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Abstract

We consider a dynamic discrete time Bertrand-Edgeworth game with infinite horizon
and discounting. The firms face increasing marginal costs and positive fixed costs.
Besides setting prices they may enter or leave the market in each period. Moreover we
assume that the number of potential firms is large enough that not all the firms can
be active at the same time. Since with free entry there is no stationary equilibrium
in pure strategies (even) in the supergame, we assume that the firms have to pay an
entry cost whenever they enter or reenter the market. This makes the game a time—
dependent supergame rather than a purely repeated game. Unless the entry cost or
the discount factor is too low, there will be subgame perfect equilibria in this dynamic
game. Our main results yield complete characterizations of the set of all stationary
symmetric pure strategy equilibrium outcomes, consisting of a stationary equilibrium

price and a number of active firms.

It turns out that the upper bound for equilibrium prices, i.e. the Pareto efficient
outcomes with respect to the firms, depends on the size of the entry cost and the
number of incumbent firms. Moreover there is an upper and lower bound for the
number of firms that can be active in equilibrium. The upper (lower) bound decreases
(increases) as the discount factor decreases.

Keywords:

Bertrand Edgeworth competition, increasing marginal costs, entry costs, infinite time—
dependent supergames with discounting, simple penal codes, simple strategy profiles,
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1 Introduction

This paper is about contestable markets with an infinite discrete time horizon. We
combine the idea of tacit collusion with the conjecture that high profits may attract
further entrants into the market. We assume that in each period identical firms, facing
increasing marginal costs and positive fixed costs, produce a homogenous commodity
and engage in price competition for perfectly informed clients. With only one period
this game is known as the Bertrand-Edgeworth game with U-shaped average cost

curves. It is well known that this game has no Nash-equilibrium in pure strategies.

The nonexistence problem in that game has attracted much attention in the last
decades. Besides the early work of EDGEWORTH [Edg25], see above all the pioneering
papers by BECKMANN [Bec65] and LEVITHAN & SHUBIK [LS72] on capacity con-
strained firms. More recently solutions to this problem have been offered by DAs-
GUPTA & MASKIN [DM86a,DM86b], MASKIN [Mas86] and DixoN [Dix84], who prove
existence of mixed strategy equilibria under various conditions. Especially DIXON con-
siders firms having increasing marginal costs. ALLEN & HELLwWIG [AH86b,AH86a]
characterize mixed strategy equilibria and show that the equilibrium prices converge
in distribution to the competitive price, if the market becomes large. These models,

however, all are one-shot games.

BROCK and SCHEINKMAN [BS85] and more recently LAMBSON [Lam87] investigate
repeated price setting games with constant marginal costs and capacity constraints.
In REQUATE (1990b) [Req90b] it has been demonstrated that the repeated Bertrand-
Edgeworth game with U-shaped average cost curves has stationary equilibria in pure
strategies, if the oligopoly size is not too large, and the discount factor is not too low.
There, we characterized all stationary equilibrium outcomes that can be supported by
optimal penal codes in pure strategies. Typically for supergames of this kind, also the
monopoly price can be an equilibrium outcome if the number of firms, which has been
assumed to be exogenous in that paper, is not too high, and the discount factor not
too low.

However, tacit collusion may be called into question since potential new firms may be
ready to enter the market as long as positive profits can be earned, unless there are any
entry barriers. Indeed, the concept of monopolistic competition is based on the idea
‘that the number of firms, operating in the market, can be endogenized by a zero-profit
condition. That is, apart from integer problems, firms enter the market until all the
firms make zero profits (cf. the Salop-Stiglitz model [SS77]). However, even if we allow
for free entry (and exit) we do not get Nash equilibria in pure strategies in the one-shot

game (see section 2). Unfortunately, in contrast to the pure oligopoly game [Req90bi,



the consideration of the purely repeated version of this game (with free entry) is no
remedy for nonexistence of pure strategy equilibria. The reason is simple: collusive
outcomes are jeopardized by hit—and-run behavior of market intruders, this means,
new firms could enter the market over night, undercut the incumbent firms slightly,
and leave the market again in the next period before the incumbent firms are able to
react. This kind of behavior could sometimes be observed at certain airlines in the
U.S.. The assumption of hit-and-run behavior presupposes, however, that firms have
no or only very low investment costs in order to set up a business. This is certainly

not typical for most industries.

To incorporate the idea of contestability we assume in this paper that the number of
potential firms is so large that not all the firms can together operate profitably in the
market, even if they all charge the monopoly price. On the other hand, we assume
that the firms have certain entry or investment costs to be paid if they enter or reenter
the market. These entry costs will be the key for existence of stationary equilibria
in pure strategies in the dynamic game. It will turn out that the higher the entry
cost the higher is the maximal collusive equilibrium price. The entry cost can thus be
considered as an indicator for the contestability of the market. Unless they are to low,
these costs make the game a time-dependent (here: two—period—-dependent) supergame
{(in J. FRIEDMAN’S terminology) rather than a purely repeated game. For, the payoff’
to any firm in the current period depends not only on the price constellation of that
period but also on the firm’s own decision (being active or not) in the previous one.

By the contestability assumption, in a stationary equilibrium, there must be always
some inactive firms. Hence, a stationary equilibrium will be defined by a pair, consisting
of a number of active firms N and a price p, charged by the active firms in each period.
The equilibrium conditions will yields us upper and lower bounds for possible stationary
equilibrium prices and also bounds for possible numbers of active firms. Unfortunately,
these bounds can only be given implicitly, since the equilibrium conditions can in

general not be solved for p and N.

To consider potential but inactive firms as real players of the game, raises some con-
ceptual problems. For, if we allow for the whole strategy space, also inactive firms
could be activated in order to punish a possible deviator. Doing this, some equilib-
rium outcomes can be supported by subgame perfect strategies, which would not be
achieved, if inactive firms would not engage in punishment. Therefore, we further de-
fine and characterize a set of equilibrium outcomes which do not require inactive firms

to become active in order to punish other players after defection.

At the end of section 4.2, we will also consider the case where the entry costs are so
high that hit-and-run will never be profitable, regardless of what price the incumbent
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firms would charge.

The paper is organized as follows. In section 2 we introduce the basic assumptions
and consider briefly the one-shot game. Section 3 offers the formal framework for
analysing two-period-dependent supergames. We define simple strategy profiles for
these games and recall a proposition from [Req90a] which generalizes ABREU’S main
proposition from [Abr88] to this class of games. We recommend to skip this section at
first reading and to continue with Section 4, where we investigate the dynamic game
and offer the main results which characterize all stationary subgame perfect equilibrium
outcomes under different conditions. Section 5 contains an example. For quadratic cost
functions we are able to give explicit upper and lower bounds for the equilibrium prices
as a function of N and the discount factor §, and also bounds for possible equilibrium
numbers of firms. We close with some concluding remarks in section 6. The proofs of

the main results are given in the appendix.

2 The Static Game

We consider a market for a homogeneous commodity supplied by » > 1 identical firms
"and demanded by a continuum of identical consumers represented by the closed interval
[0,1]. The technology of a typical firm is given by its (total) cost function

c(q) = F + v(q) (2.1)

with v(0) = 0,v" > 0,v” > 0, where ¢ > 0 denotes the quantity produced, and F > 0
is the fixed cost, v > 0 is the variable cost function, which exhibits increasing marginal

cost.

The preferences of a typical consumer are given by her demand function

1 forp<L
d{p) = - 2.2
(p) { 0 otherwise (22)

where p > 0 denotes the price to be paid for the commodity, and L > 0 the consumer’s

reservalion price.

The market game is played as follows: each firm i announces a price p; at which it is
willing to sell a certain quantity. In this case its profit is given by

pigi — ¢(qi) = pigi —v(qi) — F, (2.3)

where ¢; is the quantity sold by firm ¢ (which will be determined precisely below).
Clearly, it will not be profitable to charge a price above the reservation price L, so that
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we need only consider prices in the closed interval [0, L) C IR. If a firm’s price is too
high, it may happen that its demand is zero and it will produce nothing. In this case
its profit equals —F. Hence, each firm has the option to be not active (n.a.), which
yields it a zero profit. A typical firm’s strategy space can thus be written as

Si:=[0,L]U{na.},

where s; = p; € [0, L] means that firm ¢ is active and charges price p;, and s; = n.a.

means that firm ¢ is not active.! The joint strategy space is written S := [[%; Si.

The quantity sold by firm 7 is determined as follows. The firms announce a price and
produce to order. That is, they produce as much as they can sell. At price p they are
not willing to produce more than v'~}(p), since otherwise marginal cost exceeds the
price. Thus v"~!(p) can be considered as the self imposed capacity constraint at price p.
All the customers are perfectly informed about the prices charged by the various firms
and try to buy from the cheapest firm(s). If there are several customers split up equally
among these. First all customers place their orders with the cheapest firm(s). These
orders are fullfilled, until the cheapest firm(s)’ capacity is exhausted. The remaining
{(unserved) customers now place their orders with the next cheapest firm(s) (again
splitting up equally, if there are several). This procedure is repeated until either all
the customers are served or all firms are exhausted. The rationing scheme?® induced by
this mechanism is formalized as follows: Assume (w.l.o.g. by symmetry) that the firms
i =1,...,N are active (0 < N < n), charging prices p1,...,pn, and the remaining

firms N 4+1,...,n are not active. We write the strategy n-tupel with N active firms as
— — N
3=(81,...,8.) = (p1,.-.,pPN, N2, ...,0.2.) = ]
n-N

Then the residual demand faced by firm ¢ is®

(aNY = max{l — ¥, <pi v'"*(p;), 0}
D:(p )_#{je{l,...,N} . p=pi}

The quantity actually sold by firm z is

¢ (7V) = min{D; (FV) , v (p)}. (2.5)

1 Notice that if there are no positive fixed costs, producing nothing would yield zero profits. So the
difference between activity and non—activity vanishes in that case, and the extension of the strategy

space by the element "n.a.” would not be necessary.
2By the simple demand structure this rationing scheme coincides with efficient rationing as well as

with proportional rationing,.
34 A is the cardinality of the set A.



