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0. Introduction

We consider a model of a finitely repeated two—person zero—sum game with incomplete
information on both sides that has already been examined by Mertens and Zamir
[71/72]. They have determined the limiting value of such a game as the number N of
repetitions tends to infinity and they have shown that the difference between the value
of the N-stage game and the limit is bounded by X . However, their analysis gives no

indication to "good" strategies in such a game because it is guided by the following
consideration: An equilibrium strategy (which always exists in the finitely repeated
case) must guarantee the value of the game even if it is known to the opponent, which
implies that he is able to compute posterior probabilities on the other player’s types
after each stage of the game. Thus the value of the game remains unchanged if both
players after each stage are not only told their opponent’s choice of action but also the
correct posteriors on his types. In such a game the participants must only control their
own release of information but not the behaviour of the other player.

In the following we will define a strategy that works without this additional information
and guarantees a payoff in the N-stage game that differs from the limiting value by at
most X This paper may be regarded as a first version since the model of Mertens and

Zamir is not yet covered in full generality: We only consider independent player types.



1. The Model

A finitely repeated two—person zero—sum game with incomplete information on both
sides is based on the following data:

~ finite sets T and J
(sets of actions for player 1 and 2)

— finite sets R and S
(sets of types for players 1 and 2 resp. states of nature)

~ for every (1,5) €R = S an I x J-matrix AT
(payoff matrices)

— probability distributions p, € A(R) and q, € A(S)

(resp. a distribution on R x S which is the product of its marginals)

— a natural number N
(number of steps)

The game runs as follows:

1) At stage zero r and s are selected according to Pg Tesp. q,. Both players know both

distributions but player 1 is only informed about the choice of r € R and player 2
about the choice of 5 € S.

2) At each stage t =1,...,N both players independently pick out parameters it €I resp.

thJ.

3) Afterwards they learn their opponent’s choice of action but not the actual value
Al 's(it,jt) of the payoff matrix.

4) Both players have perfect recall, i.e. they can use all information they receive in the
course of the game up to stage t for their decision at stage t + 1.



N
5) Player 1 receives from player 2 the amount I%T z Ar's(it dy)-
=1

Let H :=I  J. In the following the identities h =(i,j), b, =(i, j) and h* =(h,,...,h,) are

always tacitly assumed. According to the description above player 1 can make his
choice of action at stage t dependent on his type r and the sequence pi = (hl, by _1)

of parameters that have occurred up to stage t —1. Thus a strategy of player 1 consists

of a sequence & =(al,...,aN) of mappings

o, - R« : G A(T) resp. stochastic kernels

o I Rth-q:}I.

Analogously a strategy of player 2 is given by a sequence 7 =(1'1,...,1'N) of mappings
T, 8x ; L AT) resp. stochastic kernels
7 | SxBE o

The sets of strategies are denoted by

A n Eta.nd.S"N n q.
=1

Using the strategies o =(0,...,0y) and 7=(7,...,my) the players generate the probabili-

po )

ty distribution P} OonRxSxHN:
b

N
P (rh™) =py(r) gyfs) I o ah ) (e )



The payoff function is naturally defined as the expectation of the average payoffs with
respect to this distribution

N P
N 1 1,8 09
0,T) =a o,7)= X A7(h)dP

(r,a,l.'at denoting the projection on the corresponding component of the product space).

Hence we have a non—cooperative two—person zero—sum game in the formal form

IN(pO,qO) =N, FN,GI;O,QO)-

The strategy sets are compact and the payoff function is linear in every component of
o and 7. Thus the value vN(po,qO) exists.



2. An Example

Define  A(p,q)= T p(r) q(s) A™®, pe AR), g € A(S)

r,s

and let u(p,q) be the value of the matrix game A(p,q). Mertens and Zamir [ 71/72]
have shown that v(p,q) = lim vy(p,q) exists and that it is the unique simultaneous
Na o

solution of the functional equations

f=cav min {u,f}

f=vex max {u,f}
I1

cav means concavification w.r.t. the first variable p and vex means convexification
I II

w.r.t. the second variable q.

