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§0 INTRODUCTION

Let @ = {1,...,n} . A probability m on g (i.e., a vector

m=({m) __.m>0, E m =1, regarded as a set function on
[T ¥ Lt ¥ e [T
weR
‘1&[:‘.‘1] via m(S) = I m (S =a)) is said to be homogeneous w.r.t.
wES

a€(0,1) , if, for every S<=q, m(S) >a , there is TS such that

m(T) = a.

The notion has been introduced by von NEUMANN-MORGENSTERN [ 1 ] in
the framework of Game Theory. For, if o represents the "players",
’pl[s'.‘aj the "system of coalitions", m (wen) the "(relative) wﬁting
power" of player « , and a the "majority level" (assuming freguently

e %]I then the function
et "
v :’p_l[.ﬁ]l - {0,1}
represents a "simple game" ([ 1], see also SHAPLEY [8] and PELEG [2], or

[4]), in the sense that {SiIm(S) > a} = {S1v(S) = 1} Efl':ﬁ} 5 the

system of "winning coalitions".

If "dummies get zero voting power" (see [ 2] [ 4 ] and the game is
superadditive (a > %j and zero-sum (v(5) + v{SC} = 1, SeR(a)}). then

v is uniquely represented by m and o . On the other hand, "dummies

get zero voting power" is a sufficient condition in order to derive that
m is nendegenenate with respect to o (see [ 3 ][ 4 J[ 5 1[6 1) and

thus, m and a are rationals.



For all practical purposes it is, therefore, sufficient to study an

integer valued measure M= (M) ., (M € N (w&0)) on © and to
[y g i e T w

cosider the problem that M is homogeneous w.r.t. » € N , i.e.

SeUMS) 2 s 3T 5 MTh= g,

It is the aim of this paper to specify conditions for M and &

that are necessary and sufficient for homogeneity.

Game theoretically a 1ist of "homogeneous pairs" (M,.) seems to be
desirable in order to enlarge our knowledge of simple games (again

see SHAPLEY [ 8 ]). However, homogeneity should also be seen in
connection with nondegeneracy. The latter concept has been studied

in several papers by H.G. WEIDNER and the author [5 ], [6] see also [3]
[ 4 l,and there is ample evidence that nondegeneracy is a kind of
surrogate for nonatomicity (in the case that o = [0,1] and m a
measure on the Borelian sets) (see in particular [ 3 ]). Clearly, a
nonatomic measure on [0,1] is "homogeneous" as well as "nondegenerate"
with respect to any o € (0,1) (and vice versa) and so homogeneity
should also be regarded as a finite surrogate for nonatomicity. That
this is more than just a superficial similarity, has been exhibited in

the study of "extreme" set functions [ 3 .

It remains to exhibit the number theoretical or combinatorical similarities and
differences between both concepts. The treatment of nondegeneracy leads

to the study of "(g,k}-representations" of A € N (see[ 5 ] and

[ & 1) and the main result of this paper is that the same is true for

homogeneity. Hence, both concepts, apart from their similarity when



compared to the nonatomic case as well as in applications also grow from

identical number theoretical roots.



&l ON THE DISTRIBUTION OF PLAYERS IN MINIMAL WINNING COALITIONS

Eet g =Hl,....0'F and Jet

represent a decomposition of 0 into nonempty subsets Ki’ e R

of o . ("+" standing for "disjoint union"). If

g = {8580 ENT

then an integer-valued measure M >0 on o 1is specified via

-3

MS)= = 1SnK;Ig

i=1 Sk

On the other hand, M specifies a decomposition of & and a vector
g eEN intuitively, Ki represents the "players of type i€ {1,...,r} "

and g; 1s the "weight" of players of type i .

Permutations of the "types" (i.e. of {1,...,r}) and of all members of a
type (i.e. of some KiJ do not alter any homogeneity M might enjoy

w.r.t. some A €N , thus, if we write

k= (i) €N,

P

then M and (g,k) € B~ determine each other up to permuations (provided

r
of course I k. = n).
i



Definition 1.1. An integer valued measure M > 0 (or a corresponding

pair (g.,k) € mEr]

is said to be homogeneous w.r.t.
AEN (written "M hom A" or "(g.,k) hom A") if, for

S0, W) > there i T =8 5.1, BT} =X,

(By formal reasons we admit M(S) = 4, T = S).

Throughout the following we shall always assume that

0 < 9y €9y < ... <4,

holds true. Then g £ N induces a system of natural numbers

}ij i B [ LPRRRS, i B T T

defined by

g: < 9. < fl

e J + lljlg.] L]

143 i

which will be used freguently without further reference.

The following lemma reduces the possibilities of "representing" a natural

number A by the weights 03 given the information that M hom x.