For an action vector s = ($;,...,8,) the profit of firm ¢ is given by

i) = { s (FY) - v (e (V) - F for si € [0, L) 26)

0 for 3; = n.a.

This defines an n-player game G with strategy spaces S; = [0, L] U {n.a.} and payoff
functions m; given by (2.6). If we wish to single out player i, we write s = (s;,3_;

where s_; = (81,. .., 8i-1,8i41y+++48n ).

Let AC(q) = ﬂg}:—F be the average cost of producing ¢ units of the commodity. Since
v” > 0,AC has a unique minimum and we can define the "competitive price” by
p: := min; AC(q) (i.e. minimum average cost). The competitive output is defined by
g. := AC™(p,). Define m := qic. For technical simplicity we make

Assumption 1 me L.

Next we make the "contestability assumption”, which is the crucial assumption in this
model.

Assumption 2 L. ;11- —v (;1;) -F<0.

It says that the number of potential firms is large enough such that not all the n po-
tential firms can profitably operate in the market, even if they all charge the monopoly
price, which is equal to the reservation price in our model. One could also assume the

number of firms to be infinite. But Assumption 2 is sufficient for our purposes.
Assumption 3 L>p. .

Assumption 3 is a necessary condition for the market to exist at all.

For simplicity we further assume
Assumption 4 oY L) < 1.

Assumption 4 claims that the market is large enough such that a single firm’s self im-
posed capacity constraint at the monopoly price is not greater than the whole market.*

Unless explicitly stated otherwise, Assumptions 1 — 4 will be maintained throughout

this paper.

Proposition 2.1 If L > p., there is no Nash—equilibrium (in pure strategies).

4This is not a serious restriction but avoids tedious distinctions of several cases in the dynamic

game.



Proof: The proof is simple and will only be sketched. By Assumption 2, not all the
firms can be active in equilibriurn. Further, there can be no single price equilibrium.
For, at a price p higher than p. it would pay for an inactive firm to enter the market by
undercutting the incumbent firms by p— ¢, thus earning positve profits for ¢ sufficiently
small. If the equilibrium price equals p., it will pay for an active firm to charge a higher

price, say L, exercising monopoly power on a market share of ¢..

At an asymmetric price configuration, there must be at least one firm with a price
lower than L which exhausts its capacity, by Assumption 4. Such a firm can always
increase its profit by raising its price slightly. Q.E.D.

Of course, if we assume I = p., we get a trivial result:

Proposition 2.2 If L = p., there is a unique equilibrium with p* = p. = L and

N*=m.

Proof: Trivial, since L is the only price providing nonnegative profits. Q.E.D.

By the definition of the stratgey space and by Assumption 2, these equilibria are similar
to what in the literature is sometimes called a free entry equilibrium.

3 Supergame—theoretic Preliminaries

Since in our market supergame, to be defined in the next section, the payoff depends
not only on the joint action tupel of the current period, but also on the own action in
the last period, we offer a general framework for 2-period dependent payoffs which can
be generalized to several periods with some effort. FRIEDMAN [Fri74,Fri86] calls this

kind of games "time-dependent supergames”.’

I = {1,...,n} denotes the set of players with typical element ¢ € I. In each period
of the game, S; is the action space of player ¢, with s; € S;. § = [T, S; denotes the
joint action space. The payoff function is denoted by #; : § x § — IR, ¢ € I, with
(s',5) — T;(s";s). It depends on the joint actions of two periods, the previous and the

current one.
Assumption 5 {7(z) | z € S?} is bounded.

We introduce the following notations and definitions. h = {h',...,R] € §' C
H = U2, S is a history of length [ > 1. The game has infinitely many periods

3We prefer the notion multi-period (2-period) dependent supergames, since the payofl depends
only on the actions, not on the absolute time.



{ = —1,0,1,2,.... The game starts in period { = 0. ¢ = =1 gives the initial
state of the game, which is needed since 7; depends on two periods. For ! > 2
we write b = [k, k'], where A~ € §'! is the (I — 1)-history with which % begins.
¢:= {e(7)}2, € 2 := S™ denotes an action path. For i € I let ¢' denote the punish-
ment path in order to punish player i. We write C := (c!,...,c") € Q". Strategies are
written o; € X; := S{"r = {0;: H — S;}. Then ¢ := (0:)ier € & = [];e; L: denotes a
strategy profile.

For (h,0) € H x ¥ we define the path c[h, o] € 2 by

clh,o](0) = o(h),
clh,ol(t) = o{h,c(0),...,c(t—1)) t=1.

¢[h, o] is the path induced by strategy o after history A.
For 0 < § < 1, the discount factor, we define

vi(h, ¢, t) := vi(R', ¢, t) := Fi(RY e [h, 0)(2)) + i §FFiclhyol(t+1—1);¢[h,a](t + 7))

vi(h, ¢) := vi(h,¢,0).
Bi(h, o) := vi(h, c[h, o}).

v;i(h, ¢, t) is the value (to player ¢) of the path ¢ beginning with its ¢'s element after
history k. ©;(h, o) is player ¢’s discounted payoff if strategy ¢ is played after history A.

We write: ¥ := (¥;)ier, v := (vi)ies. Finally, (k) := (E;,0i(h,-))ier denotes the
supergame after history k and I' := (I'(R))ren denotes the whole supergame.

Definition 3.1 o* € ¥ is a Nash—equilibrium of I'(k), if

E:',-(h,(a,—,cr:,-)) < ﬁ;(h,a") Vo, € Lt e 1.

Definition 3.2 o* € X is a (subgame) perfect equilibrium of I' if 0 is a Nash-
equilibrium of T'(h), Yh € H.

Definition 3.3 We say that i € I deviated singly from o € ¥ in the last period of h
with h = [A=, k1], if k! # oi(h™) and hL, = o_i(h™) (1> 2).

Clearly, there is at most one ¢ € I, who deviated singly.

Definition 3.4 An initial path is a mapping ¢° : S — Q. Fort € I, a punishment path
to punish player i is a mapping ¢ : Si x S — L.
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We write Q := (¢, ¢',...,q"). ¢°ls] = {¢®[s)()}:s s ¢'[sh 8] = { [}, s)(2) }ico-
The strategy profile ¢ = o[Q] € £ induced by Q is defined by

o(h) = cq[h](To(R)) , he€H,

where co(h] € Q (the current path prescribed by Q after b} and Tg(k) € {0,1,2,...}
(the counter of the current path) are defined as follows:

cqlh] = A | . _
To(h) = 0 }thES—S.

If b = (h7,h") € § with | > 2, assume inductively that cg, Tg (and hence o) are
already defined for k= € 1, and put

Kl = ifpd-1 gt
cqlh] alhi™ k] } if i € I deviated singly from o in the last period of h;

To(h) =0
cglh] = colh7] otherwise
Ta(h) = To(h7)+1 .

Definition 3.5 A strategy profile ¢ € ¥ is called simple if it is induced by some
Q=1(¢%q",...,q"), where ¢° is an initial path and g is a punishment path, fori ¢ I.

Loosely speaking, a simple strategy profile o = o[Q], Q = (¢%¢'....,q") means the
following. Initially play the path ¢°. As long as no player deviates from ¢°, continue
with ¢% I player ¢ deviates singly from ¢°, continue with the punishment path ¢*. If
player j deviates singly from ¢', continue with the punishment path ¢’, and so on.

Simple strategy profiles will serve to characterize perfect equilibrium outcomes of the
supergame. In the purely repeated case (ABREU [1988]), it suffices to consider constant
mappings ¢', i.e. the punishment paths do not depend on the history. Unfortunately, in
the multi-period dependent case this will not work in general and we have to consider
history dependent punishment paths. Although our punishment paths ¢'[s}, s] are not
simple in the sense of ABREU, at least they do not depend on the full history but
only on (at most) two preceding periods: the situation in which the deviation occured
(s) and the deviating player’s own action (s!) in the period immediately before the

deviation.

Let ¢ = o[Q)] be a simple strategy profile. We say that s’ € S can precede ¢ € S if
3k € H with k! = s’ such that o(k) = ¢.



Proposition 3.1 Let o = o[Q] be a simple strategy profile, @ = (¢°,¢",...,q"). Then
o is a (subgame} perfect equilibrium iff

Viel, ¥i€{01,...,n}, Vr 20, V€S, V3 €S; withj#0,
Vs €8 which can precede q:= ¢[5),3)(r), Vsi€ S\ {a} :
i (8" (81, 9-4)) + 8vil (50, 4= ) ¢' [8, (50, q-)]) < wil 8, ¢°[85,3),7) (3.1)
where ¢’[5},35] = ¢°[] for § = 0.

To understand the proposition, consider a situation in which after a history of the form
(h™, ') the action prescribed by the simple strategy o(Q) is given by ¢ := ¢/[3},3](r).
If all players follow the prescribed strategy, player ¢’s payoff is given by the RHS of
(3.1). If player ¢ deviates singly from ¢; to s;, and afterwards all players follow the
prescribed punishment path ¢'[s, (s, g-i)], then i’s payoff is given by the LHS of (3.1).
Condition (3.1) says that such single-period deviations must not pay.