In the case of lack of information on one side (as usually the side of player 2),i.e. S =1
the functional equations reduce to v =cav u. In this case optimal strategies are known
for the infinitely repeated game, and for every ¢ > 0 there exists a number of stages N
such that the strategy is e—optimal in the N-stage game. Player 1's strategy involves
the concept of type—dependent lotteries which will also be employed in the strategy we
are going to comstruct. (see e.g. Sorin [80]). Player 2’s strategy is an application of
Blackwell’s approaching strategy for games with vector payoffs (Blackwell [ 56) , see e.g.
Sorin [ 80] ). A closer look at this strategy will be useful.

v =cav u is initially defined on A(R) but it may be extended linear homogeneously to
IRE preserving concavity. There exists a supporting hyperplane of v at Py i.e. thereisa

vector 7, € RR such that
Py "—'V(Po)

Pry2v(p) VpeEAR).



Ty 1 1
Define rpk*)=p T A(ht)’ 1¢<TKN
t=1

with A(ht)=(A1(ht),---,AR(ht))

and a function

dist:  BE— Ch(n)) ={ne®R: n< n)
X —arg min | x=n|
7 ECh(ﬂo)

Player 2's strategy works like this:

If 'yT(hT) # Ch(7,) he computes the probability p; € AR} which is parallel to
'yT(hT) ~ dist ('yT(hT)) and chooses an optimal strategy y € A(J) of the matrix game
A(pp)-

If 'yT(hT) € Ch(no) he may do anything.
Example 1: (cf. Zamir [ 74] )

40 2
=i o)

o [0 4 -2
40 -2 A"=

0 4 2

A(p)=[4p 4(1-p) 4?-2]
4p 4(1-p) 2+4p

There are always pure equilibrium strategies in the NR—game:

Player 1 chooses  row 2if p <

[ T N et

rowlifp?>
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Player 2 chooses  column 1 if p <
column3if%5 PS%

oolumn2ifp2%

Thus the value u(p) of the NR—game A(p) is given by

ip ps%
1 1
u(p)': 1 3
4(1_1)): PZ%
and we find
1
v(p)= 1, teped
41 -p) , p23
A
wip)
4 o e e S e we em e
wip)
A 1 3 >
[ s y 1 P

figure 1



Let us now construct an approaching strategy for player 2 in I(po) with Py =(%,%). First
of all 7 must be determined. The derivative of v (as a function of one variable) at p =%

is zero, which implies that the gradient of the extended linear homogeneous function
v on IR_?_ at p =(%,%) contains two equal components. Since v(po) =1 we deduce that

o =(1,1). The approaching strategy is represented by the figure below.

colirmi 1 / column 3

Cht /
Vl.,) // \ coluwmn 2

The complement of Ch(no) is divided into three sectors labeled by the columns player 2
has to select at stage T + 1if T is contained in the corresponding sector. If Y € sec-
tor 1 the (T + 1)-stage payoff added to the average is in sector 2 and vice versa, ¥ €

sector 3 gives a (T + 1)-stage payoff on the line segment [ (—2,2), (2, —2)]. It may be
plausible from the figure above that this strategy always draws the vector payoff Ty

towards Ch(qo) as the game proceeds. Remark that the approaching strategy works in

the finitely and in the infinitely repeated game. We shall now propose an alternative
procedure for which the finite horizon is crucial.



Using the approaching strategy player 2 enforces a certain vector payoff given by a
supporting hyperplane of the value function. Of course, the vector payoffs he can obtain
do not depend on the actual probability Py- He could choose any supporting hyperplane

of v but the one at p, gives him the best total payoff given P, among all hyperplanes

of v. Nevertheless, one can think of a situation that may induce player 2 to change his
aim. Suppose by some bad luck the current vector payoff T has moved far away from

the vector payoff o he was striving for (which may happen more easily if the equilibri-

um strategies of the NR—game are mixed unlike in our example). Player 2 might find
that no longer favourable to head for Ty at the present stage but that in order to get

close to 7, after N stages he should choose a different hyperplane for remaining N - T
steps. This computation could look like this:

If he starts a new game at time T + 1 consisting of the remaining N —T stages in which
he is able to achieve the vector payoff

_ N T
$p=N=T " "N-T T
he will in the end get the vector payoff
T N-T ., _
N1t N d1=T-

