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Domination, Core and Solution
(A short survey of russian results) :

1. Introduction

This paper is a short survey of russian papers in cooperative game theory. We do not
pretend this survey to be complete. It consists of

1) the main results as obtained by Bondareva, Vilkov, Kulakovskaja, Naumova and
Sokolina and represented in their survey in Russian (1977).,

2) some unpublished results of Bondareva and Kulakovskaja.

All results are connected with the topic of domination, core and within the concept of
the von Neumann-Morgenstern solution, other topics are omitted. All theorems are
given without proofs.

2. The Abstract Domination, Core, Solution

Consider an arbitrary set A and a binary relation dom C A x A, called domination. We
shall write x dom y if (x,y) € dom, dom(x) = {y € A:x dom y}, dom (B) = xléB dom (x).
Let x C A, then the core C and the solution V are defined as follows

(1) C(X) = X - dom (X)

(2) V(X) = X = dom (V(X)).

The solution was defined by von Neumann and Morgenstern (1944). Usually the term
v.N-M-solution is employed. For convenience, we shall just refer to it as "the
solution".

3. A Solution of Abstract Domination, Continuity

Von Neumann and Morgenstern (1944) proved that for dom to have a solution for each
X CA, a necessary condition is dom to be acyclic. A sufficient condition is dom to be
strictly acyclic. Let A be a subset of a metric space (separable for simplicity). We say
that dom is preserved in the limit if dom is tranmsitive and for each sequence

(%X, ) e Xn [ X satisfying x dom x_, (neN), it follows that x dom x g for some njy.

From the results of Kulakovskaja (1976) it is following the result.

1 The author is grateful to Prof.Dr.J.Rosenmiiller for providing an opportunity to write
this paper and to Mrs.K.Fairfield for preparing the text.



Theorem 1:
dom has a solution on each compact X C A if and only if it is preserved in the limit.

A relation dom is called strongly continuous (see Bondareva (1978)) on A if for X ¥ g

X, YEA (o), x o x, ¥ Y

- 1) x dom i (neN) implies x dom y provided x # y
an

2) x dom y implies X, dom Yo for all n exceeding some n,.
Theorem 2: (Bondareva 1978)

The core as a function C : 2A — 2A is continuous in Hausdorf matrix if and only if dom
is strongly continuous.

Because strongly continuous relations exist only in l-dimensional spaces (see
Bondareva (1987)), a finite approximation of the core is impossible in general
n—dimensional spaces with n > 1. For special dom it is possible (see below).

4. The relation dom in games

Consider the following examples of dom.

1) A classical cooperative game <I,v>, I = {1,2,...n}, v : g Rl
A= fxe® 52 v({D), <) = 0} ((5) = 2 x)
dom = USCI domS where
xdomsyh—-» l)xi>yi,i€S

2) x(S) < v(8S).

Bondareva and Naumova (1971) considered a slightly different dom defined via a
condition

1) X5 2 i (i€8),x(S) > y(8).

A second example




2) A game without side payments <I,V,A>, where V is a function V : ol s e

A is a compact subset of R,
dom = Ugq domg, x domg Y 1) x; > Y;, i€S

2) x € V(S).

3) A game defined by Morovov (1973) is similar to a game of Lucas in partition func-

1)

tion form. This is a special case of games without side payments. Let 7 be a
partition of I. Denote :

A(r) = {xeR": x; 2 v({i}), x(B) = v(B), B€ T},
V(S)=U_gA(r),H=V(1)=U_ A(’r){

and define dom as in 2).

A game with an infinite set of players I, <I, ¥ v>, where ¥ is an algebra of
coalitions, v a real nonnegative function defined on X satisfying the conditions
v(6) = 0, v(I) < =. A is the set of all additive functions x on ¥ with x(I) = v(I).

There is Owen’s definition of dom in such a game, but there are no results about
this domination. Kulakovskaja (1976) considered the dom defined with the aid of a
special class 2 of coalitions S with v(S) > 0 for dom’, but domg is the same as in

1). For this dom Kulakovskaja received a sufficient condition for core to be a
solution.