Remark 3.1 Because of the large quantity of 7 quantifiers, this proposition does not
seem lo be very useful, since one has to check too many inequalities. Bul in cerlain
cases, {3.1) simplifies considerably, for example if the paths are piecewise constant on

S;ix 8 fori €I, and on S for q°, as it will be the case in our market supergame.

A detailed proof of Proposition 3.1 can be found in [Req90a]. Notice that this re-
sult generalizes Proposition 1 in ABREU [Abr88] to the case of 2-period dependent

supergames.®

4 The Dynamic Market Game

Since there is no pure strategy equilibrium in the one shot game apart from special’
examples, we are now interested in the question whether there is a stationary equilib-
rium in pure strategies in a suitable dynamic game. Since we retain Assumption 2, the
answer will be "no”, if we consider the purely repeated game. We therefore introduce
a fixed entry cost, which will guarantee us the existence of stationary equilibria under

certain conditions. Definitions and notations from Section 2 are taken for granted.

6The idea of the proof in principal does not differ from that in ABREU’S result: If infinitely
many deviations are profitable, then a sufficiently large number of finitely many deviations must be
profitable, since by discounting, the rest sum of profits becomes arbitrarily small. Assume there
are n deviations. But the n — th deviation amounts to a single period deviation. Since this is not
profitable, conforming is as least as profitable for the player than deviating. But then the (n — 1)th
period deviation amounts to a single period deviation and so on until the first deviation is reached, a

contradiction.



4,1 The Model

The dynamic market game consists of an infinite repetition of the static market game
introduced in Section 2, with the one additional feature that a firm has to pay an entry
cost K > 0 in every period ¢ if the firm is active in period £ but has been inactive in
period ¢ -1 (see eqn. {4.2) below). This makes the payoff function 2-period dependent
and yields a supergame of the form introduced in Section 3. The entry cost can be
considered as an investment cost, which is necessary to start a business. In the static
case, investment cost and other fixed costs can be added to one whole fixed cost. The
dynamic case calls for differentiation of the fixed cost into those that have to be paid
in each period if the firm is active and those to be paid only if a firm enters the market.

All the assumptions about the consumers hold in each period: each customer demands
exactly one unit of the homogeneous commodity in every period up to the reservation
price L. The commodity is not durable. The customers are always perfectly informed
about the prices in each period, they try to place their orders always with the cheapest
firms and split up equally if there are several and they do not become biased towards
certain firms. Assumption I — 4 also hold throughout this section.

Denote by 3(t) the action vector of period ¢. Let

si(t) - qi(8(2)) — v(@(3(1)) — F if si(t) € [0,1]

4.1
0 if s:(t) = n.a (4.1

mi(8(t)) = {
Since we assume that a firm has to pay a fixed entry cost of size K, if it enters or
reenters the market, the single period payoff function does not only depend on the
joint action vector of the current period, but also on the own action in the last period.

This means, we get a 2-period dependent payoff function 7; : 5; x § — IR with

7(5(t) — K V¥ si(t) € [0,L] and s;(t — 1) = n.a.

7i(8(t)) otherwise (4.2)

Ti(si(t —1); 8(t)) = {

where 7 is defined in (4.1). The game starts in period 0. 5 is the initial state of the
game in period —1. If ¢ = {c(#)}2, € 2 is an action path, the whole payoff over all
infinitely many periods is given by

vi(8,¢) :=Fi(8i 5 c(0)) + ) _6'Fi(ci(t—1); ¢(t)) with0<é<1 (4.3)

t=1
Since in the dynamic game, the set of active firms at the beginning of the game may
differ from the set of active firms after some deviations, we cannot assume that always

the first N firms are the active ones, as we have done in the stage game. We therefore
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write for a price p € {0, L], and a subset of firms A C I

p V i€A

“\A .
= P n th i=
(F)" = (s1,..018n)  with s { na ¥V ie\A

Next we introduce some abreviations, which will be used frequently in the remainder

of the paper.
If N firms are active (i € A) and charge the same price p, they will get a profit of

m(FN) = m ((ﬁ')A) := p-min {%,v'"l(p)}—v (min {-j{}-,v"l(p)})—F for |A| = N.

The highest profit that can be earned at price p (that s, at which price equals marginal
cost) is denoted by

w*(p) = p-v""(p) — v(v" "} (p)) - F .

Note that under Assumption 4

sup «(pi, flY) = =*(p) ,
pi<p*

this is the upper bound for profits a firm can earn by undercutting a symmetric price

outcome g,

If the consisting price is small, it might be profitable to deviate to a higher price, and
to exercise monopoly power on 1 — (N — 1)v"~'(p) many customers, those who are
possibly unserved by the remaining firms that charge p and that are not willing to sell
more than v'~!(p). We therefore define

7 (FV) i= L-max{0, 1 ~ (N = 1)v'"(p)} — v(max{0, 1 — (N — 1)v'"'(p)}) — F.
Further we define

b (FV) = xt (FN) == L-max{0, 1- N-v""'(p)} ~ v(max{0, L~ N v} (p)}) - F ,

€

which is the profit an entrant earns, if she tries to exercise monopoly power on an

unserved market share, if there is any.

Lemma 4.1 ©*(p) is strictly increasing in p, ‘fi—:(p) = v""Y(p).

z’ﬂ' ——
Lemma 4.2 &TF(P) = v"(u’ll(P)) >0.

Proofs: See [Req90b).

Define
p" :=max{p | **(p) £ K}.
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This is the absolute upper bound for equilibrium prices, since at prices lower than
pe* . firms cannot cover the entry fixed cost K in only one period, even if they sell
the optimal output of v"~!(p). Therefore, p¥sts is the lower bound for all prices that
make possible or encourage hit-and-run. Clearly, a price higher than p* cannot be
an equilibrium price, since at those prices, it is always profitable for inactive firms to
enter the market once by undercutting, making a positive profit net entry cost, and
leaving the market again in the next period.

By Lemma 4.2, n*(p) increases faster than linearly in p, whereas « (13' N ) Increases
linearly in p. Hence, and since 7*(p) and 7 (15' N ) are continuous in p, we define for all

N for which 3 p with 7*(p) < 57 (ﬁ'”):

F(N) = max {p | w"(p) < 5 (7} (4.4

Further let

p*(N) == min {p**,5*(N)} .
Finally we define K := (1 — §)K and F := F + K, where K is that part of the entry
cost that has to be paid in each period, if a firm stays in the market from the beginning

of the game and distributes the entry cost equally over all periods. In this case, the
fixed cost in each period adds to # = F + K. Hence we define also

v +F' - . T - —1y ~ —_~ 1
@=22FE e minO(),  dr=vl() and T -

q ge :

A

Definition 4.1 (p, A°) is called a stationary (quasi-symmetric)
equilibrium outcome (st.e.o.) iff there is a subgame perfect equilibrium strategy o, and
a history h such that clh,o](t) =: st(h,0}) Vt>=0.

That is, (p, A%) is a stationary equilibrium outcome if the firms ¢ € A® charge p in each
period and the firms i € I\ A? stay "not-active” forever. The equilibrium outcome is
called quasi~symmetric, because it is symmetric with respect to the active firms. Since
| A%, the number of active firms, often is the interesting variable, we sometimes talk of

(p, N) as of an equilibrium outcome, if N = |A%|.

4.2 The Main Results

We are now ready to state our first result, which gives a full characterization of the

stationary quasi-symmetric equilibrium outcomes.

Define the region
Ry = {(p,N) € [0,L] x N | (p, N) satisfies (4.5) - (4.8} given below }
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p < ph (4-5)

b (7V) < K (4.6)
) < 757 () (4.7)
@) < =5 () (49

Since the equilibrium conditions are not linear in p and N, we cannot solve for prices
and numbers of firms in general. For quadratic cost functions, the inequalities (4.5)
— (4.8) are solvable for p. But for (4.6) and (4.8) this is tedious even in this special

case.” (See section 5.)

Theorem 4.1 Let p* € [0, L] and A* C I be given. Set N* := |A*|. Assume

prebs < L, (4.9)
(puoba’m) c Rl , (4.10)
and K L
6> , . 4.11
<~ max { [p‘-'-nb.o _ pc]qc + K L + p“abs _ 2pc} ( )

a) If 5; # n.a. Vi € A*, then (p*,A") is a stationary subgame perfect quasi-
symmetric equilibrium outcome if and only if (p*, N*) € R;.

b) If 3t € A* such that S; = n.a., then (p*, A™) is a stationary subgame perfect quasi-
symmetric equilibrium outcome if and only if (p",N*) € R; and additionally

salisfies
— 1
> A (N* if N >m, (4.12)
P 2h i N <wm (413)

To understand the theorem let us start with the assumptions. (4.9) gua,ra;ntees that
the highest possible equilibrium price is below the monopoly price. In Theorem 4.3
and 4.4 we will relax this assumption. But (4.9) is the more interesting case. (4.10)
guarantees that (p“*s,m) satisfies the equilibrium conditions. Notice that (4.10) al-
ready guarantees existence of an equilibrium at all. As we will see in the proof, this

7A a simple sufficient condition for (4.6) and (4.8) to hold is p > v/ (TVJ:T)* since then even N — 1
firms can serve (are willing to serve) the whole market. Hence a firm that charges a higher price has

no customers. Since v (ﬁ) > (I—{,-), also an intruder cannot capture any customers by charging

a higher price than the incumbent firms’ one.

