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ABSTRACT

Within a game-theoretical model the influence of incomplete information

on the payoff to two players is investigated. It is assumed that the states
of nature - varying according to some probability-distribution - are only
partially known when the controls are to be chosen. This partial information
may be obtained by communicating the states of nature via two independent
information-transmission systems owing some capacities, given in advance.
Since the payoff to the first player is to be paid by the second (zero-sum
assumption}, a direct conflict of interests arises.

Admitting a finite, but arbitrarily large delay between the choice of states
of nature and the selection of the contrals makes accessible information-
theoretical methods. A coding theorem and its converse are proven and used
to yield an upper bound to the "min max" of the average asymptotical payoff
on one hand, and a lower bound to the "max min" of the average asymptotical
payoff on the other. Both bounds are formulated as results on the distortion
arising in a discrete, memoryless system and given in a computable manner.
By use of the minmax-theorem of game-theory the upper- and lower bounds to
the payoff are shown to coincide such that the existence of the value is
established.



INTRODUCTION

In the game-theoretical literature "information" appears as a statical
notion. A random-mechanism provides uncertainty concerning the value of

some parameters of a "game" once and for all and information concerning this
uncertainty is obtained by observing the values of some functions in the
course of the game. These information-"transmitting" functions are assumed to
be given in advance such that optimization concerning the transmission of
information is performed by choosing appropriate values for the input-
variables of these functions. Models like the one described above range
under the term “Games with incomplete information" within game-theoretical
literature; its investigation started with [1] ".

In contrast to these short-term apsects also a long-run consideration may be
performed. Optimization concerning the choice of the information-transmitting
function reflects the variation of system-parameters within some technically
given bounds. Since optimization of storing and transmitting information is
the field investigated by information-theory, the methods and the resuits of
this discipline should be applied when problems of uncertainty and incompiete
information arise within game-theoretical models.

As far as the application of information-theory within game-theoretical models
is concerned the merely quantitative point of view of characterizing the
information produced by sources or transmitted via noisy channels is not
exhaustive. Rather, the qualitative aspects of information, the consequences
of actions to be taken according to the available information, have to be
considered. A tool for this proceeding sometimes can consist of using results
from rate-distortion theory. It expresses quality, namely that of a re-
production of a source by quantitative terms, i.e. the amount of "distortion"
arising from that reproduction; a first attempt to handle a game-theoretical
model following these lines was made in [4].



SECTION 1 : The Model

The description of a game consists of two parts
- the parameters of the game
and
- the rules according to which the game is played.

In the model to be described in this section, a two-person zero-sum game,
the former consist of a finite set X , - which is interpreted as being the
set of states of nature - , together with a probability-distribution u(-)
on X . We assume further to be given two finite sets I and J , - sets of
controls - and for each x € X an |I] x |J] -matrix (aﬁj), - the
matrix of payoffs.

Information-transmission is performed by two (independent) discrete, memory-
tess channels HK with input-alphabets %jK and output-alphabets 3»K R
k = 1,2.

For every time-unit some x € X s chosen according to p independently of
the previous states of nature. Further, for each time-unit some controls i
and j have to be chosen, each without the other being known. We assume that
some information concerning the state of nature can be made available by means
of the two channels before the controls are to be chosen.
The controls i and j and the state x result in a payoff a?j . For

n

sequences 1", Jj° and x" we define the payoff to be additive, that is
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Graphically, the model is given as follows:
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The power of the information-transmitting systems NK, k = 1,2 being
bounded, the problem of optimally organizing the processing of information
arises. The source {X, u} , the channels wIc and the payoff-matrices (a?j) ,
x € X being given, the players I and II decide upon the "design" of the
encoders and the decoders. Hallowed by tradition player I tries to maximize

the payoff whereas player II tries to minimize it (zero-sum assumption!).

The maxmin and the minmax of the payoff have to be investigated and, to obtain
a complete solution, their coincidence has to be proven.

To solve the problem of determining the payoff which results from such a
situation, the assumption of a finite but arbitrarily large admissible time-
lag is made. This enables the players to build up encoders which transform
the observed n-sequences x" into channel-input sequences y? and yg R
respectively. The latters are transmitted via the channels and, according to
the channel-distribution, sequences z? and zg are obtained. On the basis
of the channel output sequences zg and 22 , respectively the decoders



independently decide upon sequences i and jn which, together with the

sequence X" of states, result in the payoff afg_n for player I. This
amount has to be paid by player II. T

Our aim is to give a computable formula for the asymptotical average payoff
per time-unit which can be ensured by both players to themselves. This payoff
will be given as a function of the power (the “capacity”) of the transmission
system to be used.

