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Given two side-payment games v and w, —buth-defined for

player-set N, the following three welfare criteria are

characterized in terms of the data v and w: (A) For every y £ C(w)

there exists x

exists y & C(w)

€ C(v) such that y < x; (A’) For every x € C(v) there

such that y < x; and (B) There exist y € C(v) and x

€ C(v) such that y € x. (Here C(v) denotes the core of v.) Given two

non-side-payment games v and w, sufficient conditions for the criteria

(A’) and (B) are established, by observing that an ordinal convex game has a

large core.




1, INTRODUCTION

In many prevalent units and aspects of the modern economy, the
neoclassical market mechanism for resource allocation works only imperfectly
or may even be non-existent. The economic agents in these environments
cannot behave, therefore, as individualistic (noncooperative) price-takers.
Alternative behavioral principles have been postulated and their
consequences analyzed in the past. One of the alternatives which has been
receiving increasing attention in recent years says that an agent, given his
own incentive, coordinates his strategy-choice with other agents, because by
doing so he and his colleagues can better serve their diverse incentives;
that is, the agents play a cooperative game. Indeed, the cooperative
behavioral principle has long been identified in the theory of the firm as
an essential determinant of the firm activities (see, e.g., Coase (1937),
Alchian and Demsetz (1972), Arrow (1974), and Ichiishi (1982, 1985)). The
present paper concerns cooperative behavior.

Given one economic system in which cooperative behavior is predominant,
economic theorists have successfully applied cooperative game-theoretical
solution concepts. A subsequent question naturally arises: Given two
economic systems, is it possible to compare the cooperative solutions of the
two? The present paper is intended to take a first step towards the study
of the comparative cooperative economic/game theory. Comparative study of
twvo systems is not new (see, e.g., Sertel (1982) for a modern treatment).
What is new here is comparison of two systems in terms of a cogperative
solution concept.

Cooperative behavior can be modelled in various ways with diverse

degrees of generality. This paper adopts two simple models -- a game in




characteristic function form with side-payments (or simply, a side-payment
game) and a game in characteristic function form without side-payments (or
simply, a non-side-payment game) -- because of their technical tractability.
By studying these models first, one can aﬁticipate vhat kinds of results may
be obtained in more general setups, such as games in normal form and general
equilibrium models of economies with production. The cooperative solution
concept analyzed here is the core, i.e., the set of payoff allocations that
are feasible (via the grand coalition) and are coalitionally stable. A core
payoff allocation is a coalitional analogue of a Nash equilibrium (a typical
noncooperative solution concept).

Given two games in characteristic function form v and w, with or
without side-payments, both defined for the same player set N, consider
the following three welfare cfiteria: (A) For each core payoff allocation
y of w, there exists a core payoff allocation x of v such that x is
Pareto superior to y; (A’) For each core payoff allocation x of v,
there exists a core payoff allocation y of w such that x is Pareto
superior to y; and (B) There exist a core payoff allocation y of w and
a core payoff allocation x of v, such that x is Pareto superior to y.
The purpose of this paper is to establish conditions (in terms of the
exogenous data v and w) for the criteria (A), (A’) and (B). For the
side-payment case, complete characterizations of (A4), (A’) and (B) will be
established. The condition for the criterion (A) for the side-payment case
vill suggest that this criterion is rarely met under economically meaningful
situations. Indeed, conditions for (A) for the non-side-payment case will
be left as an open problem. On the other hand, the results for (A’) and (B)
will suggest that these are likely to be satisfied under economically

meaningful situations.