13



is necessary, since equilibria with N < m can only survive if there are equilibria with
N > m. (4.11) is sufficient that the equilibrium strategy, to be constructed in the

proof, will work. It is not necessary for existence of an equilibrium.

The equilibrium conditions {4.5) and (4.6) prevent inactive firms from hit-and-run. If
(4.5) is satisfied, undercutting and running away does not pay, as mentioned above. By
(4.6) charging a higher price does not pay. (4.7) and (4.8) are sufficient and necessary to
prevent active firms from deviating to a lower price, or to a higher price, respectively.
The LHSs of (4.7) and (4.8) are the suprema of profits earned by undercutting, or
charging a higher price, respectively. The RHS of (4.7) and (4.8) is the discounted
sum of profits earned if no firm deviates from the initial equilibrium path. This leads
to the supposition that firms can be always held down to zero after any deviation,
by a subgame perfect equilibrium strategy. Indeed this is the fact, and for N > m
this is not so much of a problem. The punishment strategies work as follows. If an
active firm deviates by charging a price different from p*, all the active firms charge
a low price for a certain number of periods, yielding negative profits per period, and
charge the highest possible equilibrium price (p*(N)) afterwards forever, such that the
overall discounted sum of profits earned after deviation is zero. Notice that this kind of
punishment has stick-and-carrot character (cf. [Abr86,Lam87), see also [Req90b] for
the purely repeated version of this game). For N < m this kind of strategy does not
work in this way. That is, the (up to now) active firms cannot hold the deviator down
to zero by their own. They rather need help by some of the (up to now) inactive firms,
that is, a certain number of these firms has to enter the market, filling the number of
active firms up to the size of m. All these from now on active firms drive the deviator
out of the market by charging p. for one period, and going to p*- after that forever,

unless another firm (including the former deviator) deviates another time.

Intruders, that is deviators from "n.a.”, will always be driven out of the market again.
If N > m, this will be done by the N originally active firms. If N < m, help is
needed again by some of the inactive firms, which have to enter the market. Since
this strategy can only work if there is a pair (p,rn) that already forms a stationary
equilibrium, and since entry must yield nonnegative profits for those former inactive
firms that are supposed to enter the market in order to punish the deviator, we require
(4.10) and (4.11) to hold. The exact proof is given in the appendix. In part b) of
the theorem, (4.12) and (4.13) guarantee nonnegative profits for firms that enter the

market in period 0.

The punishment strategy, just described informally, thus presupposes a kind of contract
between the N active firms and at least m — N inactive firms. This is unsatisfactory

and not very much plausible. Therefore, it seems to be reasonable to concentrate on
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~ those equilibria, which do not require (former) inactive firms to engage in punishment.

Definition 4.2 (p, A) is a reasonable equilibrium outcome (r.e.0.), if for any deviation
to an action # n.a. there is a subgame perfect equilibrium strategy which does not require

a new firm to become active. Formally:

(p, A) is a r.e.0. if there is a subgame perfect strategy o, s.t. o(3) = (p Y andV h € H,
with 1 > 2 for which 34 € I s.t. "i deviated singly in h'” and n.a. # k! # oy(h™), we
have o;(h) = n.a. ¥ j with b} = n.a..

Why do we exclude deviations that amount in exit (deviations to "n.a.”)? Now, to
require inactive firms to never engage in punishment is a bit too strong. Since there
is the option to be not active, firms could leave the market by and by until only few
firms are left that exercise monopoly power. Of course, there is no incentive to leave
the market, when playing the initial equilibrium path. But there s a myopic incentive
to leave the market during a punishment path, when negative profits have to be earned
for some periods. In this case, entry sometimes has to be required on a subgame perfect
equilibrium path, that is, the leaving firm has to be substituted by a former inactive

firm.

Before characterizing the set of reasonable equilibrium outcomes some auxilary results
and definitions are necessary:

Lemma 4.3 Let S! = [0, L] Vi € I (there is no option to be inactive for a moment).
IfL>v (va) {which is satisfied under Assumption {),

i) there is a unique p>™ € S’ such that

7 (L, p77") = sup i (pi, P2Y") where 2" = (p°",...,p"")  (4.14)
n-1

pi<p®

~*pun

it) argmaxpes T (pi, PL;") exists,
i) v'~! (%) <pt <yt (j-v—f_—l)
Proof: See [Req90b].

—pun

Lemma 4.3 claims that there is a price p™" such that the best response against p*;" is
to charge the monopoly price. Actually the player who is to be punished is (almost)
indifferent between charging the monopoly price and undercutting p*** shightly.

Lemma 4.4 For all p_; € S_; := [0, L)¥~! we have

sup m; (pi, p7i") £ sup 7; (pi, p-:)
p€S! Pi€ES!
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Proof: See [Req90b].

Lemma 4.4 claims that §*;" minimizes sup, s, i(p:,-) among all punishment vectors
i_i € SN-1,

In the Lemmata 4.3 and 4.4, N was considered as fixed. But of course, the value of p™"
depends on N, the number of active firms. In the following Lemmata we, therefore,
write p**(N) instead of p*™.

Lemma 4.5 For all N > 2, p***(N) ts decreasing in N.
Proof: Clear from Lemma 4.3.iii) and Lemma 4.2. Q.E.D.
Lemma 4.6 7" (p*"(N)) is decreasing in N.

Proof: Clear from Lemmata 4.1 and 4.5. Q.E.D.

The next result characterizes the set of stationary equilibrium outcomes, if nonactive
firms cannot be employed to punish a deviator, that is, the set of reasonable st.e.o.’s.

Define the region

Ry = {(p,N) € [0,L] x N | (p, N} satisfies (4.15) - (4.16) given below }

6 = un '
" (P (N + 1))} (4.15)

wp) < s [r(7) ~ max {0, 65" (M) (4.16)

*(p) < K—max{O,

We make the following assumption about R;:

Assumption 6 For all N < m for which there is p with {p, N} € Ry, there is p’ such
that (N +1,p') € R,.

We will explain this assumption below.

Theorem 4.2 Let p* € [0,L] and A* C I be given. Set N* := |A*|. Assume that

Assumption 6 holds. Assume again

phe < L, (4.17)
(pUe**,m) € Ry , (4.18)

and
§> — L P (4.19)

- L-l-punbl —2pc :
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a) If 3, # n.a. Vi € A*, then (p*,A*) is a stationary subgame perfect quasi—

symmetric outcome of a reasonable equilibrium if and only if (p*, N) € R,.

b) If 3i € A* such that §; = n.a., then (p*, N) must additionally satisfy (.12} and
(4.13).

Assumption 6 has been made by the following reason. If an inactive firm has deviated
unilaterally from the original path of a reasonable equilibrium by entering the market,
it cannot be driven out again by the incumbent firms only, as long as N < m. Hence,
the game has to go on with the original number of firms plus one. But the new path
must end with another possible equilibrium path, that is, there must be an outcome
(p, N + 1) € R,. In other words, equilibria with N < m only exist if there are
equilibria with N > m. Thus, Assumption 6 guarantees the existence of a subgame
perfect continuation path with N + 1 firms after an intruder happened to enter the
market, as long as N < m. Note that Assumption 6 also implies that R; is not empty.

The proof is given in the appendix, but we give a sketch of the equilibrium strategies
constructed in the proof. For N > m, the strategy is defined in the same way as in the
proof of Theorem 4.1. For N < m, an active firm that has deviated will not be driven
out but will rather be punished symmetrically by the active firms. However, it can
only be held down to Z:7*(p*"(N)) > 0 by the remaining N — 1 active firms. If an
inactive firm deviates by entering the market and N is not smaller than m, the intruder
can be held down to zero and, therefore, can be driven out of the market, like in the
proof of Theorem 4.1. If N < m, it can be held down only to =Za*(p>**(N +1)) > 6,
that is, the intruder cannot be driven out by the N incumbent firms. Thus, by every
deviation, caused by an intruder, the number of active firms increases, until N = m is

reached.

Remark 4.1 If we require Assumption 6 to hold for all N < m instead of N < m,
we need not assume (4.18) and ({.19). Assumption (4.19) guarantees that for N = m,
it does not pay to deviate to a higher price on the path that drives out an iniruder. If
Assumption 6 holds also for N = m, the penal code could be modified by starting to
drive out intruders only for N > m + 1.

The next lemma is useful for the proof of Theroem 4.2.

Lemma 4.7 For all N > 2, prices not greater than p»**(N) cannot be stationary prices

in a reasonable equilibrium.

Proof: Same as the proof of Lemma 3.5 in [Req90b], since the number of firms is
taken as fixed, and there are no inactive firms in that paper.
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Corollary 4.1 For any stationary price p in a reasonable equilibrium we have
) 7 (V) <o),
i wl(FV) <)

Proof: i) If p is the outcome of a reasonable equilibrium, then p > p™*(N) by
Lemma 4.7. But then 7*(p) > =” (ﬁ'N), by definition of p**~(N). ii) Clearly,
xl (V) = 7L (FV+) < o2 (FV). Q.E.D.