Denoting the value of the asymptotical game by

val (Fm (us wl’ wz: A))

- it exists since max min and min max of the average payoffs per time-unit
are shown to coincide,
we may formulate our main theorem.

Theorem

val (1 {y, Wys Wys A))

dy
1
= max {D (Cz)}
Vv —H
1

where Qé(-) is the distortion-rate function, - the inverse to the well-known
rate-distortion function - with respect to the discrete memoryless source
{X, w1l and the single-letter fidelity criterion d, d : X x J > R.
For a test-channel Vl with input-alphabet X and output-alphabet I dVl
is defined to be

dvl (x,J) := § Vl(i]x) . a?j .

SECTION II : Preliminaries

A
Let us be given finite sets X and X . Define
9 (X ) := {v ]| v probability distribution on X} .

A
A conditional probability distribution V on X givenX will be denoted as

VX =X



Define
A A
WX [X):={V |V ][X = %)

A
By Vo v we denote the marginal distribution on X induced by eﬂl),
A
Vel (X1x), ie. Vou (R) 1= £ V(Z]X) w(x) .
X

Notation, definitions and results not being derived in this paper may be
found in [2 ] and [ 3 ]. We shall repeat only:

n
N = [t =0 oxe X, e X, Qg

probability distribution on X ", being called type of x" . The set of all
types is denoted by fﬁ’n(l‘). Define

WX X)) = el x| x) | )(\V(-!x) eP" (X)1.

For veP" (X) veW" (i!fx)
T o= oM AN X = u(x))
X

IMCH R U IVANE IR 1O B IEUR L W 11T S MR RIS
XX
For weP(X), s >0 define
P { -1 ny _
T1JE 1= X |4\| n = N(x{x") - u(x) | < 8}

For weP(T), veP Mx) define

p(psv) 3= max {Ju(x) = v(x)]},
5
then T - v T
p(u,v)<s

We shall use the inequalities:

(1) ()L exp n ol < | T | < exp {n H(v)}

(2) /\ (n+1)-]‘xl'bc|exp {n H(V[v)} < ITV(xn) [ < exp {n H(V]|v)}
xTeT

(3) /\\//\ ]’33”(1” < (n+1)|x] < exp {n « ¢}

e>0 n, n>n,

(4) /\ \/ /\ u(Tﬁ) >1 - ¢.

£,6>0 no(l_x |2246) nino



We shall derive some auxiliary results:

Let W be a compact, convex set.

Let f,h : N——R

be convex and concave (and thereby continuous) and let
g, 1 : H—>R

be convex and continuous.

2.1. Lemma:

Define F,G : R + R
by

F(r) : max {f(w)}

W
g(w)<r

i

G{s) : min  {1{w)}
(5) h(wgié
Then F{+)} is

- strictly monotonic increasing (“strictly isotonic")

unless max {f(w)} s achieved
weW

- caoncave
and

- G is the inverse function to F where F is invertible.

Define K,L : R+R

by
K{r) := min {k{w)}
w:
T(w)<r
(6) L{s) := min {1(w})}

"E
k(w)<s



Then K(+) 1is

- strictly monotonic decreasing (“"strictly antitonic")

unless min {k(w)} is achieved
wel

- convex
and

- L is the inverse function to K where K 1s invertible.

Proof:

We shall restrict ourselves on proving (5), the proof of (6) might be
performed similarly. We begin with proving the concavity of F(.).

Let wK be such that
9w ) < r,

f(wK) = F(rK), k= 1,2

Then Wy, 1= Aewy + (1-2) W, € W and due to the convexity of g

g{w) < x » ry+ (1-x) - ry

and, using convexity and concavity of f(.) :
Flw,) > f(w,)

A e f(wl) + (1-1) f(w,)

It

A Fry) + (1-1) F(ry) .

Per definition F 1is isotonic, combining this property with the concavity
shows the strict isotonicity if the maxmin value has not been achieved yet.
In the domain defined by this property F(-) is invertible.