Specific classes of side-payment games have been paid particular
attention in the past: balanced games (see, e.g., Bondareva (1962), Shapley
(1967), and Schmeidler (1967)), exact games (see, e.g., Shapley (1971) and
Schmeidler (1972)), and convex games (see, e.g., Shapley (1971), Rosenmiiller
(1971), Delbaen (1974), and Ichiishi (1981)). Balancedness characterizes
nonemptiness of the core. For games with a nonempty core, one may assume
vithout loss of generality that they are exact games (by looking at their
exact envelopes). Convexity characterizes increasing returns with respect
to the coalition size. Convex games are exact, and exact games are
balanced. It will turn out in the present paper that convex games play
important roles in the above criteria (A), (A') and (B). In studying the
criterion (A), this paper will also propose a new class of games, called
here the no-gap exact games. This class is strictly smaller than the class
of exact games, but is strictly larger than the class of convex games. It
is dual to Sharkey’s (1982) concept of the exact games with a large core;
the latter plays the same role in (A’) as the no-gap exact game concept does
in (4).

The convexity concept for the side-payment games has been extended to
the non-side-payment games in several ways; e.g., the ordinal convexity and
the cardinal convexity. It will also turn out in the present paper that
ordinal convex games play important roles in the above criteria (A') and
(B).

Section 2 of this paper studies the side-payment case. As corollaries
of the general characterizations of the criteria (A), (A’) and (B), the
section will conclude that: (1) Given a no-gap exact game v and an exact

game w, the criterion (A) holds true, if and only if v(S) - w(S) < v(N) -

—



w(N) for every § ¢ 2N\{N]; {1’) Given an exact game v and a game with a

large core w, the criterion (A’) holds true, if and only if w(S) £ v(8)

for every § ¢ ZN\{¢]; (2) Given two convex games v and w, the

criterion (B) holds true, if and only if w(S) + v(N\S) < v(N) for every §

WANTID

Section 3 studies the non-side-payment case. The section will first
observe that ordinal convex games have a large core, by applying two lemmas
of Peleg (1986), and then conclude that: (1’) Given a non-side-payment game

V and an ordinal convex game W, the criterion (A’) holds true, if W(S) <

V(S) for every § ¢ ZN\{¢}; (2) Given two ordinal convex games W and V,

the criterion (B) holds true, if W(N) € V(N) and W(S) NV(T) CW(S5 nT) U

V(S NTY UWSUT) UVWS UT) forall S, T ¢ ZN. For an alternative
approach to the criterion (B), see Ichiishi (1987b).

Proofs will be given in Section 4.

Throughout this paper the set of players will be assumed finite. But
given the works of Schmeidler (1972) and Delbaen (1974), and also the
mathematical foundations of Fan (1956), it is straightforward to generalize
all the present results on the side-payment games to an arbitrary measurable
space of players.

For another type of comparative cooperative game theory problem, in
which effects of a change in the player-set are studied, see, e.g., Mo

{1988), Alkan, Demange and Gale (1988}, and Scotchmer and Wooders (1988).

T



2. SIDE-PAYMENT CASE

Let N denote a finite set of players, given throughout this paper,

and let ;Af denote the family of nonempty coalitions ZN\{¢}. A side-

payment game (called simply a game in this section) is defined as a function

v: JV > R; the value v(8) is interpreted as the total payoff that

coalition § can make independent of actions of the players outside S.

For every payoff allocation x € RN, define x(S) := I x.. The core of
jes
. N
game v 1is the set C(v) := (x € R | x(N) < v(N), and for every § € Jﬁf,
x(S) > v(8)}; it is the set of all payoff allocations that are feasible
(via the grand coalition N) and stable (in that they cannot be improved
upon by any coalition).

Let v be a game. The efficiency cover of v 1is the function wv* : N

2+ R defined by:

v*(S) := max {x(S) | x € C(V)}.

The extended efficiency cover of v is the function v* : RE + R defined

by
v¥(p) := max {p'x | x € C(v)},

vhere p-x denotes the Euclidean inner product of p and x, L pjxj.
jeN =

Since coalition § € Jﬂf is identified with its characteristic vector XS £
Rf, no confusion arises. The efficiency cover and the extended efficiency

cover play crucial roles in the present study, so it would be useful to

note:




Proposition 2.1. Let v be a side-payment game with a nonempty core,

and let v* be its extended efficiency cover. Then:

N

(K, A) R xR
(1) v¥(p) = min § kv(N) - I Av(S) oo ;

SeN KXN - S!:N)usxs =P
€

(ii) The function v* : RE + R is sublinear.