5. An approximation of game with domination

Consider an arbitrary game with dom as a game without side payment <I,V,A> and
let A be a compact, set in R™. Let A6 be an e-net for A in R™. The net A6 is named a

convenient net if

1) d(A,, A) < ¢, where d is Hausdorf distance,
2) A, NV(S)is an e-net for V(S).

Such nets always exist, the condition 1 always holds for Ae C A, from this condition

A — A in Hausdorf metric d.

€-0



Consider §—dom: x é—dom y «— S exists

2) x€V(S)

Let Cé(Ae) is a core for §—dom on A .

Theorem 3: (Bondareva (1976))
If for some sequence {e} — 0: C, (A ) # @ then lim C, (A) = C(A) and if C(A) # 0
€0

then {A } ,, exists such that '151151 C(A,) = C(A).

Corollary:

The core of an acyclic game (with acyclic dom) is nonempty.

For solution it is possible to prove only that each solution is a limit of a sequence of
solutions of finite games on ¢-nets (see Bondareva (1976)).

6. A structure of domination, acyclic game, Lucas game without
solution

Consider U(ol, 02) a subset of A where dom is possible via a set of coalition o, and

impossible via o;. For classical games

(3) U(oy,09) = {x€A: x(S) 2 v(S), S€oy, x(T) < v(T), TE€ 09}

o Uoy= ol _1— 0 then the sets U(ay, 0,) constitute a partition of A.

Put XS—dom Y, X, YCAifxeX and y € Y exist such that x dom y.

Name a set B € U(al, 02) a pyramidal set of 1 sort if o, = N §5+¢ ¢. Name B a pyra-
Seo
2

midal set of 2 sorts if B = B; U..U By, B;NB,; =6, B; ¢ U(03, 03), fim 05 #0 and there

exists an infinite cycle for dom:

B

{xp} e xpp g domxpy i Xy € By



Note that there exists such i(B) that x dom y implies x; > y;.

Theorem 4: (Bondareva (1975))
An acyclic game has an acyclic structure, i.e. there is partition A into a system of
pyramidal sets A o acyclic via S—dom.

The pyramidal component exists in the Lucas game without solution.

7. Coverings (balanced collections of sets) and the core

A collection A = {Ag > 0}g is named a (balanced) covering iff SZC:I Ag Xg = X (see
Bondareva (1963)). Name a system o = {S} of coalition independent if the system of
incident vector Xg is linearly independent. The covering A is named reduced one if the
system ©()) = {S: g > 0} is independent. ©()) is named the balanced collection of

sets.

Theorem 5:
The core C of game <I,s> is nonempty if and only if for each reduced covering

A: I Ag v(S) < v(I).
sc1 S
In above described structure of A (see (3)) the core is the set U(X,#) where ¥ is the
system of all non-empty coalitions except I. To receive a condition of U(al,02) #0 is

needed to extend the notion of the covering.

8. Extensive coverings (definition)

Name a collection A = {’\s}sg an extensive covering iff S?I Ag xg = 0.

Denote @1()\) = {5 /\s >0,S#I}, (':'12()\) ={S: )‘S <8, 5#1}, @i()\) ={T:T=1IS,
Se G)l()\)}, =12

The extensive covering A is named the reduced one if the system ©, (1) U (1) is linear



independent. This definition is correct because if ©,() U ©5(}) is independent then
©;(A) U €,(1) is also independent. Denote A = {2} the set of all extensive covering for

* *
n-player game, A — the set of all reduced ones. The set A is finite.

9. Extensive coverings and exact bounds for the core

Consider the problem to find the exact bounds for core-imputations as a linear problem

{B,} and {P;}:
o
EE

The application of the theory of duality generates extensive covering of a special kind.
Name a collection X' = {Xg > O}SgI an upper i-covering if SE}I Xé Xg = Xi X = X and

name Ai = {Aé > O}SCI a lower i—covering if M Xx- SEI ég Xs = X{i} - Note that Xi, Ai
= C

are extensive coverings with the systems @1(Xi) = {S:S #{i}} and @2(Xi) = {{i}} and
&) = {{i}}, ) = {5 : S # {i}}.

