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Recently, Maynard Smith {1982) has published a book entitiled
"Evolution and the Theory of Games". It is the purpose of this paper
to present some thoughts evoked by this publication which may be of
interest to the mathematically educated reader. Evolutionary game
theory, the subject of the book, is an intriguing new field of
biomathematics.

1. Quasi-rational animal behaviour

It is common thinking that mathematical theories almost invariably
originated from the natural sciences. Therefore, mathematical methods
for the social sciences typically appear as "second-hand" tools that
were made avajlable to the economist or sociologist by their original
users in physics, chemistry or biology.

Game theory represents an important exception to the rule that there
is mainly a one-way transfer of methodology between the natural and
social sciences. This branch of applied mathematics was undoubtedly
born as a child of economic decision theory, but then was also adopted

within the field of evolutionary biology. Today, it even provides some

of the most powerful methods for analysing animal behaviour from a
neo-Darwinian point of view,

How could this unusual transfer from the social to the natural
sciences arise? The history of the concepts involved is all but
straight. In 1944, von Neumann and Morgenstern created game theory as
a mathematical attempt to deal with the problem of rational decision
making in interpersonal conflict situations. The idea of rationality,
however, didn't seem to apply to anything other than the human mind
(clearly, even the human mind is well known for being an unreliable



source of rationality). It is, therefore, easy to understand why the
animal world was not considered a matter of strategic analysis in von
Neumann and Morgenstern's work and, for more than two decades, in the
subsequent publications.

Even John Maynard Smith, the main initiator (together with George
Price) and “ring leader" of biological game theory did his pioneer
work under the impression that only the notion of a game as such would

be of use to evolutionary theory, but not the classical "solution
concepts", These concepts specify what the idea of "“rational beha-
viour” means in mathematical terms,

In their seminal paper, Maynard Smith and Price (1973) pointed out the
fact that game-like conflict occurs in nature whenever animals con-
test for access to limited “resources”, such as food, territories or
females. They proposed to model animal contests as symmetric bimatrix-

games known from non-cooperative game theory. However, they decided to

invoke models of natural selection instead of the rationality concept
for understanding the logic of observed animal contests. This decision
has led to the evolutionary solution concept for symmetric non-

cooperative games.

In his recent book, Maynard Smith (1982) gives an excellent survey on
how this solution concept applies to a great variety of problems in
sociobiology. He convinces the reader that strategic analysis is an

essential key for understanding the ultimate evolutionary causes of
social behaviour, including cooperation on the one hand and

competition on the other,

The book testifies its author's great devotion to applying mathe-
matical ideas to the study of evoliution at the phenotypic level. This
devotion made Maynard Smith one of the most popular figures in
contemporary biology, since it is paired with his talent to make his
"sums" intelligible to those scientists who deal with facts rather
than with integrals and eigenvalues.

The present essay comments on Maynard Smith's impressive book and
discusses some of the mathematical problems it raises. One such



problem is the understanding of the conceptual relationship between

non-cooperative game theory and its biological counterpart, This rela-

tionship is not fully explained in the book, and it is often mis-
represented in the literature., In order to clarify this point, the
history of concepts shall be continued in the following paragraphs.

Within the theoretical framework initiated by Maynard Smith and Price
(1973), animals are supposed to "play" an "evolutionarily stable stra-
tegy" in the game they are involved in. Roughly speaking, this is a
strategy such that a population of animals adopting that strategy can-
not be "“invaded" (via selection) by any other "mutant-strategy" that
occurs in this population at a very low proportion.

Here, the underiying assumption 1is that strategies are heritable
traits and - wunlike strategies 1in economic decision theory - not

subject to individual cognitive choice. On the other hand, the process
of natural selection is now considered as the "decision maker".

The notion of an evolutionarily stable strategy depicts at least one
type of "long-term outcome" of an evolutionary process: a population
state that is (a) monomorphic (i.e. all individuals play the same
strategy) and (b) stable against "perturbations" that are caused by
low proportions of animals playing a different strategy. With regard
to (b) it should be noted that the term “perturbation" is used in a
restricted sense: in a perturbed state, more than one individual 1is
allowed to play a different strategy, but only one different strategy
is allowed.