The first result (Theorem 2.2) provides a general characterization of

the dominance of the core of game v over the core of another game w.

Theorem 2.2. Let v, w be side-payment games vith a nonempty core,

and let v* and w* be their extended efficiency covers respectively.

Then, the folloving two conditions are equivalent:

(i) For every y & C(w) there exists x € C(v) such that y £ x;

. N
(ii} w*(p) < v*(p), for every p € R+.

Corollary 2.3. Let v, w be side-payment games with a nonempty core.

Then, any of the two conditions (i) and (ii) of Theorem 2.2 is satisfied, if

N . .
for every X ¢ R+ for which 52 ASXN £ Xﬁ, it follows that SEJVAS(V(S)

- w(8)) < v(N) - w(N).

In spite of the generality of Theorem 2.2, condition (ii) therein may

not be practical, because one has to go through checking the continuum of
inequalities parametrized by p ¢ Rf. For a certain class of games, the

cardinality of the set of inequalities to check reduces down to #/

L4



(finite). To clarify this class, several specific games and their
properties are now recalled: A game v is called exact, if for every S ¢
dﬁf there exists x € C(v) such that x(S) = v(§8). For a game v with a

nonempty core, one may assume without loss of generality that v is exact,

since Schmeidler (1972) has established that the exact envelope v of v

defined by

_ (), K} ¢ Rdv.x R
V(T) := max £ AgV(S) ~ kv(N) *

+
I - K =
SeN SSJ(ASXS XN = X
is an exact game, that C(V) = C(v), and that v is exact iff v = v. A
game v is called convex, if for any 5, T € N, v(S) + w(T) €v(SNT) +
v(S UT), where v(¢) := 0. Convexity characterizes increasing returns
with respect to the coalition size (Shapley (1971)). A game v is called

additive, if v(S) = I v({j}) for each S5 € JV . The core of an additive
jes

game v ig a singleton {x}, given by xj = v({j}). Additive games are
convex, convex games are exact (Shapley (1971); see also Delbaen (1974)),

and exact games have a nonempty core.

A new class of exact games is nov introduced: An exact game v is
. N : N
called a no-gap game, if for every p ¢ R+ there exists A ¢ R.+ such that

z =p and K vx(38) £ v*(p). (The last inequality may be
SeN % sw‘vxs

replaced by equality, due to Proposition 2.1 (ii).)

Proposition 2.4. Let v be an exact game, and let v* be its .

efficiency cover. Then, the following two conditions are equivalent:

(i) Game v 1is a no-gap game;

sy



(ii) For every x ¢ RN for which =x(S8) £ v*(5) for every S ¢ N

there exists y € C(v) such that x <y.

Proposition 2.5. Convex games are no-gap exact games.

Theorem 2.6. Let v be an exact game, and let v* be its efficiency

cover. Suppose on the one hand that v is a no-gap game. Let w be any

side-payment game with a nonempty core and let w* be its efficiency cover.

Then, the following two conditions (i) and (ii) are equivalent:

(i) For every y &£ C(v) there exists x € C(v) such that y < xj

(ii) w*(S) < v*(S), for every S e Y.

Conditions (i) and (ii) are implied by the following condition (iii). If,

moreover, game w is exact, then any of conditions (i) and (ii) implies

condition (iii):

(1i1) v(S) — w(5) < v(N) - w(N), for every S & 2'\{N}.

Suppose on the other hand, v is not a no-gap game. Then, there exists an

additive game w (say, w(§8) = I yj, so that C(w) = {y}) such that
jes

wk(S) < v*(S) for every S ¢ N, yet y £x for any x € C(v).