Lemma 1.2. If M hom a, then there is in e i, 0t and £l ;

l.xec < ki » such that the following holds true:

0
r
(1) A S Cgpe e B kg 3
R L
(2) k. @), o For all
= 148

ie {10 +1,...,r} satisfying g, /g

3 :
0]



(3) ky < 1., for all

i€ {l,...,i-1} satisfying g. |/ gio

Proof Choose iD to be maximal such that

and, thereafter, let ¢ be minimal such that

(4) Yee v riby
selist IR B e
)
holds true. If, by this procedure, the = -sign is obtained in (4),
then we are done as far as the first part of our assertions (i.e.,

formula (1)) is satisfied; otherwise we have

r r
(5) feedioe ¥ R KL G K RCRg. H B ki 95
0 1=1ﬂ+1 D 1=1ﬂ+l

The right hand side defines a set T < Q the elements of which have

at least weight 9 But if we take weight 95 (or more) out of
0 0
this set, then its measure will fall below of & , contradicting homo-

geneity. This proves (1).

£1 For some 15 ¥ 1. 94, ! 94, » then

0

o'l
we may construct a set S = such that



r
6 gt . S Tk S
(6) k0 S g
o x
isi;
= A+ (110 + 1]g10 - 911 > A

And as M(S) - »<g. , no element of this set may be removed
0
without its measure falling below of » , contradicting homo-

geneity. This verifies (2).

The meaning of this precedure is obvious: the representation

r
A=60. + E kit
e

implies the construction of a "minimal winning coalition". If there

are enough "players" of type iﬂ left in order to replace a player

of type il s =

(ke =el 2l 2 a1
-lu 1011

(kg =edm: ol . Hl)gs >
o o o'l e

then they must be capable of exactly imitating his weight (i.e. e O
- B
otherwise homogeneity is violated.

Clearly, (3) is checked analogously. (Small players must be able to

imitate players of weight 9; exactly if there are sufficiently many
0



of them.) There is an obvious generalization to which we shall

return later on.

Let M =
i

s Ki | 95 be an integer-valued measure on Q = KI+"'+K -

LU B

i
Fix some p &€ {l,....r} and let d e f + {0} be such that 0 < d < g -
As (g,k) corresponds to M , we want to consider a truncated version

of M, say M pd, corresponding to {{gl,...,gp], (kl"‘*’kp-1=d}}' This

may be done by specifying any D < K s ID] = d and defining med by
p=1

{5):=1_£115n|i1.ig€++5nﬁ|gﬂ.

O0f course, de- should carry an index [ , however we refer to our
previous remarks concerning the relations between M and (g,k). Also
we accept a slight deviation from our previous viewpoint by admitting

that d = 0.

As a further notational convenience we shall use m = M(Q), m = M(),

fo= fi(Q), med = Mpd(ﬁ} etc. We have now

Lemma 1.3. Let M hom » . Suppose, there is iﬂ € {1, . at)

ki f1 =i s+++3T) Such that

and @ EN 1S, o

1

L ; X }
Then M . o hom g. for all 1 & {1G,...,r

gt 15, K4 -84
satisfying m©* ‘o ‘o > g,

o
1
5 1]



i)

ki -as

: i q i
Proof Write M:=m©0. 0 0 i)

and ick e e :
P = ki e

such that fi > 9; - Assume that. M hom g; 1s not true.
1 1 Sl
Let Tcqo be a set such that

[T ok JEas (15 i

A L e R

1
r

such that M(T) == L a; g;
i

Now there is § c Kl +, 0¥ Ki such that
D

M(S) > 9> M(S-0) < %,

for every o € S ; clearly M{S}-gil <9 -
0

Next let

T=T+5 - {one element of Kil}
such that

M(T) = » + M(S) - gil
and

0 < M{T] - A <g;
0

Therefore, in order to "cut down" T to measure » we have to remove

necessarily elements of 5, i.e. we find EEES s.t.
M (T + 5 - {one element of K, }) =2
1

which amounts to H{§} = A, a contradiction. q.e.d.

e |

Lemma 1.4. Let M= - 0K | 9; be an integer valued

n

1
measure on @ = Kl +...4 Kr. Suppose, there is

i

iu EAlyevesrd cand . e &N, Lie od ki :
0
such that the following is satisfied:



S

(2 y=C g * % ks g, .
s L L
(8) Ky o5 BT o for AT
0 0
i€ {i +l,...,r} satisfying g, ! P
0

i{);k.i =L

(9) M © hom g, for all

i ,ké =1
1€ {ij.....r} satisfying mo o > 95

Then M hom » holds true.

Proof For the sake of convenience, let us write
Baite dd i ol apas o0
(0
PEiE e e :
B samAl 3 5 +1,g1. a3

0 1

o

Now, pick T e such that M(T) > a .