Quite surprisingly, it turns out that the formal characterisation of
an evolutionarily stable strategy (ESS) corresponds, up to an ad-
ditional requirement, to that of a symmetric equilibrium point intro-
duced by Nash (1951). An equilibrium point is a combination of strate-

gies (one for each player) that are individually optimal for each
player if he can expect the other players to "stick" to that
combination. According to the philosophy of non-cooperative game
theory, rational players must play an equilibrium point.



The game theoretic equilibrium property of an evolutionarily stable
strategy (ESS) allows us to draw the following striking conclusion:
animals performing an ESS behave in a "quasi-rational" way, i.e. they

behave as if they were rational Bayesian decision makers. This is
astonishing, because animals are not supposed to make any cognitive
choice of strategy in the framework under discussion!

The apparatus of non-cooperative game theory, therefore, is highly
relevant to animal behaviour, a fact that was not foreseen by the
pioneers of evolutionary game theory. Their picture of classical game
theory (e.g. Maynard Smith 1976) contained as the main theme the so
talled maximin-philosophy. This philosophy proposes to choose that

strategy that maximises among the "worst possible outcomes”.

Perhaps the earliest biological attempt to use game theoretic
arguments in the eveolutionary context was even based on the maximin
philosophy: Lewontin (1964) considered an animal species as a player
who plays maximin-strategies against the rest of nature, thereby
avoiding species extinction. In a recent paper, Lewontin (1982) admits
that Maynard Smith's approach is biologically more convincing than his
own previous approach. This is so, since natural selection operates
primarily via differences in the viability and the fertility of
individuals, but not so strongly via differences 1in the overall

success of 1local populations., It is a generally held view in modern
biology that selection at the level of local populations can hardly
counteract selection at the individual level, Therefore, neither a
local population nor the entire species represents a "level of
aggregation" to which the idea of adaptation by natural selection can
be applied directly.

There also are strong reasons why maximin is a doubtful principle for

classical games . The most important criticism is that a “"maximiner"
ignores how likely the different strategic options are to be chosen by
a rational opponent. Here, a defendant of maximin would point to the

fact that uncertainty exists with regard to these probabilities, since

they are unknown. He would claim that one should take into account
only those probabilities that are known, Tike that of hitting a given
number with a single throw of a dice. Only in this case there seems



to be a risk that is calculable, However, this attempt to defend the
maximin philosophy is based on the unconvincing idea that there exists
a clear logical distinction between (a) decision under risk and {b)
decision under uncertainty. From a Bayesian point of view this
distinction cannot be made, since rationality axioms force a raticnal
individual to form subjective ©probabilities in every decision
situation.

A further problem with maximin was discovered by Aumann & Maschler
(1972). They point to differences between applying the principle
"globally" to the entire game or “locally" while playing the same
game. These differences are annoying, since there 1s no satisfactory
answer to the question of what would be the relevant level to which a
decision maker should pay more attention.

No wonder, the main stream of classical game theory has abandonned the
maximin-principle in the early fifties, shortly after Nash's
introduction of the equilibrium point concept. Today, the principle is
only used for two-person zero-sum games as an equivalent “surrogate"
of the equilibrium point.

To conclude the discussion of ‘“methodology-transfer" between the
social sciences and biology, it should be emphasized again that,
contrary to Maynard Smith's original thoughts, not only the classical
notion of a non-cooperative game as such, but also the classical
solution concept {Nash's equilibrium point) 1is relevant to evo-
lutionary biology. In his book, Maynard Smith pays almost no attention
to this fact, since he wants to avoid to confuse the biological reader
by the intricacies of non-cooperative theory. To a biomathematician,
however, it is of great interest to know that the body of mathematical
knowledge about equilibrium points is applicable to piology with only
a few restrictions.

A1l this does not mean that Maynard Smith simply “"sticks to the old
way". Probably the most important aspect of what he has added to the
previous body of game theory is his new dynamic interpretation of the
equilibrium point as a long-term outcome of selection., Furthermore, he



enriched the equilibrium point notion with a supplementary stability
conditton.

2. Evolutionary games

A well known paradigm of classical game theory is the game of Chicken.