Of course, 6T itself will generally not be attainable, i.e. 6T will not be a supporting

hyperplane of v. But in order to keep his potential loss small he could choose the hyper-
plane with minimal euclidian distance from 6T‘

Let us see how this strategy works in our example. In the first place one must deter-
mine the set of supporting hyperplanes V(p) of v at each point p:
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V(p) = ﬂ , 1<P<y
(6] I
[é] ) %<p<1

In addition we define

s Vo

At first, this may seem a bit arbitrary, but it coincides with the general definition of V
in section 3 and it will turn out to be useful for the definition of the strategy. The next

figure shows the union V= U V(p) and it represents the alternative strategy:
P

/
/
/

3 65‘0\

- /
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If 6 is Jocated in the shaded area, player 2 has gained an advantage with regard to his
original objective: In order to get o in the end he must in the last N —T stages only

achieve an average vector payoff which is greater than one he can obtain in both com-
ponents. He may be allowed to waste this gain by playing anything as in the
approaching strategy. The remainder of IR2 is divided into five sectors each marked by
the columns player 2 can choose.

Let e.g. 6.1 be situated in sector 23. The element of V with minimal euclidian distance

from 6T is contained in the line segment Co{ [2],[1]} This segment is associated to

the probability p =%. So he must choose an optimal strategy of A(%), i.e. he must play

column 2 or 3. A proof that this kind of strategy works as well will be postponed till the
main theorem. o

An advantage of the alternative strategy compared with Blackwell’s approaching strate-
gy will become recognizable if we think of the general case of lack of information on
both sides. Player 2 then does not only have to keep an eye on player 1’s vector payoff
but he also has to administrate his own private information since he must reckon with
player 1 being able to calculate posteriors on S.

Suppose now that the function v(p) we studied in the example is derived from a value
function v(p,q) for some fixed a9, Using Blackwell’s strategy it may happen that at

stage two player 2 has to act as if p =0 or p =1; i.e. he has to act as if he were in a
game with lack of information on the side of player 1 only. Of course these two possibi-
lities (or others in between) generally require a completely different use of player 2's
private information. In this way the approximately negligible first stage payoff already
widely determines the release of player 2’s information, a feature that enables player 1
to cheat his opponent. On the other hand the modification of 6T and thus of the accom-

panying probability proceeds slowly throughout the game and gives no opportunity to
cheating, as will be shown in the proof of the main theorem.
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3. Technical Preliminaries

The results of Mertens and Zamir [ 71/72] will not be used here, that means we won’t

refer to the fact that 1im vy exists and that it is given by the functional equations
N-m

f =cz1w min {u,f}

f =vex max {u,f}

We will presume that there is a unique simultaneous solution to both functional equa-
tions called v and that it is continuous if u is continuous, a fact that can be shown
purely analytically not making use of the game — theoretical meaning of these equations
{Mertens and Zamir [ 77] ).

Lemma 3.1:

The function u is continuous.

Proof:
Let (xl,yl) and (xz,y2) be pairs of equilibrium strategies in the matrix games
A(pl,a!) resp. Ap2.a?).
11 2 2
W.l.o.g. assume that u(p~,q") > u(p“,q").
u(pl,ql) ‘_u(Pz:Q2)

1 2 2,,2 2
= X x% 3’} A(pl,q )i j"_E_ X ¥ A(p“a )ij
L) R PR ’

[

1.2 1.1 2 2
izj Xy Yj (A(p',a )i,j —A(p“,q )i,j)

[ Fa

max ( 3 pl(r) ql(s) A3 — E p%(r) ¢°(5) ATS(L))
i,j 1,8 I,s

1 2,1 2
lp" —p°|lq” —°|2M

I~
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with M= max |A"S(i,j)]
i,j,r8

For any mapping f : A(R) x A(S) — R denote by fq the function fq : AR) — R,
f q(p) =f(p,q) and with slightly ambiguous notation fp : A8) — R, fp(q) =1(p,q).