1st Step: Assume in addition that

TN (K #...# K, ;) =@ . In this case

o
r
(10) MT) = £ b g,
i=i
o
where Bz ok [i=. .F}

Now, for 1 e RD we have in view of (8)



=B

and hence

(11) (b ~c) @, = ITD1 9; <9; -

As M(T) > » , an inspection of (7 ) and (10) reveals that (11) implies

(12) By =k (FE BT

r
=WI}>a=C9 + L K- g
L
0
implies
b. 9. cg9, + £ [(k.=b.) g
o e far el
=L8 + B fkeBg il oA
TR T e s T
or

b, >¢6+ L kisb.) 1s .
0 ieRC ) g!

Hence, there is a subset of T nK, ,say V =TnK,, such that
0 0

¥, I me® & (koby) 1,

R0 o

Define

SR R e R U R PR
R geps ieR, 3



then U= T and the measure of U 1is computed to be

ME O = f ook 1§Rﬁ (ki = bi}]iuijgio +
" ke i ier e
0
2 g10 / 1:120 Sy T 1§R9 W iéﬁﬂ %
= x

which finishes our first step.

?nd Step: By the same argument as in the first step we may assume that

(13) MET oKy ok KY < &
0

For, if > holds true, the procedure exhibited in the first step is
applied to T n {Ki ...t Kr} (- and if = is the case we are already

o
finished with our proof}.

Also, there is no loss of generality in assuming that
(14) M{TY - 3 =< By -1
0

for otherwise we remove elements from T n (K +...+ K; _q) until either
0
the procedure of the first step applies or (14) becomes true.



S

3nd Step: It is sensible to introduce the notations

e R S
0
B -
T":=Tn (K +..+K)
0

as well as

- i, kig-c i

o= T o g o U

Now, we proceed as follows. First of all we have

.
A<MT)=M(T)+b, g + = b,
o 0 i=i .+l

and hence

0
M {TD} il a0 T T O SRS B
5 1—1ﬂ+1

Replacing A via (7 ), we obtain from this:

3
(16) MAT ) &ty - w) 8y B ?

(ki=bs) gs -
0 o = K ry

D+1

The remaining two steps distinguish two cases according to whether

bi >c or bi ip
0 0

4th Sfep:  Assume first bi 28 L
0

Consider the left side of (16). As we have now 0 < Be =k <k
0 0
this term may be interpreted as the measure



o =
M [TD} + M{Dﬂj =
= M(T,) + M(D,) = M(T, + D)
where D  1is a suitable subset of K, such that [ D | =b, =-c.
0 0

As M hom g; forall i>i  s.t. @>g; (our assumption reflected

by (9 ), we find Sc T  +D, such that

M(S) = ¢ :
i=i_+1 (Kj = By g
0
However, we know that
5 r
MoLT o (b, =¢€)g, = P ootk = by
0 s . :'='iu+1 i §aaq Ts

(ef. (15)) - i.e., when switching from TG i+ DD to S5 we do not remove

elements from D{:I = Ki - and hence we conclude that actually S > DD .

0
Thus
(17) M(S) = M(S nT) + (by ~-c)uyy
o o
r
= £ (ki - bs;) g:
T g S e
o
and finally
M((SNT,) +T)
= W EnT)+ NI
(17) r r
= Tt wehe g w fhe woed g By e oW 2 b: o
i=i +1 : L o W o o i=i +1 LB
r
= cg; + E kig1=.‘h.



gl A

Obviously U:= (SnT)) + 7% 45 the desired subset of T having

gxactly measure &

To finish the proof we have to return to (16) and deal with the case

that ¢ > b,
0

5th Step: Indeed, if c > bi , then (16) is rewritten:

0
T 2 (= by Y # & (ks = bi) g,
N i=i0+1

Again, we use our assumption about homogeneity of M as expressed by

(9), thus finding S, €T, s-t

r
i R R o e R I A TR N T
] ID 19 i=i +1 1 1 1
[ #]
Clearly
M(S. + T%) = MO(S ) + M(TO)
0 0
i e r
e fec=-b:)g: # - hlki=bog, & R Bioge
R e Rl T
= e
hence U =S+ T° = T is the desired subset of T, g.e.d.
Remark 1.5. It should now be mentioned that conditions (2) and (3)

of Lemma 1.2., 1.€.,



and

are in fact conseguences of condition

e

for all

m

L1} k:l
0

< + 1.
Sk ]11
0

satisfying g; /[ g
. i

1 k:l

M

far-ahkle
o

b T
el

satisfying g. 1 g;

(el
w9 T07C o g; for

i i e
satisfying m 9* '07° > g

S
L D E 3 4

Combining our results we may state the following theorem.