This game is played by two human players who drive cars on a collision
course. The first one to swerve loses the game. He receives payoff O,
and the opponent receives $ 200. In case of a crash, both share the
$ 200, but they have an expected cost of § 1000 for repairing their
bashed in cars. If both swerve, they share the $ 200 and no cost
arises. The following bimatrix game provides a simple formal
representation of this contest that was fashionable among American
teenagers in the time of James Dean.

NOT SWERVE SWERVE
NOT SWERVE -900 , =900 200 , 0
(1)
SWERVE ¢, 200 100 , 100

This symmetric game has a symmetric equilibrium point that prescribes
for both players to swerve with probability 9/10. If both play this
mixed strategy, they each receive the expected payoff 90. Note that
this dis 1less than they would get if they agreed to “swerve with
probability 1. However, since there is no force that would bind such
an agreement, this lack of commitment power leads to a rational

solution which is not Pareto-optimal (an outcome of a game is called

Pareto-optimal if the players cannot improve one player's payoff
without deteriorating the payoff of another).

The biological interpretation of the game of Chicken is well known as
the Hawks-Doves paradigm. This paradigm has a central place in Maynard

Smith's book, but he omitted to mention its conspicuous analogy with
Chicken. In the Hawks-Doves game, two animal opponents compete for



access to an indivisible resource. Both belong to the same species.
Furthermore, they are equally matched,

In order to get the resource, the competing animals may either
escalate (not swerve) to an injurious fight, or just display (swerve)
in order to reach a peaceful settlement. In the latter case, both
opponents have an expected "“payoff" which corresponds to half the
resource value. If one animal escalates and the other displays, the
escalating individual gets the resource at no "cost" and the opponent
neither loses nor gains anything. If both escalate, their expected
payoff is half the resource value minus the cost of injury.

It is easy to see that the Chicken-bimatrix (1) depicts such a contest
if the resource is worth 200 units on an appropriate "utility-scale",
and if injury inflicts a "cost" of 1000 units. But what is the exact
interpretation of payoffs, i.e. what utility-scale 1is relevant to
biological games? Unlike classical game theory, which has to struggle
with an individual's subjective measure of success, evolutionary game

theory relies on an objective measure of an individual's success. In

the biological context, up to a constant factor a payoff corresponds
to the change in expected Darwinian fitness (reproductive success)

that results from playing the game.

Now, suppose that a symmetric bimatrix game like Hawks-Doves (Chicken)
is played generation after generation in a population. Suppose further
that opponents are paired at random. What characterises, then, a stra-
tegy p that 1is adaptive in a population of animals playing it? A
strategy p is adaptive if in this population no other strategy would
have a higher expected Darwinian fitness. Let E{p,q) denote the
expected payoff for playing p against g in the symmetric game.
Obviously, in order to be an adaptive response to a world of look-
alikes, the following must hold for p:

Equilibrium condition: p is a best reply to p, (2)

i.e. E(p,p) > E(q,p) for all strategies q.

To put it in classical game theoretic terms, this condition char-
acterises the equilibrium strategy of a symmetric equilibrium point.



In the Hawks-Doves (Chicken) game (1), there 1is only one strategy
that has the equilibrium property, namely the rational solution to
escalate (not swerve) with probability 1/10. Let us call this specific
mixed strategy the "occasional aggressor".

The question now is whether a population in which all individuals play
"occasional aggressor” would be driven back to that state after
"perturbation" by a small proportion of individuals playing another
strategy q. Assuming "decent" properties of the underlying genetics,
this may seem obvious because it 1is adaptive to play occasional
aggressor in the population we are faced with. However, if a mixed
strategy p satisfies (2), every other strategy that mixes over the
same pure strategies (or a subset of them) is also a best reply to p.
This is the well known fundamental property of best reply strategies.
Therefore, in a population playing the equilibrium strategy
"occasional aggressor", every other strategy including "escalate" and
“display" is also adaptive! Why couldn't one of those equally adaptive
strategies invade the population with a little initial help by random
drift and a subsequent selective advantage in the perturbed
population state? The following stability condition for a strategy p
guaranties that such alternative adaptive strategies are selected

against if they increase to a small fraction of the population:

Stability condition: (3)
if another strategy q is also a best reply to p,
that is if E(q,p)=E(p,p), then E(p,q) >E(q,q).