Remark 2.7. An example of an exact game which is not a no-gap game:
let N = {1,2,3,4,5}. Let u, v, n be payoff vectors given as: u =
0,5,3,2,2), v = (5,0,50,2), and n = (5,2,4,1,0). Define an exact game
v by v(S) := min {p(S), wW(S), n(5)} for every S ¢ AN . It will be
proved in Section 4 that this game does not satisfy condition (ii) of

Proposition 2.4. 0O




10

Remark 2.8. An example of a no-gap exact game vhich is not convex:
Let N = {1,2,3,4)}. Let Y = (4,2,4,2), and v = (3,4,1,4), and define an
exact game v by v(S) := min {u(S), uw(S))] Efor every S ¢ JV . This
example is due to Schmeidler (1972), who showed that it is not convex. It

will be proved in Section 4 that this game satisfies the no-gap condition. [J

Remark 2.9. There are two factors which cause the dominance of C(v)

over C(w);2 they are the best captured when game v is no-gap exact and
v 1is exact. One factor requires that the grand coalition is more efficient
in game v than in game w, i.e., vVv(N) - w(N) (the right-hand side of
the inequality of condition (iii) of Theorem 2.6) is suitably big to
guarantee the inequality. The other factor requires that the blocking power
of each coalition S in game v 1is not overly big compared with that in
game w, i.e., v(S) - w(S) (the left-hand side) is suitably small to

guarantee the inequality. [

The welfare criterion dual to the dominance criterion is now studied.

Let v be a game with a nonempty core. The extended exact envelope of v

is the function Vv : RE + R defined by v(p) := min {p'x | x £ C(v)}. It
is easy to check:
¥(p) = v(N) - v*(xN - p), for every p € RN such that 0 £ p ¢ Xy

(This identity is false for a non-balanced game.) In view of this identity,
the following result which is dual to Theorem 2.2 can analogously be

established:
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Theorem 2.10. Let v, w be side-payment games with a nonempty core,

and let v and % be their extended exact envelopes respectively. Then,

the following two conditions are equivalent:

(i) For every x e C(v) there exists y € C(w) such that y < X3

. = = N
(ii) w(p) £ v(p) for every p ¢ R+.

Sharkey (1982) defined a game with a large core; a game v has a large

core, if for every z ¢ RN for which v(S) £ z(S) for every S ¢ 4Af,
there exists x £ C(v) such that x < z. He showed that convex games have
large cores, but not conversely. In view of Proposition 2.4, the exact
games with a large core play precisely the same role in the dual result to

Theorem 2.6 (as the no-gap exact games do in Theorem 2.6):

Theorem 2.11. Let v be an exact game, and w be an exact game with

a large core. Then, the following two conditions are equivalent:

(i) For every x &£ C(v) there exists y € C(v) such that y £ x;

(i1) w(S) < v(S) for every S ¢ JV.

The final results reported in this section are characterizations of the

veak dominance of C(v) over C(w). Extend an exact game w to Rf by:

- w(p) :=min {p'x | x € C(w)}.

Theorem 2.12. Let v be a side-payment game with a nonempty core, and

let w be an exact game. Then, the following two conditions are

equivalent:

ol sl W SN M - Al




12

(i) There exist y € C(w) and x ¢ C(v) such that y < xj

. N
(ii) w(p) £ v¥(p) for every p ¢ R+.

Corollary 2.13. Let v, v be two side-payment games. Then, the

following two conditions are equivalent.

(i) There exist y € C{w) and x € C{v) such that y < x;

(ii) For any AN b E Rfvifor which SEJV'(XS + us)xs = XN’ and for

any o« € R for which max I ks < o<1, it follows that L (ASV(S) +

jeN S3] Se NN

HW(S)) < av(N) + (1-e)w(N).

Corollary 2.14. Let v, w be two convex games. Then, the following

two conditions are equivalent:

(i) There exist y € C(w) and x € C(v) such that y < xj

(ii) w(S) + v(N\S) < v(N), for every S ¢ N .