In both Theorems, 4.1 and 4.2, the stationary equilibrium prices can never be greater
than p“s+ since otherwise hit-and-run would be encouraged. By its definition, p®sts is
increasing in K. In other words, the lower the entry cost the more competitive is the
market. On the other hand, there is no stationary equilibrium in pure strategies if K is
too low. For, if K is close to zero, p¥s* is close to p.. For prices too close to p., however,
it becomes profitable to deviate to the monopoly price since the remaining incumbent
firms cannot serve the whole market if they charge a price close to the competitive

price, that is, (4.8) would be violated. We summerize these arguments in the following

Proposition 4.1 For K = 0, the dynamic game has no stationary equilibrium.
Corollary 4.2 The purely repeated game of section 2 has no stationary equilibrium.

Up to now we assumed to have relatively small entry costs (p¥s*+ < L), or what is the
same, sufficiently long periods such that the entry costs could be covered within one
period, if the price were sufficiently high. We may ask now what will happen, if we
assume that L < pUs: instead of [ > pYet+. Restricting the analysis to ell possible

stationary symmetric outcomes we get a somewhat surprising result.

Define the region

R; := {(p,N) € [0,L] x N| (p, N) satisfies (4.20) - (4.21) given below }

() € = (5") (4:20)

ot (7)) < " #) (4.21)

Theorem 4.3 Let p* € [0, L] and A* C I be given. Set N* := |A*|. Assume
phe > L, (4.22)
(L':m) € RS ’ (423)
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and

K
{L - pc]qc + K '

§> (4.24)

a) If ; # n.a. Vi € A*, then (p*, A*) is a stationary subgame perfect quasi-
symmetric equilibrium outcome if and only if (p™, N*) € Rs.

b) If 3i € A* such that §; = n.a., then (p*, N) must additionally satisfy ({.12) and
(4.13).

This result is in so far surprising since it admits equilibria which leave some customers
unserved. As illustrated in Figure 3, also outcomes with N - v"~!(L) < 1 can be
supported by an equilibrium strategy. That means, there are inefficient cutcomes even
at the monopoly price since more firms could operate in the market without doing

harm to the incumbent firms which are sold out.

Since p*«¢ > L, the incumbent firms are not jeopardized by hit-and-run. Of course,
also in this case the incumbent firms cannot punish a deviator by their own. Similar to
Theorem 4.1, equilibria with N < m can only be supported by strategies that employ
former inactive firms to punish the deviator. In the appendix we call these strategies

"drive-out—and—substitute-strategies”.

If one does not like these strategies — and indeed they look rather artificial — we
should look for ” reasonable” equilibrium outcomes again, that is for those that do not

rely upon inactive firms to engage in punishment.

Define the region
Ry := {(p,N) € [0,L] x N | (p, N) satisfies (4.25) — (4.26) given below }

*(p) < K—max{O,

w(p) < g [F(FY) — max {0, 6" (3" (V))] (4.26)

< (PPN + 1 ))} (4.25)

Similar to Assummption 6 we make

Assumption 7 For all N < m for which there is p with (p, N) € Ry, there is p’ such
that (N +1,p') € Ry.
Theorem 4.4 Let p* € [0,L] and A* C I be given: Set N := |A*|. Assume that
Assumption 7 holds and assume

plase > (4.27)

L,
(L,m) € Ry, (4.28)
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and

5> <. (4.29)

o -

a) If 3; # n.a. Vi € A*, then (p*, A*

symmetric oultcome of a reasonable equilibrium if and only if (p*, N) € Ry.

-

is a stationary subgame perfect quasi-

b) If 3i € A* such that 8; = n.a., then (p*, N) must additionally satisfy (4.12) and
(4.13).

4.3 Non-uniqueness of Equilibrium, Equilibrium Selection
and Stability

As a typical feature of most supergames, also our Bertrand-Edgeworth market game
exhibits a multiplicity (a continuum) of equilibrium outcomes. That is, there is a finite
number of firms that can be active in a stationary equilibrium and for each number of
active firms there is a continuum (a closed interval) of possible equilibrium prices, or
there is no equilibrium at all. Due to the multiplicity of equilibria it has often been
argued that players will or have to agree on a certain equilibrium. Since a fixed action
or outcome path can be supported by different strategies, an agreement is necessary,
anyway. The most prominent candidates for equilibrium outcomes to be agreed on
are certainly the Pareto—optimal outcomes. Necessary for an outcome (p*, N*} to be
Pareto efficient is that p* = p*(N*). For R; the Pareto-optimal outcomes coincide
with all (p*(N), N) € R;.

For R, which is the set of equilibrium outcomes when there is no need for inactive

firms to engage in punishment, this may be different. With a little abuse of notation
we define for all N for which 3 p s.t. (p, N) € Ry

p*(N) :=max{p{st. (p,N) € Rp} .

Then, for N > m, all (p*(N), N) € R, are Pareto—efficient. For N < m, (p*(N), N)
may not be Pareto—optimal for all NV, since the highest price that still deters entry may
be so low, that it would be better for the incumbent firms to let new firms enter the
market until the "optimal” number of firms (the number that maximizes profits at the
highest possible equilibrium price) is reached (see Fig. 2).

The same reasonings apply to R4, the equilibrium set of Theorem 4.4, when hit-and-
run is never profitable at any price (i.e. p*»» > L), and inactive firms do never engage

in punishment.

Theorem 4.3 also relates to the case p¥s»+ > L. However, inactive firms may engage in

punishment. Since hit—-and-run does not pay at any price, the conditions (4.20) and
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(4.21) allow also for outcomes (L, N) with N « ﬁfj For these outcomes not all
the customers are served. If N < Lﬂ+(L)J’ more firms could operate in the market
without taking customers from the incumbent firms. Thus, the set of Pareto—efficient
equilibrium outcomes of Rs consists of {(p, N)lp=L, N2> lﬁfll(_l,)' J}

Stability

Regardless of restricting to reasonable equilibria or not, for all regions R, — R4 equi-
librium outcomes with N < m can only survive, if there is at least an equilibrium
path with N = m. That is, for N < m, the number of active firms increases by every
intruder until N = m is reached, since an intruder cannot be held down to zero by
the incumbent firms only. One could say that equilibria with N < m are not stable
in a certain sense. In [Req90b], we defined the concepts of number- and set-stability.
To recall these concepts informally, an equilibrium outcoine is called number-stable if
the game can go on with the same number of active firms, also after deviations. An
equilibrium outcome is called sei—stable if the game can go on with the same set of
active firms, unless a firm happened the market voluntarily. Due to these concepts, all
equilibrium outcomes with N < m are neither sei— nor number—stable. For N = m,
the equilibrium outcomes € R; \ R; are number- but not set-stable, whereas the equi-
librium equilibrium outcomes € Rz N {(p,N) | N = m} are number— and set-stable.
For N > m + 1, all equilibrium outcomes are number- and set-stable.

Possible equilibrium numbers of active firms

Clearly, any number N for which there is a price satisfying the equilibrium conditions
of the related regions R; — K4 is possible. Thus, we can endogenize the possible number
of firms that can be active in equilibrium only up to a certain degree by giving upper
and lower bounds. By the nonlinearity of the equilibrium conditions these bounds can
only be given implicitly.

Notice that for the equilibrium regions R; — R4, the unequalities (4.7), (4.15), (4.21)
and (4.25) for N > m all take the form

™ 1 —N
ﬂ(P)S1_6W(p ) - (4.1)
Now, the following lemma holds:

Lemma 4.8 Let N > m. If p satisfies (4.1), then p > AC (%,—)

Proof: See [Req90b].
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By this lemma the lower bound for equilibrium prices must be greater than the average
cost, when firms have an equal market share of . Hence they must earn positive profits
in equilibrium. This in turn means that the greatest number of firms that can be active
together in equilibrium is at most as high as the "zero-profit-number” (the number
N that satisfies L - — -0 ( Jb) — F = 0. For discount factors sufficiently bounded
away from one the greatest number of firms for which there is a price p satisfying
(4.1) will be strictly smaller than the zero-profit-number. Notice that the oligopoly
argument, often used in static models, that firms will enter the market as long as profits
are positive, is no longer valid in a dynamic model. This calls also into question the
method of endogenizing the number of firms in the supergame model of BROCK and
SCHEINKMAN [BS85], who assume that firms will enter the market as long as profits

at the collusive outcome are positive.

About the lower bounds we could simply say the same: it is the lowest number of
firms for which there is a price satisfying the conditions of the related regions. If
the presuppositions of Theorem 4.3 are satisfied, this number is even zero. But such
an equilibrium is unlikely to be agreed on. At least the lowest number for which
~ a Pareto optimal outcome is possible seems to be a better prediction. In the long
run, however, set-stable equilibrium outcomes seem to be likeliest. Among those the

minimum number of firms is m or m + 1.

