A (') by
B0 Y =w(en (- )¢ )ido(- ))-

Fori=1,2, st €T, we get with the help of iii) and iv):

U?”(ﬂ":sj Iti) = tz. E ﬂ"(dlsi:t_i) “j(dlti:t__i) Pi"(t_j Iti)
-1

—1

=U*i’(‘u,’¢i(si) l¢i(t]‘)) =U?’(#’:5j1ti)-

Therefore p" € B(I'”)
and w]) =0,
which shows

%() > %(I).

In the same way you can prove the converse implication.
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Let the mechanism p € 4(I) be defined by
i‘(dl Ialx' )=1,

I"'(d2|a'2,' )=1.

4 is incentive compatible because pl( “|+) =%.

4 leads to the allocation
1
Ul(ulal) =U1(ﬂ|a2) =5

Ug(ﬂ-l bl) =U2(P| bg) =1.

This allocation is not an element of %(I*’):

Suppose we have a mechanism u’' € B(I'’) which generates that allocation. Then p is
determined uniquely by the utility for player 2.

We must have:

#’(dllala' ) =1 and

,u.’(d2|a2,- ) =1
But the type a, will not tell the truth in this mechanism because pi(b,l2)) =-§-

< pj(byla,) =%. So we get a contradiction.

['* and T'”’ have the same bargaining sets and p =%~(p’ + p”’). But I'has a different bar-

gaining set. #

Harsanyi and Selter also define an operation ’dividing a type’ which generalizes the
operation ’splitting a type’.

Let (X,p) be a bargaining problem:
. T .
Given a type t € T, and a function w € (0,1) 2 {his operation divides t into two sub-

types. One gets a new bargaining problem (X,p) with bargaining set
. T,U{t}UT
%= xcg! 2
t,
equals p on (Tl\{f}) x T, and is defined on {t,t} T, by

and probability distribution § € A((T, U {1}) x T,) which
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f’(is ) =w(-) p(i,' )
B(t, ) =(1 —w(-)) p(1,-).

With the help of their mixing axiom Harsanyi and Selten prove that their value splits
up if you divide a type in the same manner as if you split the type. With this result
they prove an analogue of Lemma 4 for the operation *dividing a type’.

Now I try to transfer this operation to our model.

. - T
Let T1 x T2 be a state space and { € Tl’ t ¢T1 U Ty, we (0,1} 2

Define the mapping
o -
Yy ATy = Ty) = &(T; U {t}) x Ty)

. P(ty:) fort, € '{‘1\{i}
(Z . p)(tp )=y w(-)p(t,) fort, =t VpeAT, = Ty),
(1 —w(-)) p(i,) fort; =%

and the mapping ! _ T Py . T DY
£,iw I 1, (1 uiin < 1,

[+]
£ P=(DA%T,U{i} T8 u,% u,% p)

t,i,w t,1 t,1 t,iw

—_ *
¥ I=(D,d%T),Ty,u;,u9,0) € & T, x Ty

The types t,t have the same utility functions but different beliefs in general.

Lemma7: Let ’'=% T
t,t,w
Then B, (- [t) =B, (- |1} # w(t,) =w(t}) for all to,ts € T,
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Proof: For all (t,,t,) € (T, U {i}) = T, it holds

B(t,ty)

T PBtyt,)
1t
to€ T,

ﬁl(tghl) =

ij(tl :tz)
d,(ty)

where §, is the marginal distribution on T, U {t}.

Therefore
- - W(tz) p(t:tz)
Pl(tglt) -
g,(t)
and
- -~ (1 —W(t )) p(£1t2)
By (ty]1) = 2 .

g, (1)
Ifp,(- It) =p, (- |t) we get for all ty €Ty

__G(d)
§,(1) + §;(%)

W(tz)

ql(i)
The right side is independent of 1., therefore w is constant.

The other direction is trivial.

Because the beliefs differ we will have

2 (X . D#E %D
t,t,.w t,t

in general.
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Example; Let I‘=(D,d*,u1,u ,Tl,Tz,p) € ¥ be defined by
D ={d*d,}, T, ={2;}, T, ={b,by}
uy (@) =uy (@] ) =0
u; (d; [ag,by) =1, u,(d, |a;,b,) =2
u, (d;|-,0)=1.
p(- ) =3
We get

T,UT, 3
2D ={ x R 3X€[01] sothat x(a,)=A- 3, x(b;) =x(by) =1}

Ty
Let w€e€R “ be defined by

W(bl) =%: W(bg) =§,

and I': =Ea1,a2,w L
We have
- T,UT, 5 4
%(I)={ x€R |3 A€[0,1] so that x(al) =X 7 x(az) =X- 7, x(b;) =x(b2) =A}.
#
Of course, this makes it impossible to prove (or demand)
T
: 2
(9.1) L . D=2 _LD, VIe ,we(0,1) -,
t,t,w t,t ?Tl x Ty

if L obeys all axioms and a mixing axiom, like Harsanyi and Selten have done.