Theorem 1.6,

(11)

N

an

L]

d

"
Let M= £ | - nK, | g; bean integer-valued
i=1
measure on Q = Kl +...% Kr and let 2 €
0 < < M) . Then
M hom A
if and only if there is iD S AR
cel ., 1<c<k; , such that
0
=
G S L ki g
L
0
i i =C
MO 0 hom 9;
10
for a1l i € {igs.ce0r} sk o



(1v)

Remark 1.7.

e e

In this case in addition the following conditions are

satisfied

for all i€ {itl.....r} s.t. g; [ g; .,

for all i€ {l,....,i -1} s.t. g; / gin .

The following interpretation of our results as stated

by Theorem 1.6. is offered. k = (k;.....k.) represents
a distribution of the number of players of the various
types. A representation of » (the majority level) as
indicated by (I), corresponds to a specific distribution

of the players over the various types within a minimal

winning coalition. Such a typical minimal winning coalition

is composed by all "big" players [ i > 10 + 1) and a few
players of "medium size" (i = iD) , while it contains

none of the small players ( i < i

ol
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However, there are different types of minimal coalitions feasible:
Small players may be able to eliminate a big player as follows.

M represents the distribution of types over the remzining medium
sized players and the small players. Now, whenever a group of small
players has sufficiently much weight in order to exceed the weight

of one big player i {(that is m > g, ), then the small players

1
are capable of imitating the big one [bécause M hom g.), that is
they may choose a subcoalition of exactly the weight 911 and they
may replace one player of typ 11 in every minimal winning coalition
of the original type. More formally the fact that M 1is homogeneous

with respect to 9; (il > iDj implies further representations of

A» , for instance 1
I -
AE gin + i=$;+1 ki g; + {kil-l} gil + M(S)
1#11
where Scky+...+K and 150K, | <k; -¢
0 0 0

Of course the condition represented by (II) induces further conditions
for the distribution of players over the types. For instance condition
{(IV) may be seen as follows. The relation means that the total weight
of all players of type i ("small players") does not exceed the weight
of one player of medium size if the small players are not capable of

imitating the latter one. Similarly condition (III), i.e.,

(ks

5 'C}Qi -‘511'1'5"1 < 9 {ir’iﬂvgiufgfj

0 L8] O ]

is readily interpreted as follows: Those players of medium size which



S T

are not represented within a typical minimal coalition of the above
mentioned type must not have a total weight exceeding the weight of

a big player if they are not capable of imitating him.
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2 INTERVALLS OF HOMOGENEITY

2r

A vector (g,k) € N and an integer valued measue M on

Q= Ky+...+K, are closely related objects, thus (g,k) determines

a certain subset of natural numbers » s. t. M hom 2.

For (g,k) € NZ© and B S e SR

0
o =
recall the definition of M =M% 'O . the abbreviation M is

used whenever i and c are specified. Let us write

]

| R 3 5

I, =1, (g,k) = {cg; + T I<c 2 ki
o} o] o i=1ﬂ+l o

M >g; implies Mhomg, for i€ {i....,r}).

Then the first part of Theorem 1.6 is reformulated as follows.

Theonem 2.1 M hom » if and only if

-
xe b I: i
i.=l "o
0
Loosely speaking'we regard each I: as an “"intervall" of natural

0
numbers A with the property M hom .

It is easily seen that the I? in some sense are indeed "intervalls".
0

More exactly, for any (g.k) and iﬁ € {l,...,r} there is



T

For, if IT; = P we put conveniently ¢, == and if

0 o
c I
M hom Ky o E=iggL % £ k; g5 , then (3) reveals at once that
0 0 i=iD+1
M hom a?’l provided c¢ < k;
i 0
Hence, the set of numbers (c ). , . completely describes the
B TR e A

intervalls of homogeneity with respect to a given (g,k).

Theorem 1.6 in fact offers an inductive procedure for computing
these "intervalls of homogeneity". The present section is intended to

provide more insight in the first induction steps (r = 2,3) as well as

into the nature of the general IE as computed by the various I°

a
ARG - I R

2r

Let (g,k) € N gREfor Re= 1. ory Yet [g_il'TER] be the

intersection of N and the ideal spanned by 9. (iR} (i.e., the

positive multiples of g.c.d. (gijic=R]' Furthermore, for pe{l,...,r}
e -1} | .. g
(2) J, = Re {l,..., o-1) :éa kig;>9,: 9, € [g; | 1€R]}

Thus, 3R Efdp then players of types i£R may muster enough strength

to exceed the weight of a player of type p, however, they cannot



- 22 =

exactly imitate him. For convenience, we write i € Jﬂ instead of

(i} 2Jd and if RcJ  we shall sometimes say that R disturbs o.

Now returning to our intervalls of homogeneity, it is not hard to see

{by Theorem 1.6) that

g d il
0
r r
(3) Ly o= { dggy ® L b e ok,
0 b i=1 %] e L
0
fi > g; implies M hom g, (i &€ ,....r})} (J; =9)
0
where
max {ki -]i 1.;"1‘r5~['iw+l,...,r}», iOE Ji} if iDE S J1
4y 1 o o i>1
0

] otherwiese

such that in particular 1r = 1.