_* *
Denote the sets of all reduced upper and lover i—coverings by A and A

Theorem 6:
min x; = max( 2 Xl v(S) = A; v(I))
xeC XIEK
max x; = m1n (Apv(@) - 3 ’\S v(S))
xeC AIGA Scl

The bounds considering by Tijs and Driessen are also expressed with the aid of
i—coverings.



10. A new necessary and sufficient condition for a strong stable
core existence

Core is named a stable one if it is also a solution. Name core a strong stable one if it
has the following properties. Let x ¢ C then for each S: x(S) < v(S) there exists y € C:
y domS X.

Denote CV the set of games with the core stable property and CV the set of games with
the strong core stable property. The property for core to be stable depends on the struc-
ture of the game, i.e., from emptiness or nonemptiness of sets U(al, 02).

Name an extensive covering A € A generating by system (oy, 0,) of coalition S, where

{{1}, {2},....{n}} Co, if ©;(}) €0, and 8,() € 0, (definition of (1) see in section 8).

Theorem 7: (Bondareva (1984))
%*
U(oy, 0,) # #if and only if each A €A generated by system (0, 0,) satisfies the condi-
tion X g v(S) < 0, and unequality is strong if €,(A) #0.
Sc1 S

Name a coalition S active, if there exists x € C : x(S) = v(S).

Theorem 8:

*
The coalition S is active if and only if for each A €A : €,()) = {S} satisfies the condi-
tion ¥ v(T) - Aq v(S) €O0.

i T 8

Define S—covering as a collection S o {/\%} satisfied the condition B% XT € Xg- As
above put Gl(AS) ={T: /\% < 0, T # I}. Define E(AS) =3 ’\’% v(S). Name 25 reduced
one if GX/\S) ='{T : Ag# 0} is independent.



Theorem 9:

A game <I,v> € TV (has a strong stable core) if and only if for each system o of active
coalitions such that U(c) # @ and each S € o and each reduced S—covering 25 such that
@l(AS) = {S} there exists a reduced S—covering us with @l(p,s) Co such that

(5) £X3 xp = Shp X
and
(6) 23 ¥(S) 2 B3 ¥(T).

From condition (5) it is following that v = {{,\%}, {—p,%}} is an extensive covering for
which I vg v(S) 2 0. So the necessary and sufficient condition for core to be a strong

solution is expressed in a term of extensive coverings, but not reduced ones.

There is a following sequence from Theorem 9. Consider all extensive coverings A with
no more than 2n-1 coalitions in (). The corresponding conditions ¥ Ag v(S) = 0

define the partition of the space of n—person games into the regions. The union of some
such regions is VC.

Theorem 9 has been proved by Bondareva and Kulakovskaja. This theorem gives the
more simple condition than conditions of Kulakovskaja (1971).

11. Necessary conditions for core to be a solution

There are some sets U(c,, 0,) undominated by core.

For example: Let §; U §, =1 |S;1=18,5] = n-1 and 0 = {T:TcS; NS,}, then if
x €U0y, 05), 09 = {S;,5,} and y domg x. Put §; =1- {1}, S, = I-{2}, then S must
contain 1 or 2 because of x(T) > v(T), TCS; NSy =1- {1,2}.

So y domg x implies y; > x; or y, > Xy, therefore y(S,) < x(S,) < v(S5,) or
¥(8;) < x(§;) < v(S,), and y £ C. Then for C to be a solution necessary U(oy, 05) = 9.

Name a coalition essential one if the core of game projection is nonempty. Note that
game with nonempty core is equivalent to game with all essential coalitions.