But to follow the proof of Harsanyi and Selten it is necessary to prove an analogue of
lemma 4 for the operation dividing a type.

We need equation (9.1) for a class of bargaining problems including some norm bargai-
ning problems.

It is a problem of further research to define such a class in such a way that the
restriction to these bargaining problems is not too artificial.
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10. Forther discussion

There is another problem with this presentation which is more fundamental than the
problems with the non-independent case.

A solution L is a function which determines an allocation of expected utility for every
bargaining problem. In Myerson’s model one is interested not only in this outcome but
also in the mechanism that implements it. Of course, there exists one mechanism that
yields the allocation but the mechanism is not unique.

There are also some problems with axiom 3 in this connection. Axiom 3 says that the
solution does not depend on allocations that are not individual rational and whenever
two bargaining problems have the same bargaining set the value is the same. But the
shape of the bargaining set is determined by different kind of constraints. A mechanism
might be pareto optimal because there are no lotteries which give a higher utility of one
cannot improve the mechanism because of the incentive constraints. Therefore in two
bargaining problems the whole setup might be very different but the bargaining set and
therefore the value is the same. On the other hand the mechanisms implementing the
value might be very different again.

At last I want to present an example that shows that the operation 'dividing a type’
also bears some problems in connection with the discussion above.

Example: Let the bargaining problem
I‘=(D,d*,Tl,T2,u1,u2,p) be defined by
T ={ajsa5}, Ty ={b;.b5},
1
D= {d*,dl,dz,d3,d4,d5}, P=7
and let u be determined by the following schedule

*
U, 1, d d d, dg d, dg
a;, a, 0,0 2, —1 0,1 —1,2 1,0 3,—2
a;, b, 0,0 2,1 0, 1 1,0 -1,2 1,0
a9, by 0,0 0,1 2,-1 -1,2 1,0 —1,2
a9, by 0,0 0,1 2,-1 1,0 —1,2 1,0
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First we will see that T is a norm bargaining problem.

The convex combinations of the dictatorial mechanisms induced by the decisions
d*, d,, ..., d; generate the set of allocations

T1UT2
{xeR, | = x(t)¢2).
tETIUT2

On the other hand look at the linear program LP({}) for A =1:

,U,Emgj:(r) ( U(JU'I' ), 1 )

For a =0 you get

2
1
i 21 Vi(dtyt5.0,0) =5 Y deD\ {d*}.

Therefore the value of the linear program is 2. This proves

T,UT

?ZI(I)={xEIR+1 2] z x(t)<2}.

teT,UT,

The Harsanyi—Selten value L* selects the allocation

L¥(D) =3

The dictatorial mechanisms uy and u, defined by

_1
u1 —I(dl + d2 + d3 + d4)
and
_1
u2 _I(df) -+ d2 + d3 + d4)

implement this allocation.
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T
Now we divide type a,. Let w € R 2 be defined by

w(by) =3, wlby) =3
and define

=g (I).
bW

Then the distribution p and the mnarginals g are given by the schedule

P 5 b | 4
1 1 1
4 1 i ]
1 3 1
) 6 16 1
3 1 1
a3 I 16 1
N 1 1
94 3 ]
The beliefs are given by
Py Po b by
11 11
2 3 »3
11 33
39 .Y 3]
33 11
a3 8 T8

Now look at the maximization problem

ﬁ o (O(k] ),8) .
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If you choose the dual variable & =0 you get
2
. X 1 Vi(d,tl,t2,ﬁ,&)

ﬁ(tlrtz) t2)

) i L B(tyaty)
=q,(t,) —t) i) (d]t),te) + Gy(ty) T y(d]ty.tp)

114 Aot

=p(t:t5) V(tty)) €T, xT,,¥deD\ {d*}.

Therefore all dictatorial mechanisms are pareto~optimal and

N T,UT,
w ()c{xeR | (x§)<1}=:X

The maximization problem

max p) a(t) f x(t)
xeX teT et

has the solution

1
* __
X -—5.

This allocation can be implemented by the mechanism
By =7 (d) +dy+ dg +dy)

and is an element of % (T) therefore.

With IIA we get
LA(T) =x*.
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One may say that ﬁl is canonically derivated from #y by 'splitting the type a5 But if

you look at the derivation
- 1
By :=g(dg+dy+d3+dy)

of Jko yOU Se€ that

5 ift€{a;by by}
fl(ﬁ2|t)=! 3—3 ift=a,
%+% ift=a3

This shows again that there are problems with the value if it is not implemented
uniquely.
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