It remains to show that G = F! on the specified domain:

G{F(r)) = min {g{w)}
g(w)zm?x{f(w')}
w': '
glw')<r



min {g(w)}
w':
g(w'}>r
=r

where, to derive the second equality, continuity and isotonicity of f and
g were used.

2.2 Lemma
The functions
F, G, K, L: R> R

are continuous.

Proof:

Obvious.

SECTION III: The Coding Theorem

Coding results of information-theory describe lower bounds to the power of
information storing - or transmitting-systems. The coding theorem to be
derived in this section is used to give explicitly a strategy of the "pre-
ptaying" player, both, in the maxmin- and in the minmax-game. The coding-
and decoding-rules given in the coding theorem give a way of selecting
controls within the restrictions on the available information. To ensure
optimal behaviour against any strategy of the "post-playing" (reacting)
player random encoding of the states of nature is used. This random-behaviour
against a malevolant being is in accordance with the coding result for
arbitrarily varying channels. In contrast to the latter random encoding
instead of using random-codes is shown to be sufficient. Random encoding
excludes advantages of the post-playing player. In case of deterministic
encoding he might use the structure of the code to obtain a higher payoff.

A

Let X denote a finite set, for u Ef? (X), R> 0 define
A
vi”(R) = (Ve WX |X) | I(u,V) <R} .
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3.1 Lemma

let 129 €. .. 0, and R > 0 be given. There exists n_ (| x| ij )
_'_2_ € . g . v 0| s ]’€

such that for n > ngs v € PNx), ve ]Zi (R-€)s N > exp {n+ (R+e)}

A
and independent, uniformly distributed random variables Yk on TVov‘: JErh

k = 1,...,N:

//\\\ 2 Pr {E 1 " (Yk) < exp {n + ¢}}
--\)

y(x7)

~
<exp {n + log |X| -‘§ exp {n « e}}

Proof:

We shall make use of the well-known inequality
N

1
Pr{z M < . o}
k=1 € K

<exp {a -+ (5 - 10 €

for independent, identically distributed random variables Mk with values
in {0,1} , where « denotes the expectation of the sum of Mk , T.e.

a =N« E(Mk) .
Now TN
E(Yk) = 'TV |

yields
a>N-exp{n- (HV[v) - HVov) - €)}

| v

exp {n « (R+e - I(v,V} -£)}
exp {n - (R ~ I{v,V))} .
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Thus

Pr{z1 (Y.) < exp {n « g}}
" Tv(xn) k) =

= Pr {1l (Yk) < exp {n « (R-I{v,V) - R+I{v,V) +e)}}
n hl
k V(x )
< Pr{zl n (Y ) <o« exp {-n - (R-I{v,V) -¢)}}
k V(x )

< exp {a+ (exp {-n + (R-I(v,V) ~c)} - 120 €y

>

< exp {a » (- 20} N

where the last inequality holds, since R > I(v,V) + e, for sufficiently
farge n .

Using a > exp {n - (R-I(v,V))}

we infer
Pr{z1 (Y, ) <exp {n - e}
K Tv(xn) k
< exp {- exp {n + (R-I{v,V))}} » %&
and

T Pr{zl (Y.} <exp {n « e}}
. k TV(Xn) k

X

exp {n - log [&[ - exp {n - (R-I{v,V)}} « 7

A

« exp {- exp {n « (R~I(v,¥})} - E}

{A

exp {n - log |3(| - exp {n . r-:}-%}

EA

A N
For finite sets X, X and x" € X" define

0N = (1" |/C\§|n'1 NG X, 5 -0 I (R) %) NG R X TN | < )
XaXaX ’

§“,.n =n e Dp
by T° (x',x') we denote the complementary set within X" .
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3.2 Lemma

~ ~
For =, § >0 there exists n_ (|X[,|X[,[X|, ©,8) such that for

n>n, Ve W "(X|X), and X" uniformly distributed on TV(xn) :

Proof:

Erl (XM
Ta(xn’;n)

=1~ pr (X" ¢x" //\\]n-lN(x,i,§[xn,“n,in)-n'1V(R|x)-N(x,§|xn,§")| < 6}}
X, X,X

=1 - Pr (X"e(x" \/~| NOGR RN - V(R]x) NGO | > nes))
Xy X4 X

=1-Pr{ \/ | NOGRLE | XX EN-V(R]x) - NGR MR | > nes))
XXX

For (X3 e XM x X" NGREXMXLE™) s a binomial-distributed
random variable with expectation
N(x, XXX - V(R|x)
and variance
NOGE TR - V(RIX) - (-V(R]X)) < 7 - NGRS

since X" s uniformly distributed on Tv(xn).