Remark 2.15. Game v is said to dominate game w, if w(S) £ v(S)
for all S ¢ JV . Dominance of game v over w may not result in weak
dominance of the core C(v) over C(w); there is an abundance of such
examples., Shift of a social system from w to a dominating system v may,
therefore, result in "exploitation" of somebody in the society in the sense
that for any y € C(w) and any x & C(v) there exists j € N such that

yj > xj. If both game w and a dominating game v satisfy increasing

returns (so that condition (ii) of Corollary 2.14 is obviously satisfied),
hovever, shift from w to v always keeps the possibility of "no

exploitation." [1
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3. NON-SIDE-PAYMENT CASE

A non-side-payment game (called simply a game in this section) is

defined as a correspondence (a set-valued map) V : ZN > RN such that V(¢)

- = ¢ and such that for each S ¢ A/ the set V(S) is a cylinder, i.e.,

[u, v & RN, Viebs: u, =v,] implies [u € V(5) if and only if v ¢
‘i i

V(5)]. The set V(S), or rather its projection to RS, is interpreted as
the set of all utility allocations attainable in coalition S. The games
studied in this section are assumed to satisfy the following regularity

conditions (1) - (3). Define b £ R by by r= sup (u; eR | u e V({j})}-

V({s) - RE = V(S), for every § ¢ uﬂf; (1)

There exists M £ R such that for every S ¢ uﬂf,

[u € V(5), u 2 Db] implies [u:.l <M for every 1i € §8]; {(2)

V(N) is closed in R. (3)

A game V is called ordinal convex, if for any S5, T ¢ J\f, V(S) n ¥WT) c

V(S nT) UV(S UT); it reduces to a convex game for the-side—payment case.

The core of game V is the set C(V) := {u ¢ RN | u € V(N), and it is

not true that there exist S € J¥Y and v £ V(S) such that u; < v, for

all i & S}. It is the set of all feasible and stable utility allocations.




Theorem 3.1. Let V be a non-side-payment game, and let ¥ be an

ordinal convex game that satisfies (1) -~ (3). Then, the folloving condition

14

(ii) implies (i):

(i) For every x £ C(V) there exists y € C(W) such that y < x;

(ii) W(S) c V(S) for every S e A .

Theorem 3.2. Let V, V be two ordinal convex games, each of which

satisfies (1) - (3). Then, the following condition (ii) implies (i):

(i) There exist y € C(W) and x £ C(V) such that y < x;
(ii) V(N) ¢ V(N), and for any S, Te A, V(S) NnW(T) c¥W(SNnT) v
W(SAT) UV(SUT) UW(GS UT).

Proofs of the above Theorems 3.1 and 3.2 are based on the following
extension (Theorem 3.3) of a theorem of Sharkey (1982), which is of interest

in its own right. A game V is said to have a large core, if for any =z ¢

RN for which it is not true that there exist S g dﬂf and u & V(5) such

that zy < u, for every i € S, there exists x ¢ C(V) such that x £ z.

Theorem 3.3. Any ordinal convex game that satisfies (1) - (3) has a

large core.

— gy
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4. PROOFS

Let v be a side-payment game with a nonempty core C{(v). Define

A(v) 1= C(v) - BE; and

B(v) 1= (x e R [¥S & N xox < va(8)).

By the duality theorem for linear programming problems (see, e.g., Ichiishi
(1983, Ch. 5, Exercise 4, p. 115)),
¥p > 0: max {p-x | x € B(v)}
= min {ZASV*(S) [ A2 0, ZASXS = p}. (4)

Proof of Proposition 2.1. The number v*(p) is the optimal value of

the linear programming problem,
Maximize p-x,

subject to Xg'x 2 v(S) for every S e N,

v

and —xN-x > - v{N).

So the duality theorem establishes assertion (i). Assertion (ii) is

straightforward. Q.E.D.

Proof of Theorem 2.2. Condition (i) is equivalent to: C(w) <€ A{v).