Proposition 3.2:

Let (p,q) € A(R) x A(S) with v(p,q) < u(p,q). Then there exist qle AS), Atz 0,
{=1,...,S such that

1) za

L

=1,}£3A‘q‘=q

(2) +(p,q) =§ ¥ vip,d)

@) vipad)=upg) V=18

(4) vy < U on Int Co{q!: {=1,...,8}

Proof:
Due to the second functional equation and the continuity of u v satisfies

S
v(p,q) =min { 22 A max {u,v} (p,a)) : ?Al q‘=q, >£3 =158 0}
=1

Let {q‘: {=1,...,5} be any set of probabilities achieving the minimum:
L . - _wal _{
>£37\ v(p.3) 2v(pa) —?2 max {u,v} (p,q)
P
= fi‘ v(p,@) =v(p,q)and

vipd) 2upd)
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Assume wJl.o.g. that At > 0 V £ ie. q is located in the relative interior of
C =Co{c‘1£: {=1,..,S}. It follows that Vo is affine on C, i.e. any set of probabilities

contained in C satisfying (1) for suitable st also satisfies (2). Now choose nt C and

A > 0 fulfilling (1) and (2) as well as the next two properties:

v(p,ql) > u(p,9)

and the volume of C -—-—Co{qt : £=1,...,8} is minimal among all polyhedra satisfying ihe

three properties above. Obviously (3) and (4) are valid as well.
O

Define
W(q) ={g€R":p-g2v(pa) VDEAR))
V(a) ={ge€W(q):3Ip€eAR):p- g=v(p,q)}
V(p,a) ={g€V(a): P+ g=v(p.2)}

W(q) is called the approachable set (of q).

In the case of lack of information on one side the argument q is omitted. In figure 3 of
example 1

W is the shaded area
V is the boundary of W
V(p)isa  halfline for p=0,1
line segment for p =%,g-

singleton for all other p’s
The next Lemma follows immediately from the definitions of V and W:

Lemma 3.3: Let g € V(p,q). The p represents a supporting hyperplane of the convex set
W(q) at point g.
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Proposition 3.4:

LetpeAR); qqleAs); A

52 0 ori=1,..,5

such that (1),(2) and (4) of proposition 3.2 satisfied. It follows that

Proof:

V(p,q) =§ A V(p,qt)

Let gte V(p,qt). Then

p- (g Agh =§ Mp gt =§ A v(p,ah) =v(p.0)

P (2 Xeh =3 Mo gA‘ vo,d) 2 v(pha) Y eAR)

= 123 ¥ g£ € V(p,q)

Suppose there exists g € V(p,q) \ % ,\t V(p,ql).

Case 1: p € Int A(R),ie.p(r) >0 Vr€ER
In this case there are a vector x € |RR and a real number ¢ > 0 such that

Er X< g x—¢ Vg’EKE+§A£V(P,q£)
o g R
withK_={yeR™: l¥| < €}

(K et }E.Al V(p,qt) is a closed and convex set since it is the sum of closed

convex sets).
{ n-11¢ 1
Letqn-Tq +54, neEN

Since qﬁ is situated in the interior of Co{qf1 : £=1,...,8} we deduce that

= L.,
vp <upon C,=Co {a,: ¢=1,..,8} and

v(p,q) =1£3 A V(P:Qfl) VneN
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Now we don’t regard Vg function on A(R) but we consider the linear
homogeneous extension on IRE :

Choose p_ €Co {p,p + x} such that

R
pn#p, anIR+ VneN

lim P, =P

n-so

L, ,_
vpn < upn on Co{q11 : £=1,...,5}

1t follows that

{

voy @) =3 ¥ vl qy)  Vael

According to corollary 24.5.1 of Rockafellar [ 70] there exists n, € N such that
{ { _

V(p.g) CV(pa)+ K,  Vn>n, =18
Theorem 23.4 of Rockafellar [ 70] says that the directional derivative g; vq(p)
is given by

5; v, (p) =inf{g’ : x - g€ V(p.q)}
Consequently

%qu(p) =}23‘A£%J—:v l(p)—e Vn>n,
9

ngether with @ this implies that for some n; > 1,
v(p, .p) <Z A V(p,qﬁ )
1 { 1
which yields a contradiction to .

Case 2: p(r) =0 for at least one r € R follows from case 1 and theorem 25.6 of

Rockafellar [ 70] .
O
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4, Definition of player 2’s strategy

In this section a strategy for player 2 is constructed that guarantees a payoff close to
v(po,qo) in a sufficiently long game. Several functions resp. random variables are nee-

ded to describe player 2’s conduct.

gy denotes the conditional probability on S given the history up to stage T for the

strategy T we are going to define. (Of course, 97 is independent of player 1’s strategy.)