Theorem 10: (Bondareva (1984))
The necessary condition for the core of game <I,v> to be a solution is
v(I - {i}) + W1 - {i}) = v(I - {i.i}) ¢ v(D
if I - {i,j} is essential or
v(I-{i} + v(I-{i}) + ZAg ¥(S) < v(I),
where {Ag 2 0}gq —{i,} is a covering of the set I — {i,j}, if I — {i,j} is unessential.
The well known condition
v(I-{i}) + v(I-{i}) < v(I) fir I = {1,2,3}

follows from theorem 11.

12. Sufficient condition for core to be stable

There are many conditions for games to have a stable core. The most general ones were
received by Kulakovskaja (1969) as the conditions for undominated by core U(o,, 02)

to be empty.

Consider a cover of I or 0 = {S} : U ¢ = I, a cover ¢ is a minimal one if for each 5 €0 :

Uo—{Sy}#L

Theorem 11: (Kulakovskaja (1969))

If for any minimal cover ¢ in a game <IL,v>: X v(S) < v(I) then the game has a stable
Seo

core.

Note that the extensive covering A corresponds to cover ¢ by the following trivial

manner: ’\S =1, 8€0, AI = -1, A{i} =1-% )‘S’ and A is reduced one if core is mini-

i€eS
mal.

The conditions of Djubin (1973):

v(S
V(S)Sn_—l—é-rﬂ)j’
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of Gillies (1959):
vWs)<t

and of Bondareva (1963):
v(S)¢1

(r is a rang of incident matrix) are the sequences of these conditions.

13. The core in game without side payments

There are some well known sufficient conditions for games without side payments to
have a nonempty core (Skarf conditions, Billera conditions). Vilkov (1973) received the

necessary and sufficient conditions of core nonemptiness for games with polyhedral sets
V(S).

Vilkov and Kulakovskaja (1975) received for this game the necessary and sufficient
condition for core—stability. This condition is very complicated. Vilkov (1977) defined
the class of the game without side payment with the stable core.

A game <I, V, H> is named a slight convex game if

1) V(S)nV({i}) cv(sU {i}), SCI
2) V(S U{i})nV(S U {j}) cV(S U {i,j}) U V(S) U (V({i}) N V({i}))

and game also satisfies of some condition of nondegeneracy.

Theorem 12: (Vilkov (1977))

Each slight convex game has a nonempty stable core.

14. The core of a game with a countable set of players

Consider a game <I, I, v> with a countable I (see Sec.4), here & = ol Naumova (1971)

investigated the following problem. Let M be the set of countable additive measures

on T such that u(S) > v(S), S CIL, S #1, the countable core of the game is Cyy = CN M.

Put t(v) = inf wI). If t(v) > v(I) then Cy; = 0, if t(v) < v(I) then Cy¢ 0, if
ueM

t(v) = v(I) it is shown that both is possible.
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In Naumova (1971) the algorithm for t(v) approximation is given.
The necessary and sufficient conditions are given for t(v) < w.

15. Solutions with discriminations

A solution V discriminates coalition S if for each x € V : x(S) = const. If § = {i} then

player is discriminated. If X, =8 and X, =3 for each x €V then V is named a
1 1 2 2

double discriminatory solution.

®

Socolina (1974, 1985, 1986) investigated the solutions discriminating two person coali-
tions {1,2}. Put M =1-{1,2}, Py, = {xpy | x€ P} where x is the projection x on M.

Consider solutions lying in the set x; + x5 = a. It is proved that each such solution is

represented in a form

(7) V={x|xy€Vy,x € [a(xpp); 1(xp)] s Xy = 8%}

Therefore to each x); €V, there corresponds in V some segment [a(xpp), 7Gxyl
passed through by the component Xy

In Socolina (1985) the necessary and sufficient condition is found for the set of the form
(7) to be a solution.

In Socolina (1986) the solution of the form (7) is constructed in which ofxy,) =a and
7(xM) = for all xpp €V, The necessary and sufficient conditions are received for

existence double discriminatory solutions.