- 23 -

For r =2 we have obviously

P (1€ dy)

{€g, | 1 < ¢ < ky, fi > g, implies M hom g5} (1 € Jy)

e
Ma ™a
|

Here, M corresponds to ((91:9,)s (kjskp=c)) and for 1&J, it

turns out that M hom g, is always satisfied. Hence
p (1 €dy)
{cg, 1 1<k} (l&dy) .
Similarly,
I% = {cgy+kyg, | 1y <€ < kg, > g, implies Mhomg, for i=1,2) .

Here M corresponds to [{gl}, {kl-c}J such that M hom 9 is

always satisfied while M hom g, means g; I g,. Thus

|
(]
hs

I% = {cgqtkyg, | 14 < kys (ky-c)gq > g, implies g, | g,}

A

{cgytkog, | 19 <€ < ky} if gy I g, or ki9; < g,

{cg;+k9; | 1y

| A
]
Y

< kl » €9q < klgl-gz} otherwiese

{Cgl+k2g2 | 11 k

|
L]
| A

1} {1 € JE}

{cgl+kzg2 | 11 £ e kl‘ €9y < k9179, } (1 e dz}



SE ) T

LaLl
s

{cgl+k292 Flcg = kl} (1
{cgl+k2g2 | k1-112 LR kl} (1¢g sz

Conolbany 2.2 lLet r=2 and M correspond to ({gl,gzj,

{kl,kzjj. Then M hom A if and only if
{egy+k,9, ; ki=11p £ € < Ky} (1 e JE}

{cgy | 1 <c<ky) U {egytkog, | 1 <€ < ky} (1€ JE}

In other words, the intervalls of homogeneity are described by

2 = l1ed
c = -
2 53 144,
e
c =i
1 1

Fig. 2 represents the Intervalls of homogeneity for r = 2.

The case r = 3 requires a few preparations. It is important to note
that simple divisibility properties as expressed by Corollary 2.2 will
not suffice to tackle the general shape of the intervalls of homogeneity.
Rather, it is the theory of "(g,k)-representations as developed in [ ]
that yields further results. The reader is referred to this paper as we

shall draw on it for the following presentation.
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Let g1, 95 € N with g.c.d. [gl,gz} =t d2 and let

(8) Ny 5= (g - 1) (sp7dy).
For » &€ N define
(%) C:= C(r) := {ceN 1 c > 0, h-cg, > 0, 9 z h=Cga )

Clearly C=p if » 20 mod r:I2 . Assume therefore

=0 mod d2 :

Next put

According to a well known theorem of elementary number theory

(e.g. SCHOLZ-SCHOENEBERG, [ 7] Th 27, p.41) the congruence
XEE = & mod Ejl

has a unique solution (mod §l}, i.e., there is a mapping

(10) K: {n€Niiz0moddy) ~ {0,...,8,-1}

such that

K (%) g, = % mod g9;

Clearly, Kk depends only on the eguivalence class mod 9 of 2, 1.8.



- FF =

if A' =0mod d, and A' = % mod g, then 3

and

in
=)
[=]
o

[i=l

K(A') = K(n).

Next, define a mapping

(12) t:{heN| » =0 mod dE}+]Nu{D}
by
(13) T(n) = max {teZ A - (k(2) + tgy)g, > 0} .

Then we have the following Temma.

Lemma 2.3. Let g, g, € N , g.c.d. {gl,gzj =1 d,.
Let » € N and let N, C{rn), ¥(n), and (1)
be given by (8), (9), (10), (13).

For A = 0 mod d2 and “A > NE we have

C = C':}'-:] = {K{}“Jv K{P\} T ﬁls---!K{}\-} & T{}‘-:IEI}

PROOF lst Step: For A > N, there is a “(gl,gz}-representation“
according to Lemma 3.1. and Theorem 3.2. of [ 5 ]
In fact the bound le was already known to SYLVESTER, but
we want to draw on [ 5 1.

Thus C # 0. Let us show that there is ¢ and 1 s.t.
& = {EsE+§15---:E+ ; El}

To this end, it suffices to show that ¢ £ C implies 9 [/ A - {ciﬁl}gz.
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But as c € C we have

b
|

. C G dgl {d » 0}

[ o 51}92 + (d : ﬁg).gl

and hence g, / A - (c :_ﬁljgz ; this completes our first step.

2nd Step: Inspection of Lemma 3.1. of [ 5 ] shows the following.