For every q € A(S) define

N
Ap@): BN -

BN (2 als) A(b)yen

The next definitions involve the sequence 7. which has to be defined together with the

strategy itself stage after stage:

_ N4l
by =m¥ir (I —77)

5 N+1

= (trg1 =7 1)
T+%1~‘r’_’1‘+1 T+1 T+%
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dist:  RY AS) —W(q)

6,9 + arg min |6-—g|

geEW(q)
Abbreviate G, =dist (6,q), G =dist (§ 1, qm,q)
T TT T+% T+% T+1

If G £ W(qrp), define

Gpn— 06
, T~ °T
Pp= TGl = o AN

(Observe that the components of G — &, are all positive.)

Since G, minimizes the euclidean distance between 4, and W(ag) and p4 is parallel
to GT —6T we have GT € V(p,_’[\,qT).

The sequence 7. is defined together with the strategy 7 = ('rl,...,'rN). It starts with

o =4 o Suppose that everything is defined up to stage T:

Gy € W(qT), i.e. if p} is undefined player 2 may choose any distribution on J inde-

pendent of s.

If G € W(qq) we distinguish two cases:

Case 1: v(pi\,qT) 2 u(pq,a7)

Choose and equilibrium strategy y for the minimizing player in the matrix
game A(pq,qy) and define

TT-I- l(s:hT;j) =Y(J)

141 =0
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Case 2 v(p’ihqfl‘) 2 u(p’i‘:qr_[‘)
There exist qle A(s), Alz 0 satisfying (1) — (4) of proposition 3.2 Let yl be
an equilibrium strategy for the minimizing player in the matrix game

A(pr’r,qlr

T (8,0 155) =5 A MOWN
For every T-stage history hT there are

g € V(ppap, (). i€d
such that

Gp =Xz ) ¢

(see Lemma 4.4)
Define

ﬂT+l(j) =0 + 7T+1(j) T + E‘§_}_—}T— (EJ _GT)'
2

Formally the random variables and the strategy are not yet well defined since the defi-
nition sometimes permits a choice between several possibilities. One could in these cases
always select the lexicographic minimal one among all admissible choices.

Interpretation of the random variables Y, %, 6T and pi:
i\ reflects an asymmetry in our considerations. Constructing a strategy that guaran-

tees player 2 a certain payoff one must always take into account the possibility that
player 1 is able to calculate the posteriors q. on S after each stage. On the other hand

computing posteriors cannot be part of player 2’s strategy, he is forced to control player
1’5 payoff for every possible type r € R. L\ asymptotically describes the vector payoff

that occurred in the game up to stage T from player 2’s point of view. For technical
reasons to be discussed later we consider a horizon that is one stage longer than the
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game itself. The updating of 1y (and 5T) is done in half steps: 9y describes the vector

payoff up to stage T whereas v already includes the posteriors of the following
T+§

stage.

N is the vector payoff player 2 tries to achieve in the course of the game. The first one,

T 18 chosen arbitrarily from the set of supporting hyperplanes of v q at py. During the
0

game 7y, has to be modified from stage to stage according to player 2’s information

release. The difference

_ N+1-T ,
Tpg1 =T —7T+§ Yo+ NI L (g ~Grp)

depends only on the development of Q- The first part of the difference, (v 1 —'yT),

T+§'
results from the altered evaluation of the payoffs up to stage T. To understand the
second part the meaning of JT must be explained.

. N+1
The definition 6T =Nﬁ:T (nT —7T)
can be transformed to 77 =77 + EE%I 6,1..

6] Ty Tepresents player 2’s final objective 5T can be described as his temporary goal. If
after T stages the vector payoff Y Occurs and if player 2 starts a new game from stage
T + 1 on {with probability q on his types) achieving the vector payoff 6T, which is
weighted by %1—1— since we consider an additional stage, then he will get the vector

payoff I in the end.