The double discriminatory solutions for five person games are investigated in Arakeljan
(1973).

16. Solutions for special classes of games

Bondareva (1969) investigated a solution with discrimination for special class games
named (n-1)-game, where v(S) #0 iff |S| > n-1.
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Theorem 13: (Bondareva (1969) (1))

The necessary and sufficient condition for (n-1) games to have a discriminatory
solution
Vk(a)={x€A:xk=a} (a<1)
is
v(I-{k} > 2V(I) - Iy = v(1{i})
itk
and

v(1H{k}) 2 @ > 2V(D) - L5 T v(i{i}).
itk

For simple games the sufficient condition is
(8) 1ya>22
The known result of von Neumann—Morgenstern (1944) a > %—for 3—person game follows
from (8).
For (n-1) games the core is stable iff
v(ii} + v(I-{k}) € ¥(1)
(see Bondareva (1969) (1)).

Bondareva (1972) investigates the following class of monotonic games in 0-1-reduced
form (v(I) = 1).

Put

v,(S) = max [0, (v((S) - t(5)) / (1-t(1))]
where

a=(ap,.,a;) : 3 < min [vo(SU {i}) - vy(S)], a(D) < 1.
Theorem 16:

If the game <ILyv,> has a stable core then each game <I, V>, tE [0,1] has a stable

core.

Menshikova (1976) received the necessary and sufficient condition for symmetric games
to have a stable core.

Naumova (1972) constructs solutions for a class of simple games with a countable set of
players.
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17. Solutions for all four-person games

Kulakovskaja (1979) and Bondareva (1979) constructed a solution for arbitrary four -
person games with nonempty core and for games from some class with empty core.
For example:

Theorem 15: (Kulakovskaja (1979))

The necessary and sufficient conditions for a four—person game has a stable core are:

(9) v({i.j}) + v({ik}) + v({i1}) < v(1)
(10) V({i,j,k}) P V({i,l}) < V(I)
(11) V({i)j’k}) L V({i7j71}) = V({l,_]} < V(I)

{i,ik]} = {1,234} =L

Note that all conditions (9), (10), (11) are generated by extemsive coverings. For
example,

& g Sy ) A

Naumova (1979) constructs a solution for all other classes of four person games, so the
following theorem is proved.

Theorem 16: (Bondareva, Kulakovskaja, Naumova (1978))

Each four person game has a solution.

18. Compound games
Consider games without payments

G1 = <11,V1H1>
and

G2 = <I2,V2,H2>.
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Name G = <I,V,H> a composition of G1 and G2 if
1) 11n12=¢, I=11UI2
2) V(S)C VI(S n Il) x V2(S n 12) if SN Ii $0,

V(S) = Vy(S) « B if SCI, {ij} = {12}

I
3)a) HCH, x H, and protection of H on R lis H,

x H, .

or b) H2H, ~ H,

Vilkov (see Bondareva, Vilkov, Kulakovskaja, Naumova and Socolina (1976)) proved
the following results.

Theorem 17:

If G is a composition of G1 and G2 satisfied 1, 2, and 3a then G has a solution if and
onlyif V = V1 x V2 where Vi is a solution of Gi'

Theorem 18:
If G is a composition of G1 and G2 satisfied 1,2, and 3b, then G has a nonempty core if

and only if each game Gi’ i = 1,2 has a nonempty core.

19. Compound solutions of noncompound games

Consider a game I'= <I,v> andlet = MU N, MNN = §. Consider families of games
Ly(e) = <M,a> and Iy() = <N,p>

denote V_(a) a solution of Iy(a) and V(B) a solution of IN(B)-

Name the functions a, f connected, define a ~ §, if

1) o M) + A(N) = v(I)
9)  ofS)+ AT)2v(SUT),SCM, TNN.

Construct the compound solution V(aO) = VM(a) X VN(,B) as follows:



5L

For each x the projections
X € VM(a) and xp € Vo(f) where oM) = o), a~ fand
v(S) < ofS) ¢ max {v(SU T) - v(T), T CN}
v(T) < A(T) < max {v(SU T) - v(S), SCM}
foreach SCM, TCN.