As X > (g; - 1) (3, - 1) , there is «, «

R

0 mod dy, 0 <« f-§1 &

such that

Obviously k =x(x) (because of the uniqueness of the solution of the
above mentioned congruence, Lemma 3.1. of [ 5 ] just claims that in

addition X - « g, > 0). This means of course

A=kl +di d>0

A ng‘r'dg]

and hence « = x () € C(x).
3nd Step: Using again « := K (A} we have for te Z

eSS B 61}92 i g 62} 91 -

Clearly, for 0 <t <t =1 (A) we have ¢ + t 51 >0 and
(d - t g,) >0 (by definition of < (1) while

K - El <0 and A - (k + (z + 1) ﬁl}gz e Y

L]



again by definition of XK (-} and =« [*) .

Thus, in view of the 1lst step, & + t ﬁl =S PRy

el & 6, e wlE o) 51 < o B

The notations NZ’ dE‘ ai’ C{-)y K{+), t(-) will be used in the

following theorem which completely describes the case r = 3.

This case is treated under the additional assumption 93 > HZ’ which
enables us to compute a closed formula for the numbers c? (1= 1.2,3).
It is, however, only the third case of the theorem below hich uses this

requirement: the subsequent remarks are meant to enlighten this procedure.

Theonem 2.4 Let r =3 and g3 >N, . Then
3
Gl ]
1 1
[ - 1ed,

9.-kq9
2 "1-1

5 k, -[;——EE—-} LA, 12,

93'k191 = .
i = MAN P f et Lo *ovgy] g Jpr 12 € d5, 2 € 4

9
\ -
1 I Jps 12 € J5, 2 3 Jg
. (91;92; kl'kz} not hom g
": L1
3 ;
‘ 1 otherwise
h

where « = K(g3) » T = t(93).
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PROOF We shall only compute cg ; the remaining cases are

treated analogously.

By (3) we have:

(15) I =

implies M hom 95 (i=2,3)} 1l &% Jz

L)

Here M corresponds to [(gi,gz}, (kl,kz-cj].

The condition "M hom gi” may therefore be decided according to

Corollary 2.2, where each I? now will depend on c.

we observe that M hom g9s if and only if

(16) gee {dgE | 1<d < kz—c}U

More precisely

U {dgy+(kyc)g, | 1< d < k) 1€,

- and in view of (15) only the case 1 ¢ J2 matters in (16). Now a

straightforward computation shows that for 1 € JE "1

M hom g," 1s always correct. Hence we conclude that

P 1€ Jz

{cg2+k3g3 ' IE Lo A k2 i
(17) I2 =

g1k1+92(k2-c} > 95 implies

g3 = {dgz | 1_::_ d < kz'c} u {d91+[k2'C}§2

9, implies

| 1<d< k)

(1€49,)



= 3] =

Now, if 12 & J,, then 95 will never be an element of one of the

3!
sets indicated in (17). Hence we have

93-K19;

kz'CE_ 92

for all c¢ such that cgy + kE,g2 € Ig . The minimaf value of all these

(= :g} is the maximum of the lower boundaries thus obtained, i.e.,

g S0y
Cp, = max (}2, kE - 92 :).
But as
k, - SRy
{ 2 1 3 93-k 9,
]2- Ekz- 95 ;

1

our assertion follows in this case. (Note that k1g1+k292 > g, implies

ko > [...].)

Consider now the case 1 & Jz, 12 ¢ JS’ = J3. Because of 2 ¢ J3 the
first set in (17) is to be disregarded. Moreover observe that 12 = k2-12 3

Hence

3

93-k19

kz-c > 92

implies gg € {dg;+(ky-c)g, 1 1 <d < ki) .

As k2g2 > 95 and 12 ¢ J3 we have 95 i [gl,gz} and, using now

Lemma 2.3., we may continue by



et "
{18) k2 - £ > 5 impliies k2 =0 & {Eslss kT gll,
93-K19 93791
ko = ¢ £ ;
92 = =g i 92

In order to obtain cg we have to compute "max kz-c” over the set as
indicated by (18). To this end observe that, by definition of x and 7,
we have

(19) 93 = k9, I (1g*r)g;

with suitable re N, 1<r< 52-1 (as g, ] g3!), thus
(20) iy = (e + 151)92 + ¥V By s

This implies

93 9201 i {r‘*ljgl -
(21 123:9_2 - T-;e+1rgl+ —§2—3m+1g1

From this it follows at once that the last condition to be imposed on
kz - ¢ in (18) may be omitted at once. Moreover it is seen that

"max ko-c" in (18) is given by

93-k19; ”
Tﬂak([———ﬁg—-— s K + Tgl ¥

which finishes this case.
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It remains to treat the case 1 ¢ Jps 12 € Js, 2 & J5 . Here, it suffices
to check that ¢ = 1 is feasible in (17). Observe that 12 =1 . We have

to.shmw that

(22) klgl + {kE-ljg2 > 95 implies g; € R 8 TR e

Vet T1T)Ee Howy GF Koy > g, then 9o | 93 » thus g, = dg,, d <k, .