This last condition is shown to be equivalent to condition (ii), by applying
an elementary version of the separation theorem (see, e.g., Ichiishi (1983,

Theorem 1.5.1, p. 18)) to the closed, convex, comprehensive set A(v).

(Here, a subset A of RN is called comprehensive if A = A - RE.) Q.E.D.
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Proof of Corollary 2.3. Obvious.

Proof of Proposition 2.4. The no-gap condition (i) means:

¥p 2 0 : min {ZIXGV*(5) | x>0, INgXg = P} < v*(p)-

By identity (4), this condition becomes:
Vp 20 : max {p-x | x £ B(v)} < max {p'x | x € A(V)},
which in turn is equivalent to: B(v) < A(v), by a separation theorem. This

last condition is precisely condition (ii). Q.E.D.

Proof of Proposition 2.5. Let v be a convex game. Choose any p €

R, and let {ui, Ti}i_1 be the canonical form of p, viz.,

By Shapley (1971), there exists x & C(v) such that x(N\Ti) = v(N\Ti) for

all i, or equivalently such that

x(T,) = v(N) - V(N\T;) = v&(T;), i =1,...,s.

Then,

s S
_ — . * )
f U v*(T,) = f wx(T,) = prx £V (p). Q.E.D

i=1 i=1

Proof of Theorem 2.6. Suppose v is a no-gap, exact game. Due to

Theorem 2.2, one only needs to show that (ii) implies (i). Suppose there

exists y e C(w) such that y £ x for any x € C(v). Then, y £ A(v), so
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(by Proposition 2.4 (ii)) y £ B(v). Consequently, there exists § € N
such that w*(S) > y(S) » v*(S), which contradicts (ii). Assertions about
condition (iii) are straightforwvard.

Suppose v is not a no-gap game. Then, (by Proposition 2.4 (ii))

there exists y & B(v)\A(v). Define an additive game w by w({j}) = yj.

Game w satisfies all the required properties. Q.E.D.

Proof That the Example of Remark 2.7 Does Not Satisfy Condition (ii) of

Proposition 2.6. Consider x := (2,5,3,1,0) € RN. A pame w 1is exact, iff

there exists a family of additive games {ul [ i ¢ I} satistying ui(N) =

w(N) for all i, j £ I, such that w(S) = min {u'(S) | i € I} for every
. i R i

S e,Af . In this case, W € C(w) for all i €I, and w*(S) = max {u (S)

| i eI} for all S e JN . Given this general fact, it is routine to

verify in the present example, x(S5) £ v*(S) for every S ¢ JNr, S0 X €

B(v). Notice:

Xy + Xy = 8 = v*x((2,3})
X+ X + X, = 8 = v*({1,2,4})
Xy + X, + Xg = 7 = v*x({1,2,5))

11 < v*({1,2,3,4,5}).

]
ja—
+
*
=]
+
=
Lo
+
N
i
+
el
(¥, )
1l

Therefore, there exists no y » x satisfying y(S8) < v*(8) for S = {2,3},

{1,2,4}, {1,2,5} and y(N)

vk(N). So, x £ A(v). Q.E.D.

T



i8

Proof That the Example of Remark 2.8 Is a No-Gap Game. It suffices to

show:

Vp > 0: 3 )\peaw"fv: a xP e c):

L Ag XS =p, and I Ag v*(S) = p-xP. (5)

Due to the symmetry in players 2 and 4 in this example, one may assume

without loss of generality p, < p,. One may also assume p_ := min {p.| i
2 4 m j

€ N} = 0. Indeed, suppose Py > 0. Then, define q ¢ Rf by: qj i= pj -

for every j. Since q = 0, there exist Al e R+ and x% ¢ C(v)

satisfying condition (5) for gq. Notice Ag = 0. Define AP ¢ RJV' by:

+

Pp

Xg t= Ag if § # N; and Ag = Ppe Then, (XP, xq) satisfies condition

(5) for the given p. Now, condition (5) is verified for various cases

according to the order among {pl, Pyr Pgs 94]' If 0= Py < P, L Pq £ P,

for example, define A and P

. P .e _ . p Ve _ .
bY' k{‘l-} = p4 p31 x{3,4} = p3 pz,
p . . P ._ . P, . )
x{2,3,4] ‘= Py AS := 0 for all other S; x" := (3,3,2,4). It is routine
to verify that XP, xP are the vectors required for (5). One can verify

(5) analogously for the other cases, although it is tedious. Q.E.D.

Proofs of Theorems 2.10 and 2.11. Analogous to the proofs of Theorems

2.2 and 2.6. Q.E.D.

ey
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Proof of Theorem 2.12. The negation of condition (i) says A(v) 0 C(w)

= ¢, which is equivalent to : I p ¢ Rf\{O}: max p-A{v) < min p-C{w). The

last condition is the negation of condition (ii), since w is exact. Q.E.D.

Proof of Corollary 2.13. Notice first that condition (ii) implies that

both w and v are balanced. By substituting the exact envelope formula
for w(p) and the extended efficiency cover formula for v*(p) in
condition (ii) of Theorem 2.12, condition (i) of Corollary 2.13 is

equivalent to:

N
(Vpe R+).

(V(X,G)ER:‘/VXR*_: —E)\st+axN=p):
¥ (u, B) ¢ R:V’x R EugXs - B Xy =B) ¢
) usw(S) - B w(N) £-E ASV(S) + av(N}.

It is routine to verify that this last condition is equivalent to condition

(ii) of Corollary 2.13. Q.E.D.

Proof of Corollary 2.14. It suffices to show that condition (ii) of

Corollary 2.14 implies condition (ii) of Theorem 2.12. The former is
equivalent to:

w(S) < v*(5), for every S5 € V.
Choose any p 2 0, and let {"i’ Ti}§=1 be the canonical form of p (see

Proof of Proposition 2.5 for the definition). Then,

wip) = L ui V(Ti), and

vE(p) = T u, v¥(T,).




Condition (ii) of Theorem 2.12 now follows. Q.E.D.

_ ]
Given a subset X of RN, denote by X (by X, resp.) the closure

(the interior, resp.) of X 1in RN. In the proofs of the theorems for the
non-side-payment case, the following identity under condition (1) will

simplify the notation:

V(S) = (x eV(S) | BueV(s) :¥ies:x <ul.

Derivation of Theorem 3.1 from Theorem 3.3. Choose any x & C(V).

0 Q
Then, x £ V(S) for any S €4V, so x £W(S) for any S ¢ N by
condition (ii). Since game W has a large core, there exists y € C(V)

such that y £ x. Q.E.D.

Derivation of Theorem 3.2 from Theorem 3.3. Define the non-side-

payment game U by: U(S) := V(S) v W(5), for every S € J\f. Under
condition (ii), it is routine to verify that game U is ordinal convex,
satisfies (1) - (3), and that U(N) = V(N). By Peleg (1982), C(U) # ¢.

Choose any x &£ C(U). On the one hand, x ¢ C(V). On the other hand, x £

] o
U(S) so that x £ W(S) for any S ¢ JNV', which guarantees (by the large

core property of W) the existence of y € C(W) such that y < x. Q.E.D.