This condition was unknown to classical game theory. No such require-
ment has been used in the theory of rational decision making so far.

Now, we return to our example. The equilibrium strategy "occasional
aggressor” of the Hawks-Doves game (1) has the stability property (3).
It represents the most famous specimen of an evolutionarily stable

strategy (ESS). In a symmetric bimatrix game, a strategy p is called
evolutionarily stable if it satisfies both the equilibrium condition
(2) and the stability condition (3). Maynard Smith defines an ESS in a
slightly different but equivalent way. His formulation makes it less




explicit that an ESS corresponds to a symmetric equilibrium point with
an additional characteristic.

Note that two animal opponents playing the ESS "occasional aggressor"
do not perform the "best job" for the species, since both of them
could simultaneously achieve a higher payoff if they played "display"
(swerve). Whereas in the human world contracts may sometimes provide
the commitment power needed to stabilise the Pareto-optimum in which
both display, no similar mechanism can be found in the animal worild.
This is one of the reasons why cooperative game theory seems, at

least up to now, irrelevant to biology. It must be emphasized at this
point that the distinctive feature with regard to cooperative versus
non-cooperative game theory is not the interest in cooperation versus
the 1interest 1in non-cooperation. 1In <contrast to the mislieading
terminology, the distinction can be described as follows. Cooperative
game theory assumes some degree of cooperation, since its solution
concepts “"blindly" rely on Pareto-optimality. Conversely, non-
cooperative game theory and sociobiology always try to explain
cooperation .

3. A bunch of problems

Evolutionary games and evolutionarily stable strategies exhibit a few
pecuiiarities and pose a number of problems that deserve a biomathema-
tician's attention. A short survey will be given in the remainder.

Looking at the game of Chicken again, the question arises how to
model the conflict if one of the opponents has a small fragile car,
whereas the other is equipped with a big car with very solid bumpers.
Biologically speaking, this could be analogous to the conflict between
a juvenile deer and its adult rival. There exists, then, an obvious
asymmetry between the two players. Classical game theory would simply
model the <conflict as an asymmetric¢c bimatrix game 1in which the
matrices no longer are the transpose of each other. However, Maynard
Smith's definition of an ESS only refers to symmetric games. Is there
a need for asymmetric evolutionary games?

My view on this problem 1is that an evolutionary conflict should
typically be modellied as a symmetric game, This 1is more than an
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artificial symmetrization, since there is no reason why an adult red
deer and its juvenile conspecific opponent should not carry the same
genotype and thus play the same inherited strategy. Note that this
strategy may assign different actions to the roles "adult" and
“juvenile", Sometimes, the evolutionary game can be decomposed into
subgames on which an evolutionarily stable strategy "induces" strong
asymmetric equilibrium points ( Hammerstein 1981). In a number of
biological publications, the reader 1is confronted with immediate
presentations of asymmetric subgames., These presentations are lacking
explicit statements about the actual evolutionary game. The caveat
must be given here that implicit assumptions on the informational
structure of the evolutionary game are involved in such cases. These
assumptions are notoriously violated in conflicts with incomplete
information about roles, such as the asymmetric war of attrition
studied by Hammerstein & Parker (1982).

Particular problems with the symmetry of evolutionary games are met if
one tries to extend the concept from bimatrix games to extensive games
(those trees that grow in game theory books). Selten {1983) gives an
intriguing simple example where two biologically very different
conflicts are represented by the same extensive game. He draws the
conclusion that the classical extensive form of a game has to be
enriched with an additional "“symmetry" that maps information sets and
moves onto their “"natural image". Otherwise ambiguity would exist as
to whether two opponents play the same strategy or different ones,

There are more delicate problems with extensive evolutionary games. If
one adopts Maynard Smith's conditions for evolutionary stability in
the context of extensive games, this evokes a disasterf many
strategies that seem to be biclogically appealing “candidates" for an
ESS fail to satisfy the formal <conditions; furthermore, many
interesting games do not have an ESS at all. This is so because the
equilibrium paths in extensive games typically do not reach all
information sets. A mutant strategy that behaves differently from an
equilibrium strategy at these unreached parts of the game is an
alternative best reply to the equilibrium strategy. Nothing prevents
the initial spread of such a mutant by means of random drift,