On the other hand, if kzgz < 93s then the condition of (22) implies
ki8; > g, and hence 9 | 9, - As g5 € [9,,9,] we have also 91 ’ g5
and g3 € {...} U {...} follows at once.

g.e.d.

Remark 2.5 1. If g, [ g3 . then

95.9; .
123i|i 32 :ti””’fgl

holds always true. For, by definition of & = K [g3j and 1 = 71 {93} we

have
kG, = Oq mod 97
i.e.
93 = kGy * Mgy = kGy + (19,4r)g,

e+ Tﬁljgz + roy

with suitable m and r (r is "maximal with this property"). In particular,

it follows that 1 <r<g, - 1 (by definition of « and g, | g.). Thus
Lt nas £



T

2. Consider the case that klgl < gy

93-k19 93-9; :
lag 2 R oET S e 1

the bounds cg as specified for the second and the third case

Because of

(1€J,,12cJ, and 1&J,, 12 &3, 2 € J5, that is,) differ at all

2
only if

g--g g.-k,8 0--9g
_Ial\_ : ‘311|_‘32Iw 2
I:E-I'-i} ]23 = QE = K 4 Tgl > —-—-—-—-———gz = _gz = ]23 1

holds true. Thus, only if (24) is satisfied the requirement "12 € J3"

yields an additional homogeneous pair M, i.

Returning to the notation of (23), this means in view of
; aE
g3 = (k + 107)9, + rg;s lpg =k + 10) + —
92

that we have to take care for

(25) ry <, -1, rs —=—
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E.g., for r =1 we have (25) guaranteed in advance. What are the

smallest "games" (M,») dinduced by this consideration?

Clearly we must have kl.i 2. If we start with gy = 2 then

g, > klgl’ i.e. g, = 5. Now, for ¢« =1 and r =1 we have

(lx2ix 5+ 2

I

93

i.e. 93 = 7 for ¢ = 0. Because of kzgz > gg we have at least

o > 2 . Hence

(g,k) = ((2,5,7), {E,E,RE}]
or

M b2 2 Buhg Tasiashh o

The important 2 s induced by

Cy = ky = [k + 1§;) = ky - 1
j.e.
A = (kz-l}gz + k3g3
= 1 go + k3g3
= 5 + k3. i

Thus, the "typical" minimal winning coalition is formed by all big
players (weight g,) and all but one medium player. The remaining
players may well replace the members of such a coalition, but because

of (2,2; 5) hom 7 and 2 + 2 < 5, homogeneity is not disturbed.
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The next game is given by

or

RS i R e B SR T

>3

Here

c3 = k= (1+2) =k, = 3

2 2 X i

A= {k2-3}gz + k393

= {kE-B} - 5 + ka S

3. Consider now the case that klgl > 9, and 91 | 95- We have now

dy=9;, 9 =1, 1§ =r<g -1,

hence

]23=|‘:+Tgl

ple L WO L 5 S

L
92 - 92 23

Thus, the requirement 12 € J3 may yield a considerable improvement

("more homogeneous 2's") when changing from the second case to third one.

We are now going to treat the general case by offering a recursive formula

r
10

for the computation of a ¢

Observe that IE =P if Ji # 0 and hence trivially c? =« jn this
0 0 0

case. Next, assume J.-I = B such that
0



fi > g; implies M hom g5 (J=igs..nur))

ot

where M corresponds to {[gl,...,gﬁ s {kl,.“,l-c_.I -c)).
o 8]

For J = i, the requirement f hom 9; is tantamount to ((g;,....9; 1)
o

{kl,.,.,ki _l}j hom g; - Therefore, if we introduce
0 0

JiF  a=ammide | T e sk

g L 1 i ]
m>g; implies M hom 95t >
then, clearly
[ = J; A D
O
s " J; =48 and
(26) Ciﬂ- < i
: : t hom g.
{gl?t.fg-‘f}_lj{kl,ttt,k_:ﬂ_l} nﬂ 910
Y.
max Y c? otherwise

s i
\ 3—10+1 0

Now, for the new guantities we have

(27) T R | R i s T S
i 1 Th ; 10-1 - T 1

j.=]
0
U {dg; + 152 k:g, + {kiO-C}giD | c?“l <d < kil
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Here, the guantities cr-l
.T

notation c_G would be appropriate as well.

depend on TEREREL F ’kl""’ki only, the
0 0

Now, if {1,...,1G} = JJ then all sets listed in (27) are empty, thus

r :
. W we g UL o R e [
'iﬂI a 2]
For {l,...,i } ¢ Jj » Choose 1, such that
{1,...,1,} € Jj
{2,...,10} 2 Jj
{11,+..,10} = Jj
{11+1,...,1G} < Jj .
Tl
(28) il = max {i | {i,...,iu} ¢ Jj’ el 10} g