5 An example (Quadratic Cost Functions)

Let C(q) = £¢* — F. This yields v"~!(p) = £, hence p. = V2Fa, ¢. = /3£, 7°(p) =
" — F, and for v'~ Y(p) > % we get

- 1 o
") =ry gy F

Consider first the region R;:

™(p) < K & p <y 2a(F + K) (5.1)

T (FY) <K ® p2 71\; [a — L+/L?—2a(F + K)] (5.2)

Condition (4.7), that is, 7*(p) < 7(p"), yields

P< gy |+ VeI - (1= 9N (53)

and

>(1—6)Ni —\/6[1~ (1= 6)gN 2]] (5.4)
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Finally (4.8), that is, #Z(7") < {57 (p"), yields the following terrible expression

1
) 1
pZmax{ +(1—-6)N(N-1)2[_“ (5.5)

/A= 8)(N — ){LE{1 = §)N*(N — 1) — a2N(a - L) — a(N — 1) — 26 FN3(N — )]} + az] ,

1 26
(1_6)(N_1)+_N_1__1_{a~L+\/L2+6a{2(F—L)+a} =19 12) o—2L— 1-6F”}

The argument of the square roots of (5.3) and (5.4) is not negative iff
1 1
QG\[I - 6 B \/1 -

The upper bound of firms that can be active in a stationary equilibrium is then given

by
. o(F + K) 74 1
Nim‘“{\/i{wru —5)K] [H SFrT | mm} ' (5.6)

The first term in brackets is achieved by the intersection of p(N) =

(1—0;5)1\! [1 ~ \/‘5[1 -(1- 5)(‘IcN)2]J and p = p*t = /2a(F + K). Notice that for

§ — 1, 1 =m goes to infinity, whereas the first term in brackets converges to

@ [1 + \/F+_K] But N < );“(FH() [1 + \/F-}-_K] is equivalent to pYe <

AC ( N). Similarly, the lower bound for p converges to AC ( N)' In other words,

N <

all "strictly” individually rational prices (p > AC (%)) of a symmetric outcome are
stationary equilibrium prices, if 4 is sufficiently close to one, which is consistent with
the folk theorem (cf. FUDENBERG, MASKIN {1986) [FM86]).

The region R, is given by (4.15) and (4.16). For N > m, (4.16) leads to (5.3) and
(5.4). For N < m it leads to

o [ [ N - prun\ 7]
pg(l_—m}_u\&_puua)( 1 ) (5.7)
and ) §
o ] N - ppun 7
P2 T aw -1—\6_1—(1—5)( - ) | (5.8)
where

PN = (1/(N =1 +1) [(a — L)(N = 1) + /L3N 1) + a(2L — a) ] (5.9)

(4.16) takes the form (5.1) for N = m. For N < m we get

O s P e
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Figure 1: The equilibrium region R, is represented by the vertical lines. In this example,
the upper bound for prices decreases in N from No on. The black dots represent the

Pareto optimal collusive outcomes. Notice that all the constraints are binding.

For the region R, the unequality (4.20) takes the form (5.3) and (5.4), whereas (4.21)
takes the form (5.5).

For the region R4, the unequality (4.25) takes the form (5.1) for N > m, and (5.10)
for N < m. (4.26) takes the form (5.3) and (5.4) for N > m and (5.7), and (5.8) for
N <m.

Figures 2 — 4 illustrate typical outfits of the regions R; - R,.

6 Concluding Remarks

It was the aim of this paper to analyse the classical Bertrand-Edgeworth market game
with increasing marginal costs under consideration of entry and exit decisions in a
dynamic framework. I we assume there to be always some firms that threaten to
enter the market, which seems to be much more realistic than the assumption of puré
oligopoly, the situation turnes out to become unforeseen complicated. The results
of Theorems 4.1 and 4.3 show how large the set of equilibrium outcomes can be if
we allow for the whole space of equilibrium strategies, which includes strategies that
employ former inactive firms in order to punish a deviator. The proof of these results

suggests that not all the strategies are equally plausible, which calls for a restriction
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m No N
m™(p) = K — 57" (pPP(N + 1))

Figure 2: The region Ry. The black dots denote the Pareto optimal collusive outcomes.

At the very left one, the incumbent firms face the highest profits.

’ wk (51) = 57(7)

L1+—o—s \'N

\ ™(p) = p7(F)

LT —ac(3)
Pct ”\”“'______M

Figure 3: The region R3. The black dots represent the Pareto optimal collusive out-
comes. The white dots on the very left belong to Rs, but are not Pareto efficient.
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m™(p) = K — &7 (P (N +1))

Figure 4: The region Ry. The black dots denote the Pareto optimel collusive outcomes.

to a subset of equilibria, which we called " reasonable”.

Our results also call into question the traditional method of endogenizing the number
of firms in oligopolies, that is, to assume that firms will enter the market as long
as positive profits are earned by the incumbent firms (cf. [BS85]). In the classical
Bertrand-Edgeworth model, however, there is no pure strategy equilibrium even in
the repeated game if we allow for free entry. By introducing entry costs, as it is
done in this paper, we do get (stationary) equilibria, with several possible numbers of
firms which can be active in equilibrium. This does not need to be a disadvantage.
The number of active firms, the market will end up with in equilibrium, may heavily
depend on the prehistory. If we assume that the firms will enter the market by and by,
and the incumbent firms will agree on a reasonable equilibrium outcome, it can be an
advantage that there is room for several possible numbers of firms that can collude in
equilibrium. By Lemma 4.8, the lower bound for equilibrium prices is always greater
than the average cost of the produced and sold quantity, if /V firms charge the same
price and share the market fairly. Since the lower and upper bounds for equilibrium
prices yield upper bounds for possible equilibrium numbers of firms, we conclude from
Lemma 4.8 that the number of firms given by the zero-profit condition cannot be an
equilibrium number of firms if the discount factor é is sufficiently bounded away from
one. Notice that the smaller &, the greater the lower bound for equilibrium prices and
the smaller the greatest possible equilibrium number of firms. On the other hand, one
can show, that the set of equilibrium outcomes converges to the whole set of individually

rational outcomes when § goes to unity. This is in accordance with the folk theorem
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on purely repeated games (cf. [FM86]). In many applications, however, the discount

factor is bounded away from one.

For the sake of simplicity and shortness, we confined ourselves to {quasi~) symmetric
equilibrium outcomes, that is, all the active firms charge the same price in equilibrium
and also on the punishment paths. It is not much of a problem to characterize also the

asymmetric stationary equilibrium outcomes.

Of course, the paper includes some restrictive assumptions: consumers have identical
preferences and even the individual demand structure is very simple, also the firms
are assumed to have identical technologies. The problem becomes certainly even more
complicated if we allow for individual elastic demand or different reservation prices,
in which case different rationing schemes have to be considered. This paper may also
be considered as a first step towards a theory of long term monopolistic competition,
since 1t ccontains two features of that kind of market form: the U-shaped average cost
curve and the number of firms, which is endogeneously determined. What is missing
is the issue of differentiated commodities. However, a lot of conceptual difficulties will
arise since the dimension of the consumers’ consumption space may vary if firms enter

or leave the market!

A Appendix

A.1 Proof of Theorem 4.1

In the following we will often write 5instead of ¥ = (p,...,p,n.a.,...,n.a.), especially
N s’

N n~N
this is done for p = p**"(N) and p = p*(N). For the active firms of a quasi-symmetric

outcome p, we will omit the subscript ¢, if not necessary, and write 7 instead of =;.

Claim A.1 V8> 0, VN > m, with 3 p, s.t. (p,N) € R, there is To € IN such that:

To-1 -]
2 ST (ETT(N)) + ) 6w (F(N)) <0 (A1)
=0 t=Tp

Proof: Since N > m € Z, we have N —1 > m = L. Hence g5 < g. yielding

w] —

v'(7%) < v'(¢c) = p.. By Lemma 4.3.iii) we have p*(N) < o' (57) < pe. This
yields 7 (p™*(N)) < 0. Since the second term of (A.1) becomes arbitrarily small for

To sufficiently large, the claim holds obviously. Q.E.D.

27



By Claim A.1 we can define for N > m:
T-1 ©0
To := To(N) := min{ T| 3 8 (F™(N) + 3 &' (V) < 0} (A.2)
t=0 t=T

By Lemma 4.8, p*(N) > AC (-,{,—) holds for all N for which p*(N) exists. Hence Ty > 1.
Further we define the punishment action p'(N) of the "last punishment period™® by

To-2 oo
Y S (V) + 607 (FU(V)) + 2 Em(EN) =0 (A3)

Since (fF) is continuous and increasing in p there exists a price p/(N) with p***(N) <
P'(N) < p*(N) solving (A.3).

Step 1: Construction of the Equilibrium Strategy

Let
A(R):={i € I'| 03(h) # n.a.}

be the set of players (firms) who are supposed by the strategy to be active after history
h. Let
Z:={(tA)eIx2"ie A}

Z:={(;,A) e I x2'|i¢g A}
Now we define 6 generic paths.
Definition A.1 The initial path ¢ :[0,L] x 21 - Q  is defined by

Elp Al(r)=F)Y ¥r20 (A4)

Definition A.2 The Quasi~-Symmetric—Punishment-path 957 : 21 & Q  is de-
fined by

B (N)* for 0<T< T
ISP =1 (FN)) for T=T, (A5)
(FUNN* for 7> Ty
where N = |A|, and Ty = To(N) and p'(N) are defined by (A.2) and (A.3).

®This construction has been borrowed from Lambson (1987).
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Definition A.3 The Drive-Qut-and-Substitute-path ¢P95:Z - Q  is defined by

DOS[; _ ) 7 )B’ for =0
: [z,Al(-r)—{ e o 0 (A5)

with B' = [A\{i}] U min(~N+D[1\ 4],
where min®*)[A] denotes the first k smallest elements® of A.

Definition A.4 The Drive-Out-Intruders-path ¢P°1:7Z - Q  is defined by

) _ (15;)5" for =0
CDOI[z,Al(T)—{ Y T o (A)

with B" = AUmin™~M[I\ (AU {i})). Notice that B" = A for N > m.

Definition A.5 The Substitute~-After-Ezxit-path ¢5AF 1 Z - Q  is defined by

S4B Al(r) = (FU(N)P for 720 (A.8)

with B’ defined as in Definition A.3.

Definition A.6 The No-Entry-after-Erit-path "% : Z - Q0 is defined by

NEE[ A7) = (U(N)E" for 720 (A.9)

with B" = [A\{i}].