It remains to prove Theorem 3.3. For any x € RN and any S € N, set

N

xs t= (X,) £ RS. Given any non-side-payment game V : 2= - RN, and any

i’ies

T ¢ JV'\{N}, the associated subgame VT : 2T - Ri is defined by: VT(¢) 1=

20
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$ Vp(S) 1= (x' €R | x €V(S)} if ScT and ¢$#S#7T, and Vo (T) :=

T

T e R | x € V(T)} in R. Set M := N\T, and choose

the closure of {x

any zT € VT(T). The associated reduced game V§ : ZM > RH is defined by:

VE($) t= 8, VE(S) := U {x eR | x eV(SUR), and ¥i€eT: x, >z)
M M RCT i i

1f SCM and ¢#5#M, and VEM) := (x" e B | M, 2T) evaw)). Ifa

game satisfies (1) - (3), then any of its subgames and reduced games
satisfies (1) - (3). The following two lemmas are due to Peleg (1986, pp.
85-86). (The second of these lemmas, Lemma 4.2, is stated slightly
differently from the corresponding lemma of Peleg (1986, Lemma 2.7), but

there is no difference in the proofs.)

Lemma 4.1 (Peleg 1986). Let V : 2V 2’ be an ordinal convex game

that satisfies (1) - (3). Let TSN, ¢ #T #N, let z e Vo(T), and

let M := N\T. If zT £ C(VT) and for R CT, R #T, zT £ VTZRS, then

V§ is ordinal convex.

Lemma 4.2 (Peleg 1986). Under the assumptions of Lemma 4.1, choose any

Y ecvy) andany heRA{O). Let thi-max (teR | M+ th )¢

V(M)}, and set x := (yh + t* h, z0). Then x & C(V).

Proof of Theorem 3.3. By induction on #N. The theorem is trivial for

a one-person game. Choose any integer n » 2. Assume that the theorem is

[
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true for all k-person games with k {n - 1. Let N be a player set such

that #¥ = n, and let V : 2N 3 RN be an ordinal convex game that

]
satisfies (1) - (3). Choose any x ¢ RN\ gwf V(S). Then there exist 2z ¢
Se

o
x and T € JV such that z ¢ gAf V(S), but z ¢ V(T). If z ¢ V(N) (=
Se

V(N)), then =z e C(V), so there is nothing to prove. Assume, therefore,
z £ V(N). (6)

Vithout loss of generality, T can be assumed to be a minimal set having

the property that z g V(T). Then,

T
z £ C(VT),

zR £V(R) forall RcT, R T, and

¢ # T # N, in view of (6).

Set M := N\T. Consider the reduced game Vﬁ given zT; it is ordinal

convex by Lemma 4.1.

o
One now claims that zH £ Vﬁ(S) for any S ¢ M. Indeed, suppose the

. ) _
contrary; i.e., ¥ 5 cM: zH € Vﬁ(S). Then, there exists yM € Vﬁ(S)

such that y? > z? for all i eM. If S # M, then there exist R cT
and yT such that (yM, yT) £ V(5 UR) and y} ? zg for all i €T, so

M T 2 . M T
that (z, z°) € V(S UR) -- a contradiction. If S =M, then (y, 27) ¢

V(N}, so (zM, zT) € V(N) —- a contradiction of (6). The claim is thus

proved.

INF T
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By the inductive hypothesis, there exists yM £ C{Vﬁ) such that yH £

zH < x". If yM = xH, then yM = zH, S0 (zM, zT) g V(N) —— a
contradiction of (6). Therefore, h := x' - yM ¢ Rf\{O}. Choose t* as in

Lemma 4.2. Then (yH + t* h, zT) € C(V). It remains to show that yH +

t* h ¢ xH, or equivalently that t* < 1. Suppose t* > 1. Then yH + t* h
> %", In viev of ("« tx b, 2T) e V), it follows that (&, zT) ¢

V(N). Then, (zH, zT) £ V(N) -- a contradiction of (6). Q.E.D.




FOOTNOTE

1 A substantially revised version of Ichiishi (1987a). A part of this paper
was vwritten during the author’s visit to CORE in early June 1987. The
hospitality and the financial support of CORE as well as support from the
Ohio State University are gratefully acknowledged. The author thanks Van
Kolpin, Jean-Francois Mertens and Shmuel Zamir for their comments and
suggestions on the earlier versions. AAny possible deficiency in this

paper is the author’s responsibility.

The author is indebted to Shmuel Zamir for this insightful observation.
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