Generally 4. is no realistic objective because it is not contained in the approachable
set. It appears sensible to use G, =dist (JT, qT) instead. The difference G, —6T des-
cribes the loss (if 6 ¢ W(qrp)) resp. gain (if 6 € W(ay)) player 2 has attained up to
stage T w.r.t. his final objective % The total payoff produced by the strategy will be
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estimated by this difference. Therefore it is desirable to have 4 N defined which can only

be done by considering N + 1 stages.

P serves as a substitute for the true posterior probability py, player 2 does not know.
K 6T € V(qT) it can be chosen arbitrarily from the set of supporting hyperplanes at 6T,
if 6p F V(qT) it is determined uniquely as the probability vector that is parallel to
Gp —6T and satisfies GT € V(p.i\,qT) as well.

Combining the equations

& () =Nf—'{1_T (1 () - Ty (J))
T+§

. : N 1
mpp D =rp+7_ (-1t & (gJ—GT)
T+§

it follows that

g6 ()=Gp—by
T+§

gj was deﬁned.to be an element of V(p,i,, qp +1(j)). Since p is parallel to G, —fsT we
deduce that g) — 6 1 (i) defines a supporting hyperplane of W(ap +1( j)) at g resp.
T+§
that g =dist (5_ (i), ap,, () =C_ ).
T+5 T T+

. . cps . N+1 .
The second difference in the definition of ny. +1( j) now reads NI LT (GT+%(J) —Gn),
it regards the development of player 2s "realistic objective" according to his informa-
tion release. np. +1 is designed in such a way that merely the use of his private informa-

tion does not change his temporary balance, i.e.

Lemma 4.1: G -8 =Gm —§
T+ T+ T T
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Lemma 4.2: E(nplh’ )=y, VT=1,.N,0€Z
T as defined above
: Po%
(E denotes the expectation operator w.r.t. P(a 1_)).
b}
Lemma 4.3: Let p, be the conditional probability on R given HI.
Podg

Pr and Ty are uncorrelated w.r.t. P( ) VT=1,.,N,oceX

o,T

Proof:
It is sufficient to show that

E(PT : ﬂT) =E(PT__1 ’ ’7T_1)

E(pp - 77)

= E(E(pp - nplaT 7))

- B(E(py 2T - E(ag
= E(ppy - 7py)

We still have to show that the definition of TT+1 in case 2 is admissible. This follows

from proposition 3.4 if conditions (1), {2) and (4) are satisfied. (1) is valid due to the
martingale property of the posterior probabilities q-, (2) and (4) are consequences of

Lemma 4.4: ap, (D €Cofel: £=1,..8} Vjed.



—923—

Proof: (The argument nY is always omitted)
ap4,(0) ()

QT(S) "'T+1(S5j)
E, qp(s’) TT.I_I(S’ij)

{
lq ,s; L.
T 2% o%s) ¥)
R

: %) o)

2 X ¥4)

Thus g, +1 is a convex combination of the qt.

Lemma 4.5: The conditional distributions on R resp. S are independent given any
T
h*, T=0,...,N.



Y

5. Main Theorem:

Let ¢ be an arbitrary strategy for player 1 and 7 the strategy for player 2
defined above.

olo,7) < v(pgag) + L 2M

(M= max JAM(ij)])

L], I,S
Proof:
At first the difference ofo,7) —v(p;,q,) must be represented using the diffe-
rence Gy ——EN.
: oy st Podp N
E denotes the expectation w.r.t. the marginal distribution of P (0,7) on H".
of2,7) —v(P(: )
1 N
= E(py N TEI Ag) =Py Ty (Lemma 4.5)
= E(py Eﬁ-l- ) —Elpy 7y) (Lemma 4.2, 4.3)

= E(PI\;('}'I'?‘S’l ™ "ﬂN)

= & Epy(ny —6y)
= ;1 (E(py(my —Gy)) + E(pi(Gy —1y)))
+ & B(IGy —8x])

1
+ i (B 8y D)?