Theorem 18: (Bondareva (1969) (2))
If in game I'there exists a partition I = M U N such that
1) v(M) + v(N) 2 v(I)

2) games Iy (a) and Iy(B) have a strong stable property (T (@),

Iy(B) € CV) for all a, § above defined.
Then V(ay) is a solution of I'for each o : v(I) - v(N) < ay < v(M).

Note that the core of I'below is empty. Socolina and Bondareva (1971) used the similar
construction to receive a solution for games from al class games with nonempty core.

20. Axiomatization of the core and von Neumann-Morgenstern
solutions as functions of non-fuzzy and fuzzy choice

In this section it will be proved that not only the core but also the von Neumann-
Morgenstern solution is determined with the aid of all known axioms of choice. Axioms
for core and for solution will have been extended to a fuzzy choice. The conditions for
the fuzzy core to be a solution will be given (see Bondareva 1988).

Let A be an infinite set of alternatives for choice; p, p’, V, A €[0,1] A are fuzzy sets
(see, for example, [I]: the characteristic function Xy € [0,1] ©* represents the non—fuzzy

set X CA. We abolish the uniqueness condition of choice function, i.e., the choice func-

A
tion will be C : [0,1] A_ o017



e

Denote as earlier C : [0,1] A [0,1] A; any element of T is also denoted by C. A value
of the membership function C() is denoted C(g)(x); Clxx)(x) = C(X)(x). Always

assume that C(g) Cp and C(p x{x})(x) = u(x), x € A, where pv(x) = p(x) ¥(x).

Because all axioms of choice are expressed with the aid of the operations "U", "M" and
"C". then it is possible to translate them into the fuzzy sets language. Use the "sup" and
"inf" as "U" and "N" but remember that all results are able expressed in another form of
U and N In any case u’ Cp e g’ < p— p(x) < p(x), x€A.

Non—uniqueness of choice will be marked with NU, non—fuzzy form will be marked NF,
fuzzy - F.

All following axioms in NF and not NU form are well known.
N (heritage condition)

NF:  C(X’)IC(X)NX, X' CX;
F: C(w)(x) 2 min (C(p)(x), w(x)), w < p
C: (direct Condorcet condition)
NF, NU: If x € X belong to any C({x,y}) € C({x,y}) for all y € X, then x belong to
any C(X), if T(X) #0.

F,NU: C(p) (x)2 ;’IEI i Ok X5,y (%) Clu) € Cp) #0

C(#X{x,y}) € C(#X{x,y})

F: > inf
C(u)(x) 2 ;2 K Cluxgy y1) ()
CB (choice conservation)
NF,NU: If for some C(X) € C(X) : X’ CC(X) CX then any
C(X’) eC(X’) : C(X’) = X
F,NU: If & ¢ C(p) < pfor some C(p) € C(u) then any C(p’) = p
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O (rejection condition or independence of irrelevant alternative)
NF: If C(X) €X' X, then C(X’) = C(X)
F,NU: Ifany C(p) < @’ < p, then C(u) € T(u).

Let R be the antireflexive fuzzy relation on A with the membership function
pg:Ax A—=[01], pg (x,x) =0;
denote x R y iff pp(x, y)=1
Put R(x) the R—dominion of x, i.e.,
NF: R(x)={y€eA:xRy};
F: R(x)(y) = ap(xy), yEA.

Denote NF:  R(X) = U_y R(x).
F: R(X)(y) = sup pp (x,¥)-
x€X R
The core CR of relation R on X is defined:
(12) NF: CR(X) = X - R(X)

(13) R Cp(X)(x) =1-sup k(r)

The von Neumann-Morgenstern solution (NMS) is:

(14) NF:  Vp(X) = X - R(VR(X))

It is impossible to define fuzzy NMS with (14) because R(u) for a fuzzy 4 is not defined
but FNMS will be defined below with the axioms.