Let Y :={0,QSP,DOS,DOI,SAE,NEE} and C = {¢*}sev.

Now let
g: H—Q with g[h] = {q[h]()};,
and
T:HxC—IN
Then the strategy is defined by
o(h) = qlh)(T(h, ") (A.10)

where ¢ and T are defined as follows:

SIf A is a finite linear ordered set, min{¥)[A] is defined inductively as follows: min'*)[4] = {} Vk < 0,
min'[A] := min{i € A} =: a;. Let az = min{i € A\ {ay,...,ax_1}}. Then min("){A] = {a1,...,ax}.
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If he€ S, then
glh] = [p", A%}
T(h,®) = 0

If Av € I, such that " deviated singly” in the last period of A, then

glk] = q[h7]
T(h,c*) = T(h~,¢*)+1 VkeY

We write for short: A = A(h™) for the set of players that is supposed to be active in
.
If 3¢ € I, such that " deviated singly” in the last period of %, then

(OSP[A]  if i€A  and Kl#na |A|>m41
POS; Al if €A  and Kfna |Al<m
glh] = { POA] if ielI\A

SAEG Al if i€ A and hl=n.a. |A|<m

| NEE[,A) if i€ A and hl=na. |A|>m
T(he) = 0 VkeY\{0)

Comment: In words, the strategy works as follows. At the beginning, in period zero
of the game, when the history consists only of the initial state of the game, 8, the initial
path ¢ will be started. The counter of the path T(3, c®) will be set equal to zero. If the
game is on any path c*, k € {0,QS5P, DOS, DOI,SAE, NEE}, maybe on the initial
one or on any punishment path, and if no player has deviated singly in the last period
of the history A, the path ¢ will be continued. In particular, the counter T'(k, c*) will
be increased by 1. If any player has deviated singly in the last period of the history A,
one of the punishment paths c® will be started and the counter T(%,c*) of this path
will be set equal to zero. The choice of the path depends on the actions from which
one to which one the player has deviated and also on the joint action tupel of the last
period, in particular on |A(R7)|: If an active firm deviates by charging a price different
from the one described by the current path and if [A(A~)| > m, the path ¢?5F will be
started. That is, all the active firms, including the deviator herself, punish the deviator
symmetrically (we call the path gquasi—symmetric since it is symmetric with respect to
the active firms). Notice that all the active firms earn the same profit if they play ¢?5F.
¢?3F is as heavy as possible also for the punishing firms. If |A(h™)| < m, P95 will be
started, that is, m — N 4 1 inactive firms € 7\ A(h™) enter the market and the deviator
will be driven out by the N — 1 former and the m — N 4+ 1 new active firm. Notice that

o . K
in this case, the punishing firms earn more than zero, unless § < = 57, whereas
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the firm that is to be punished gets zero. If an inactive firm enters the market, the
active firms drive it out again by playing the path ¢?%T if N > m. For N < m, again
m — N new firms enter the market to drive out the deviator. Hence ¢P°! is similar to
P9 if N < m. If a firm leaves the market without being told to by the strategy, the
path ¢>4% will be started, if JA(h~)| < m, and ¢NEE if |A(h~)| > m. (Notice that there
may be a one-shot incentive to leave the market at the beginning of the path ¢95P if
7 < Tp and p"(N) will have to be charged.) ¢54F is similar to ¢P9% apart from the
fact that it starts immediatly with p*(N). If |[A(h~)| > m, the deviator (who has gone
out of the market) will not be substituted. Several deviations during one period will
be ignored.

Step 2: Computing the values of the paths

Let I¥ € X be the set of perfect strategy profiles of I'. Let Q?(h) = {¢(h,0) | o € £*}
be the set of paths generated by perfect equilibrium strategies after history k. We call
this the set of perfect equilibrium paths.

Definition A.7 A profile of punishment paths (q',...,q")} is called optimal if Vh € H:

¢ € QP(h) and vi(h, ¢') = min{v;(h,0) | o € TP} .

Since each firm can guarantee itself zero in each subgame by being not active forever,
we have to show that v;(h,c¥) > 0V h € H and ¥k € Y. Moreover, we will show that
v;(h, c¥) = 0 if § has deviated singly in &', that is, the punishment paths are optimal.

1) vi(3,c%:

v%;(5,(®*,A4")) = 0 VieI\A* (A.11)
- 11—6#,- (") Vi€ A with &#na  (A2)
= 'i'-'}-sﬂ'; (ﬁ*) — K Vie A" with 3.— = n.a. (A13)
Since v’ (31,—) < AC (%) if N >m, and v' (%) > AC (%) if N < m, to show that the
RHS of (A.12) is nonnegative it suffices to show that p* > AC (%) for N > m, and
p* 2 p. for N < m. The first one holds by (4.7) and Lemma 4.8. Now suppose N < m
and p* < p.. Then Nv'~1(p*) < Nv'"Yp,) = N¢. < mg. = 1. But then 7¥(5*) > 0,
whereas ;-m(5*) < 0 by p* < p., contradicting (4.8).
The RHS of (A.13) to be nonnegative is equivalent to p* > AC (%) if v~1(p*) > & and
equivalent to p* > 5, := min, AC(q) if v""1(p*) < L. Since again o' (-,lg) < AC (#) if
N >, and v' (%) > AC () if N <7, this holds by (4.12) and (4.13).
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Assume now that ”j has deviated singly in k! ».

Therefore, in 2.} - 5.) all the statements about v;(k,c*) with £ € Y\{0} are meant
to hold for all & with ”j has deviated singly in &' ". Hence, for simplicity we relax h
as an argument of v; and write v;(h,c*) = vi(c*) Vk € Y\{0}. Furthermore, we will
again write for short 4 := A(h™).

2.) v (CQSP ): By construction we have
vi (9F[A]) =0 Viel (especially for i = j) (A.14)
3.) Clearly

VieI\ B for k=DOS,
VieI\B" for k=DOI,

() =0 VicI\B for k=SAE, (A.15)
VicI\B"” for k= NEE .
1) v (cPOS):
5 (PO Al = m(G07) + o (%) Vie AU} (A1)
= () + 2w (7)) - K (A17)

Vi€ min™"N+I[1\ 4]

By construction, |B’| = m. Hence » ((ﬁc)B') = 0, and the RHS of (A.16) is not less
than zero. The RHS of (A.17) is not less than zero if X, ((ﬁ““')‘g') — K > 0, which
is equivalent to § > m’ which holds by (4.19). J

5 ) (25 (CDOI) .

w (POA]) = ((15;)5")+lf i (7)) Viea (A.18)

= (%) + ¢ ri (()™) - K Viemin™M[I\ 4] (A19)

If |A| < m, the same arguments hold as for v; (cDos). Notice that in this case p*(N) =
pUs. If |A] > m, min™~M[T\ (AU {j})] is empty. Hence it remains to show that the
RHS of (A.18) is nonnegative. By (4.7) we know that

T (V) £ g (7)) (A.20)

& T(FUN) -7 (p"(N)) + T(P*(N)) >0

1-46
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Hence, the RHS of (A.18) is nonnegative if
i (ﬁCN) > w(p*(N))=r"(p"(N)) forN>m
1

Applying Lemma 4.8 to (A.20) we get: p*(N) > p. for N > m. Moreover %(p“(N)) =
v'~1(p*(N)) > q. for N > m. On the other hand, % < g. for N > m. Hence the LHS of
(A.21) increases faster than the RHS in p*(N) and both sides are zero for p*(N) = p..
This establishes (A.21).

6) v (CSAE) .

v; (CSAEU, A])

T ((ﬁuuba)B') K Vie min(m"N“)[I\ Al
> vlc Os) >0  Viemin™ N[\ 4]

Hence also v; (CSAE[j, A]) = ﬁvr,- ((ﬁ““‘)B') >0 Vie A\ {j}.

7.) v (NEE):

1

v (MEEGAY = mtAl-D)  Vie A\ (5)
> Tm A2 W (G7)) 20 ViAI>m
rI.‘hus we have shown
vi(h,&¥) > 0 Viel Vke {0,QSP,DOS,DOI,SAE, NEE} (A.22)

and A € H such that c* is to be played after A.

Since for each path the prices charged during that path are not decreasing in 7, we get
also
| vi(h,c*, 1) > vi(h, k) > 0 (A.23)

Vr>0 Viel Vk € {0,QSP,DOS,DOI,SAE,NEE}
with A' = ¢*(r — 1) for 7 > 1 and & such that ¢* is to be played after h, otherwise.

By (A.14) and (A.15), the strategy is even optimal since it holds the deviator always

down to her security level.

Step 3: Perfectness of ¢

In Section 3 we defined ¢’ as the punishment path for player j. Set ¢' =q VYj € I.
That is, all the players will be punished by the same paths. By construction, g[A]
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only depends on h;’l and A, if j has deviated singly in A, Therefore, we can apply
Proposition 3.1 in order to check, whether & is a perfect equilibrium. The number
of inequalities in (3.1) reduces considerably since by construction, g[h] is piecewise
constant on the set of histories. Since #; depends only on the own action rather than
the joint action tupel in the previous period, we will write v;(h!, c*(k)) instead of
v; (K, ck(R)).

A) Observe first that it does never pay for any i € Ah)and Vh € H,Vk € Y to

deviate to s; = n.a., since
Vr>0, VkeY, Vci(r)#na, VA €S with A =cf(r-1) forr>1

and ¥ &' that can precede ¢* if 7 = 0

o (hf ; (n.a,.,c’i‘-(r))) + &y (n.a.,cSAE(i,A(h))) =0 (A.st} v; (hf-,ck,r) (A.24)

if |[A] € m and

% ( (nancti(r)) + v (nan VBB AGR)) = 012w (Bl 5 1) (A.25)

if |A| > m.