<

AR AR =

<
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Next we show by induction that

E((Gp —bq)) ¢ (M%T)Q R M

T =0: satisfied by definition
T—T+1:

E((Gpy; —br41))
< E ((GT+%—6T+1)2)

N+1

= E(G TN T (py1 ~174)°)

N+1 1 2
= B(G_ | —For (141 —7, D+ RITAT41))
T+% T+1 T+% T+1

= E((G _Eﬁlﬂfl 6 1+ReT AT+1)2)

1
T+§ T+§
_ N+1-T 1 2
shids - SCMELNPES - JPEC,

= B(( M5 (G —6p) + op (Apyy —GT+1))2)
2

- P m(or -6

+ -%;‘—I_T‘-'—fg B(Gp~b7) (Apy1 =G, +%))
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The third term will be estimated separately. In order to show that it is not positive i is
sufficient to show that

E(P"’p (AT+1 -G 1)) <0 resp.

T+§
(If p, is undefined we have 6. € W(qr) resp. G =6 and there is nothing to prove.)

For notational convenience we consider conditional expectations given hT, omitting the
argument hT during the computation. Let y resp. yl,At be as in the definition of the
strategy and let

x(i) = Zpp (r) aT+1(r,hT;i).
I
Case 1: v(ppya) 2 u(Ptag)

, T
E(p} Apyql27)

?X(i) ?Y(J) A(p.:’[.,qT+1) (i,j)

izj x(i) y(3) Alppagp) (1)

< u(pgay)
S v(p'i‘:q']'_‘)

=V(Pfi‘qu+ 1)
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Case 2: v(pquay) < w(Pp.ar)
T
E(pg Apyqlb”)

= )i:xﬁ) ? }SJQT(S) TT+1(3ij) A(p'i‘: qT+1(j)) (i.3)

¢
= iEx(i) 3‘3 ;‘JqT(s) ?%;8} y) A(pgs ap . 1(9)) (1)

= 5x() 3 fA‘y‘(j) A4, agy () (o)

. Ll s T
= 2x(i) 2 EXY0) 940 44,6 AR(j)

=2x(i) T B pp() TA5YD ofls) ATG)
i j 1,8 {
(see proof of Lemma 4.4)

= A 2 x() ¥9) £ paln) ols) AT
1,]) I,s

=z T x(i) y4i) A(pt, a9 (0.
1,)
< 211)\5 u(pf’[\, ql)

=V(Pvi\: qT)

=E(v(pnapyp) D)
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We continue our proof by induction:

E((Grpyy —bp41)?)

I~

N+1-T}2 2 1 2
[ BGr =6 + o B =€, 1))

N+1—T]2 T 2. 1 2
< [ rM? + RM
N=T' ] (N41-1)? (N-T)?

_ T4l g2

(N—T)

Consequently E((Gy —& N)2) < NRM? and the assertion follows.

Example 2: (cf. Mertens and Zamir [ 71/72})
All_ 0 00 O A12— 14 14
11114 10 00 0
21 _[4 14 1 22_[(0 0 0 0
A-[0000] A“[1—1—11]

=|. P P P Y I
A(I"”‘l)'"[l—p—q p+qg-1 pt+q1 1



The value of the NR-game u(p,q) is given by figure 4

A

o

1
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N

1-p~q p-0

Pey- a-p

and v(p,q) is represented in figure 5

/

G

el

h

—>

I !

+{4-25\-00

q (2 ~-4)

peg-1 I_%IT
<

; !

'U\L

p= 29(4-q)

fig. 5

¥
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The thick lines show where v =u and the arrows denote the directions of affinity of v.
(According to Mertens and Zamir). Explicit definition of v:

Oqui:
p+q —1+ (1-2q) vVI2p, P <2q(1—q)
v(pa) =y a(2q 1) , 2q(1-q) < p < 1-2q(1-q)
q-p + (1—2q) v2p P 21— 2q(1—q)
1¢a¢3
p+aq—1+(1-2) VT, p<i
v(p:q) =1 - % ) % < P S%

q—-p+(1-29) 21 , p23

q> %—: v is symmetric w.r.t. q =Ql‘ (and p =%)'

In order 10 determine the approachable sets, we must compute the derivative of v w.r.t.
the first variable.