The following theorem describes the connection between the external definition of a
choice function with (12) or (13) or (14) and internal definition with the axioms above.
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Theorem 19:
The core of the fuzzy relation R as a choice function Cp : A — [0,1] A satisfies the

condition HF and CF.

These axioms are also a sufficient condition for core in the following sense.

Theorem 20:

If the choice function C : [0,1] o [0,1] A Satisfies the condition HF and CF then

Ou)(x) = inf,  Clixgy y)(x) and O(X) =Cp(X), X€2®, where R:up(xy) =
y b

I_C(X{x,y})(Y) and for fuzzy u:

C(u)(x) 2 min ((x), 1-sup _ pp(y.x))
y:u(y)>0
Theorem 21:
The von Neumann-Morgenstern solution of NF relation R as a choice function VR :

A
2A—»22 satisfies the conditions CNU, CBNU and ONU and conversely: if

A
T:2% 22 satisfies the condition CNU, CBNU and ONU then for any NF if

C({x,y} ##and C({x,y}) is NF for all x, y € X, then C(X) = Vp(X), where
R: xRy {x} €C({xy}).

The theorem 22 allows us to define the fuzzy NMS (FNMS) as V() € V(u), where

A
V:[0,1] A 2[ 0,1] is the choice function satisfied the conditions CFNU, CBFNU
and OFNU. We will name V the extended NMS.

Theorem 22:

V(u) is FNMS iff V is a solution of the system of equations
(15) VOV(W) = AV, refon

(16) VO V(a(1-A)4) = V(), (1-)(x) = 1-X(x))
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with inequality
(17) V(u)(x) 2 inf V(sxgy (1) (x)

where "inf" for all y € A and all V(ux{ x,y}) € V(ux{x’y}).

It is clear, that condition (17) is CFNU. Condition (15) is CBFNU because any
w CV(u) is equal to A V(u). Condition (16) is OFNU because if p’ : V(i) < o’ < g, then
w=AV(p) + (1-}) p

Note that V(u)(x) = 0, x €A for all p €[0,1] A i a solution of (15), (16), (17), i.e,,
FNMS but it is not NMS for non fuzzy set because R is not defined. The V(u) =g is also
FNMS and for non—fuzzy set it is also NMS with R = §. We will name this two
solutions trivial and below investigate only non-trivial solutions.

Let V(u) = pN Ko It is easy to prove that this is also FNMS. If o = XXO’ then

V(X)=XN XO isNMSfor R:xRyiff x€X,, y ¢ X but for x, y £ X, the relation R

is undefined.

n
Let us give an example of non-unique FNMS. Put A = U A1 and Vi(p) =y A iff
i=1 i

pNX, #0 Then V(g) = {V;(1)} is extended NMS. The relation
i

n
R=U (4~ (A-A)).
1=

Now investigate the condition for fuzzy core to be FNMS.

Theorem 23:

The fuzzy choice function V : oA, [0,1] A the core of fuzzy relation

R: V(X)(x) = CR(X)(x) = 1~ sup #p(y,%
is FNMS iff for any X C A any x € X, y € X — N(V(X)) and any € > 0 there exists
(18) y(€) EN(V(X)), kg (3(€), ) > p(yx) — ¢ .
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Corollary 1:

If R is unfuzzy then condition (18) transforms into condition of the external stability.

Proof:
Let x ¢ V(X), the y € X exists: y R x, i.e,, p,R(y,x) = 1, from ((18) y(e) € V(X) exists:
pr(v(e)x) > 1-¢, ie, pr(v(e)x) =1 and y(e) R x, q.ed.

Corollary 2:
Ifforanyx,y€A: ,uR(x,y) <1lthenV = CR is also FNMS.

The condition (18) we are able to interpret as the condition of external stability of
FNMS, but it is not separate from condition of core belonging. What is the fuzzy exter-
nal stability in general case is not clear.
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