B) Secondly, it does never pay for any i € I\ A(k) and Yk € H with h! = n.a. to
deviate by entering the market since

Vs;#na., Vr>0, VYkeVY,

7?'- (n.a,,; (s,—,cii(‘r))) -+ 61),'(3;,CDOI(A(h))) S :I.lelg 7“1:.' (n.a.; (3,‘, Ci,-(‘l’))) +0
< max{x*(p*>) , 7E(p*(|A) } - K
<0 (A.26)

The second unequality holds due to the fact that for any path k # 0, we have [A(R)| >
m and for all i € A(h), 7 > 0, k # 0, we have cf(r) > p.. Hence, entering by charging
a higher price than ¢f(7) yields no demand. The last inequality holds due to (4.5) and
(4.6).

By A) and B), in the remainder of the proof, it is sufficient to show that it does not
pay for an active firm (active in the previous period) to deviate (in the current period)
from any path ¢*, k € Y, by charging a price different from the action prescribed by
the strategy. Notice that this includes also deviations from n.a., in the case that a firm
has to leave the market, if the path ¢P%% is to be played. This case is not yet covered
by B! Deviations from cf(7) # n.a. will be punished by ¢95F or ¢P9%, deviations from

34



cf(7) = n.a. by c?°!. Furthermore, it is sufficient to consider the supremum of payoffs
resulting from one-shot deviations. Hence (3.1) takes the form

k r P
i(siycZ; + dvi(si, ") < vk,
igg_‘fr(s c2i(7)) v(_0 ) < vk, 1)

& sup mi(si,c® (7)) < wi(hl, eF,7) (A.27)
2 ES;
QSP if f(r)#na. [Al>m
VkeY, Vr>0, Vhi#na andr={ DOS if (r)#na |A] € m
DOI if (1) =n.a.

C) In [Req90b] we have employed the path ¢?5P for the purely repeated game and we
have already shown there that it does not pay to deviate from c?57 = ¢9SP[4].

D) Deviations from 9% and ¢P°! never pay for player j (the original deviator who
caused P29 or ¢P91), since if firm j stays in the market, there will be N + 1 > m
firms in the market. Hence at least N firms can serve the whole market even at price
pe (the first punishment action of ¢P?°% and ¢P%?). Thus, deviation to a higher price
yields no customers. Undercutting p, yields also negative profits. It remains to show
that deviating does not pay for the punishing firms, either.

case a) |A| = m (for cP°% |A| equals m). subcase i) 7 = 0. In this case the best
response is to charge L. Hence (3.1) takes the form

é
Lg. ~v(g)—F £ 0+ I—_—(S[p““"'-qc—v(qc)—F]

6
®  [L-plee £ 7" —pele

L—p,
L + p"alu —_ ch

& 6

v

which holds by (4.19).

ii) 7 > 0. Charging a higher price does not pay for 7 > 0, if it does not pay for 7 = 0.
Undercutting p“s¢* does not pay due to (4.7) and (4.10).
case b) |A| > m. In this case, charging a higher price yields no customers and,

therefore, negative profits. Undercutting p, yields also negative profits. Undercutting
p“(N) has already been discussed.

E) Deviating from ¢54E and ¢"FE does not pay by the same arguments as for ¢29%
and cP9 for r > 0.

F) It remains to show that it does not pay to deviate from the initial path ®. Actually
this is trivial since (4.5) - (4.8} (plus (4.12) and (4.13) in case b) of the Theorem) are the
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corresponding equilibrium conditions: case a) Entering the market by undercutting
does not pay by (4.5) since x}(p*) < #}(p*(N)) < K ¥V i,N. case b) Entering the
market by charging a higher price does not pay by (4.6). case c) Undercutting does
not pay for an active firm due to (4.7). case d) Charging the monopoly price does not
pay for an inactive firm by (4.8).

Necessity:

It is easy to see that (4.5) — (4.8) are also necessary, since otherwise deviating does pay,
if all the firms € A* are incumbent at ¢ = 0. If a firm i € A* has to enter the market
in period 0, that is, if 5; = n.a., (4.12) and {4.13) are necessary.

A.2 Proof of Theorem 4.2

We elaborate this proof only on the parts that differ from the proof of Theorem 4.1.

With a little abuse of notation, VNV for which 3p s.t. (p, N) € R; we write again
p*(N} := max{p | s.t.(p, N) € R;}.

Claim A.2 V6 > 0, YN for which 3p s.t. (p, N) € Ry, 3Ty € IN such that:

Tp-1

Eét P7(N)) +Z§‘1r( ))<ma.x{0,

t=To

=TT} (A28)

Proof: For N > m, see Claim A.l. So let ¥ < m. Since v ( ) < pP*"(N), we get
v'=1(p"(N)) > %. Hence n*(p"™"(N)) > #(5*"(N)). The rest is obvious. Q.E.D.

So we set

Tg := To(N) := min { To | T satisfies (A.28) } (A.29)

Again, we define the punishment action p'(N) of the "last punishment period” by

Zs‘w(**’"“(w) + &%7'x (5U(N)) + 3 6 (7))

t=Tg

= max {o ) ——x" (" (N)) } (A.30)

1-46
Now we construct some more punishment paths:

Definition A.8 The QSP™-path 957" :21 5 Q  is defined by

(Fre(N) for 0K 7 < T,
A =4 (FN) for T=T (A.31)
(p"(N))“‘ for 1> 1Y
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where Ty = To(N) and p' = p'(N) are defined by (A.29) and (A.30), and N = ) A|.

Definition A.9 The Punish-Iniruders-path ¢! :Z - Q is defined by

(F(N +1))8" for 0<T < TYN +1)
Flli, Alr) ={ (FN+1))°  for 1=TYN +1) (A.32)

FEN + 1) for 7> TYUN +1)

where B = AU {i}.

¢' : H — (1 is defined like ¢ in the proof of Theorem 4.1, apart from the case, when a
player deviated. If 3¢ € I, such that ”; deviated singly in A", then

[ P Al if i€ A and Al # n.a. )
PO A] if i€I\A and [A] > m
gTh] = ¢ PA] if i€eI\A and |Al <m ; (A.33)

S4B Al if i€A  and hl=na |A|<m
| NVEE[i,A] if i€A and hl=na. [A]>m |
T(h,e¥) = 0 VEkeY\{0} (A.34)

where cP95, ¢SAE and NEE are defined by Definitions A.4 - A.6.

Comment: Since we consider ” reasonable equilibria”, firms cannot be driven out of the
market with the help of former inactive firms. Hence, also for N < m active deviators
will be punished symmetrically by the path ¢957'. For N < m intruders will also be
punished symmetrically by the path ¢/, holding it down to fz7"(p?**(N + 1));0.

The values of the paths

It is easy to check that the values of the additional paths ¢?°F" and ¢/ are nonnegative

by constuction.

Perfection of the Strategy

A) First we show that it does not pay to deviate from ¢®. Undercutting does not. pay
by (4.15) for an intruder and by (4.16} for incumbent firms. By Corollary 4.1, also to
charge a higher price does never pay. By Lemma 4.8, p* > AC (%) for N > m. By
Lemma 4.7, p* > p™(N) > ¢/ (%) > AC (-fg) for N < m. Hence it does not pay to

leave the market.
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B) In [Req90b] we employed the path ¢@57' for the purely repeated game. Deviating
from this path has been demonstrated to be unprofitable for an incumbent firm, in
that paper. Entry by undercutting does not pay for r > Ty by (4.15). Also, it does
not pay to undercut for 7 < Ty since p*(N), p'(N) are not greater than p*(N). Since
the incumbent firms have excess capacity at p***(N), that is for r < T, they do so for
7 2 T Hence charging the same or a higher price as the incumbent firms do, does
not pay for an entrant, either.

C) Deviations from cP!. For r < Ti(N + 1) deviation does not pay by the same reasons
as for ¢957'. For 1 > T}(N + 1) we have to show that

1
T (F“(N +1)) (A.35)
However, by Assumption 6, Y N <m I ps.t. (p,(N + 1)) € R,.

RN + 1)+ e (N 4 1)) €

D) Deviating from ¢?°7 by charging a lower price does not pay by the same arguments
as in Appendix A.1. Charging a higher price never pays for |A] > m + 1 since there is
no demand. For |[A} = m, it does not pay by (4.19).

Necessity is trivial, since if (4.15) is not satisfied, entry and playing the best response

forever is profitable. If (4.16) is violated, it will pay for an incumbent firm to undercut
and to play the best response forever. This completes the proof of Theorem 4.2.

A.3 Appendix: Further Proofs |

Proof of Theorem 4.8: Substitute p“» by L and substitute p*(N) by p*t(N) :=
min {L, p*(N)}, where p*(N) is defined by (4.4). Then follow the lines of Ap-
pendix A.l. (4.24) guarantees that v (CDOS) > 0 for i € min™ N1\ A]. It
remains to show that (4.24) implies that deviation to a higher price does not pay if
|A] = m and ¢P°7 is employed. This is the case if

(A.36)

B -

L'Qc_v('?c)_FSO+1_i5[L°Qc“‘v(QC)_F] & 62

K K K 1
But by (4.24) we have § > T=petk > T L)+K >RKiE = 7

Proof of Theorem 4.4: Follow the lines of Appendix A.2 and take notice of (A.36).
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