0¢a¢y:
1 -2 P < 29(1-q)
VIZQP
a%v(p,q)= . 0 »  2q9(1—q) < p < 1-2q(1—q)
L-~1+ﬁ1, p > 1- 2q(1-q)
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iSqS%
’1_41-—2 p<%
Ve
a%V(p,q)= ) 0 . 3« P <3
—1+1—_2—q—, p>g
l vip31

If A is differentiable at p, V(p,q) is a singleton, V(p,q) ={(51’52)} and g =(gl,g2) is

determined by the equations:
d
81— 89 =@ v(p,q)

pg; +(1—p) gy =v(p.9)

OSqﬂi
[ g=(1-2q) —P—, ¢4 + (1—2q) —2 |, 2q(1—
[q( q) pq ( Q)m] p < 2q(1- g)
V(p,q) = [q(Zq—l), q(2q— 1)] ,2q(1—q) < p< 1-2q(1-q)
+ (1= 2q) 21— g~ (1~-2q) =2, 1-2q(1—
k[—q ( q)‘%__I a— ( Q)m] p > 1-2q(1l—gq)
i$q5§
[ [q=(1-2q) —2—, g2 + (1—2q) =22 | , 3
[q(q)ﬂ:%q ( q)ﬁ:ﬁ] P <g
V(p.q) =¢ P%,—é} ,%< p<§
1
k[—q + (1-20) 2221 o (-2 _72%] , p>o
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The next figure represents the approachable sets for q =0, %—, ;1—, %,

I 8

L

|
L i A L A ]

1

E.

|

i

"

[

~

—

fig. 6
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6. The Recursive Game

The random variable pr, describes the amount of information player 2 can deduce from
player 1's behaviour without running the risk of being cheated. He uses p, in the com-

putation of his strategy because the rules of the game don’t enable him to calculate the
actual posterior probabilities on player 1’s types. We shall now see how player 2’s stra-
tegy works if by some change of the rules of the game he is able to employ Pr instead of

¥

PT-

The description of the original model in section 1 applies except for point 3). In addi-
tion to the actions they also learn the posteriors on the opponent’s types. A strategy for
player 1 is now given by a sequence of stochastic kernels o =(0,...,0y)

op | RxHI 1w A5) T a1,

{(analogously for player 2).

In the definition of player 2’s strategy pp is now replaced by Ps thus making his acti-
ons dependent on the posterior probability of the foregoing stage only. Consequently P
no longer determines G, but G is selected out of V(pT,qT).

The random variables 7, 6‘1‘ and T become superfluous.

Theorem 6.1: Let o be an arbitrary strategy for player 1 and 7 the strategy for
player 2 defined above.

ofo,7) ¢ V(pgiag) + -J—I;—- RO )



Proof:
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of0,7)

, N
=By Z AT

N N

1
=N E(PN( z (AT -G 1) + G 1))
T=1 T—i T=1 T'—Q—

LE( B po )+ T )
N (T=1 T Trl v Tl

N N

1
¢ 3E( T (pp-ppy)(Ap—G )+ Z pp, G

(The inequality is due to the change of the first term, see proof of the main
theorem. As for the second term note that P and G 1 are conditionally

T
independent given hT—I.)
= ﬁE( 1; (pp—Pp_y)AT + Ngl py Gr)
T=1 T=)
< %@ B E( g |pp(t) —ppy(01) + ﬁE(Ngl v(Ppa))
r T=1 T=)

N-1
E( TEO v(ppsar))

N4
v(pp9) + E( T ¥(py_a)

[Fa

(due to I-concavity of v)

N-1
= v(Pggg) + B( 2 v(ppy:97))
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(see definition of player 2's strategy and Lemma 4.4: player 2 only uses
his information at stage T if vp is locally affine at Qp_p» Lemma
T3

4.4. shows that the T—stage posteriors are located within this region).

N2
=2 V(po,qo) + E( TEI V(PT=qT))

=N V(DO’QO)
Using the martingale properties of the sequence D One can show that

N

E(T§1 IPT(I) ‘”PT_I(I)I) VN vPolr)Ui-pylr))

(cf. Mertens and Zamir [ 71/72] )

and the result follows.

Remark: If player 1 uses his private information in the same way as placer 2 does
(especially if he employs the analog strategy), the only inequality in the esti-
mation of the second term becomes an equality, i.e.

1 N4
N E( TEO V(PT:QT) "_"V(po:%)-

The proof shows that the players can only achieve a payoff exceeding the
limiting value v(po,qo) if they make use of their private information.
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