11

To give an example, consider the famous Prisoner's Dilemma. This is a
two-person game in which the opponents may either "cooperate“ or
“defect". In the single shot game, it is for both opponents a strictly
dominating strategy to defect. However, the repeated Prisoner's
Dilemma has one equilibrium point, among many others, in which both
players play "Tit for Tat"., Tit for Tat is to cooperate in the first
period and then match the opponent's move of the previous period for
the rest of the game. Axelrod & Hamilton {1981) claim that Tit for Tat
is an ESS, and Maynard Smith shares their view in his book. He even
discusses the “"basin of attraction" of Tit for Tat. However,
according to the definition of an ESS in Maynard Smith's book, Tit for
Tat is not an ESS. This is obvious, since "always cooperate" and many
other strategies are best replies to Tit for Tat that violate the
stability condition (3). On the other hand, "always defect" is an ESS,
but this is not what biologists get so excited about,.

Selten's (1983) framework of:extensive evolutionary games gives us
hope to reestablish the idea that cooperation is evolutionarily stable
in the repeated Prisoner's Dilemma. He defines a somewhat weaker
notion of a 1imit-ESS as the limit of ESS's (@ la Maynard Smith) of a
sequence of perturbed games. The limit-ESS is related to the perfect
equilibrium point of <classical game theory. Probably, a strategy
similar to Tit for Tat, but somewhat more complex, is a limit-ESS for
the repeated Prisoner's Dilemma.

A further problem area 1is the modelling of selection. Originally,
selection equations that describe exact "parthenogenetic" inheritance
{that is: no sex and no recombination), have been used as the dynamic
background of evolutionary game theory., These equations describe at
the phenotypic level what population geneticists would call "frequency
dependent selection". Evolutionary game theory shares a common
interest with population genetics in analysing the complicated effects
of frequency dependent selection. However, either discipline focusses
its interest on a different level: game theory is subtle with the
strategic conflict at the level of the individual and crude with the
genes; conversely, population genetics is more subtlie at the genetic
level. A full marriage of both would impose too many <conjugal
problems, Note, however, that some serious attempts have been made to
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analyse under what condition a sexually reproducing population should
be expected to play an ESS (e.g. Eshel 1982, Hines 1982). Furthermore,
a Tield where some genetics seems unavoidable is that of games between
relatives. Surprisingly, only very few articles have been concerned
with these games,

There is one chapter in Maynard Smith's book which is not easy to
digest for a mathematician. This chapter deals with the evolution of
tearning and makes a mathematical attempt to identify "evolutionarily
stable learning rules". The game learning process that apparently
fascinates Maynard Smith is Harley's (1981) learning rule. This is a
stochastic process which 1is more difficult to analyse than the
selection equations that underly evolutionary game theory! Even if one
accepts, for this brief discussion, Harley's central argument that an
evolutionarily stable learning rule should asymptotically have the so
called "relative payoff sum property", this condition does not single
out Harleys specific learning rule. Probably, many learning rules have
this property, such as the game learning process known as the "method
of fictitious play" (Brown 1951, Robinson 1951). For further
discussion see Selten & Hammerstein (1984).

The problem that too many solutions exist that satisfy the
mathematical conditions used for picturing evolutionary stability is
also very 1likely to occur in many extensive games. Recent work in
progress shows that if games similar to Hawks-Doves are played
repeatedly between the same two opponents, a great variety of
alternative evolutionarily stable strategies exists. This kind of
problem is known to classical game theory and has led to the theory of
equilibrium point selection., 1 do not think that this theory is
applicabie to biology. This seems to be a point of divergence between
the rationality concept of decision theory and the quasi-rationaiity
that occurs in evolutionary games,

After all these critical comments, a final word about the book by
Maynard Smith: there can be littie doubt that the theory he outlines
has had an extremely stimulating influence on evolutionary research
in animal behaviour. This is largely due to Maynard Smith”s attitude
of spending more time in communication with empirical biologists than
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in petty mathematical details. Thank God, he still leaves us theorists
a lot of homework to do!
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