(such that in particular iD ¢ Jj if il = i

Then, in formula (27) all sets vanish up to and including the one that

starts with {dgil+1 Foond o T g 10 . this means

J c: = min {c¢ | ]i 0 E.ki W gj implies
0 0 : 0
Tt r-1
g5 € {dgi +. 2 PRt {ki -c]gﬁ : cs il ki }
1 i=1l+l 0 0 0 1
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U
(29) : S
TS RS e Plar e
1=1 0 0
"
= min min {c | 11 icik-i , M > g. implies
i=1 0 0 J
iu-l r=1
g, & {48, ¢ & PR O I e s
J L =i+l 10 1& e L

The last min again is simplified by

min { } = max (1, , min [min {c | Mic g3 4

& J
i il . and g; e {dg. + ..o]eeid))
min {c | @ > EJ QJ { Ql |eea3}] )

Here, "fi > gj“ may be cancelled as it follows from 9; € {.:.} . Therefore,
if we put
(30) ; 10-1

Trl e EN| - E Y T k.G F

3 =T gy T

+ (k. r=1

Io-cjg-i | 'E'-I f_df_k.]}} E
G oo i

it turns out that

[ = if (1,...,1} € J;

i-1
0
et Koy 4 4
iy - 1=1 1 r
Je; = < max E1i min [ki - » min  c. J
0 o’ 0 giD 1i=l1 o

(31) \ it {l,....1.} & Jj and i, is given by (28).




. A

If 11 o T formula (31) holds true as well with the additional
definition of 1 ¢l beeing supplied by
0 0
: r-1 s B
(32) min {ce N g; € {dgim ! ciD i Ao k_.l - ¢}} {1I=1{}]
1 %
toe M6

undefined {11 < 10}

This last quantity is readily computed as follows. We have (assuming

p 9; 19
R R e WS
el | Gl 1 J
o 0
p 9; {95+k;9; >9
To J o To J
P=1.. .83 ’
{IcEN | e, = < k: -c} otherwise
'o C T
o
= {CEH]C?-lf_iiki'C}
0 gio 0

51y = iu , 1.e. i_ € dJd. . Thus, the "min" over this set is obivously

| i o
(33) 2 X Vo otherwiese



provided il = iD . It remains to deal with the general % c : for
- 0

1< 1'1- (no matter whether 1'1 = "ID or not.)
Now, by (30) we have trivially

3 | 1D-1
(34) Tl = e if T kg < g

- ) i=1

ig-1 .

while iET kigﬁ 3_9: implies gj £ [gi,...,giﬁj in view of

Phiisatnd & dj . Consider the ideal [gi, gia] . With respect to this

.i
ideal a function K = K..I“ is defined by Lemma 2.3 as well as a function

= 1.9 . Put

L P -1
k. ee gt qg - U keg)
3 Lee S T R
(35)
g dan e lg71
A (g. - I k.q.)
= AT ]

Using this quantity, the set indicated by (30) is developed as follows:

{ceN | 9; R R
ig-1
{ceN | " i=§+1 kig: - {kia-c)giog R
an Al TR e L e L
(36) Bilng - B ees Uy il c B E F



T

e e N1k SeEllgrT i) it o B sl ~Clny
k i o i - k)
0 — — 4
9; =
ﬂ oy = & E_ - 2 1
93 b= Ql 915_
ic € N | k'l -C E r.]r 10, .,J K 10‘ - JT T'D -.ID 5
2 0 i i Ll
r-1
B = et 95 = E.oo- 7% 9 otherwise
£k =g }
9. o g
o o

~ 9.c.d.79;,9; )
o

o
where g1“ - , as suggested by Lemma 2.3. Note that we have

to assume that

1'0-1
(37) g: - T k;g: > N,(g9:,95 ) with suitably adopted notation
| S Sl e

for N, (cf. Lemma 2.3). In other words, it is deduced from (30 (34) that

ig-1

nelo

- S ot kjg; or g5 ¢ [qi.gim]

i

1 . . .i e 1..
(38) el wl ki cmax de0rtdO Bt T P,
1 0 X R £ §

= i <1 ;
< JK O tg.lﬂ E uthEW1SE



S

where the last expression is understood to be = if { } is empty.

Combining we have the following

2r

Theonem 2.5 Let (g,k) € N . For r =2,3 the quantities c:

0

{iﬂ € {l,...,r} ) are given by Corollary 2.2. and Theorem 2.4.

respectively. For r > 3 they are recursively defined by

(26) (31) (33) and (38), provided (37) is satisfied when-

ever, for some 1 > i1 {11 beeing defined by (28)) and
ig-1

some Jj>1_ we have g, < & k.q.

0 e

and g; € [gi.gi.l
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