Thus by Chebychev's inequality

Prt VI NOGEE XM EM V(] x) NG EN) | > nes)
Xa¥oX

~ . &1 NN
X|-1%| - N(Xaglx X )

< Xt

. o 4en=- &
XX -]X]
T 4en 8

for sufficiently Targe n
The claim follows.

0"



- 13 -

3.3 Lemma

Let e, § > 0 be given. Let © be such that log (l+1) < 5 -

There existi ng (X 1.1X],1X1, €,8,1) such that for all n>n .,
ve Wn (X]X) and independent, on Tv(xn) uniformly distributed random
variables i} s 1=1,...5 L, L>exp{n-.e}:

//\\\ > . Pr {%- r 1 (X) <1 - ¢}
xneln W e 1 Ta(xn,xn)

< exp {n - log [ﬁil - L 5}

Proof:

1 -
Proif : lTﬁ(x" x")(X‘J <1- g}

= Prr{ © 1

1 Taixn xn)(x1) b

< exp {- L « e} E [exp {z 1

1 Téfxn’f;n)(x'l)}] *

the inequality being obtained using the Markov-inequatity.

Due to the independency of the random variables i] and using
exp {t} < 1+t for t € [0,1] we obtain

E [exp {¥ 1 (?])}]

C
T§(xn’xn)

v L
S T TACIRE

whence -
z Pr {+ £ 1 &« (X4} <1 - ¢}
-;{nej“an L 1 T‘S(x",xn) !

= X" - exp{-L - (e~ log (401 ¢ o (X))
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The preceding Temma is applied to yield the upper bound

exp {n « Tog ]ji] - L (e - Tog (1+1))}
< exp {n -+ Tog | X| -L-§}.

We have now provided all material to prove the source-coding theorem. It
will consist of two symmetric claims such that the proof of one of them

is sufficient. The Temmata given above will be applied for I _X , J =X
(and conversely for the second claim).

3.4 Theorem

For e, § >0, there exists ng (X151 1]4]3]se,8) such that for
n>n,, Rl, R2 >0, Vl € 17% (Rl - 2¢) and V2 € 1}5 (R2 - 2¢)
there exist
S Y
[5311 | < exp {n . (Ry + 3¢)}

(1) such that

A A | By 0 Ty, () TRM,GM |

> 1 - ¢
n § n n n —
xTeTh il ed IKKLInTVI (x|
and
MJCJns
| X%ld | <exp {n . (Ry + 3¢)}
(2} such that
ANV ANEC T (x") n 1§ (x"i")|
>1-¢,

n_16 :n_n n =
xTeT ilel l )WLJ N TV2 (x|
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Proof:

We may restrict ourselves on proving (1). The set Al will be defined to
consist of elements of different types.

Using a random-mechanism we will show that for every v such that p(u,v)<s
there exists a subset }KL\) of TVov with cardinality Nv upperbounded
by exp {n (R1 + 2e)}  such that

T E .

L, 0 Ty(x") n THx N
(3) /
\ /\ b, 0 Tyx ") -

Having proven this, using

P (X) 1 <expin- el
and the disjointness of TV and TVov’ for v # v' , leading to

/\ R E NCOWR HERDIENE IR ACO RN BT

X eT v

and

/ﬁ\\l \hﬁj XXL V(xn) | = [XXLvF1TV(Xn)[
X ET

yield the desired property:

ATANE. L L TRV

xeTﬁ jMed” ]m

Let us start proving (3). Since the mutual information I{-,-) is a
continuous function in the input-probability v, veP {X) and the transition
probability V, V ¢ w(;[|3g), compactness yields uniform continuity such

that for any e > 0 there exists Pe such that

plu,v) < Py implies  |I(v,V) - I{u,V)| < ¢
for all Ve N(a[l]_) .
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Thus, for v such that p(u,v) <8  and Ve 17“(R1-2e) : ¥ E.I?v(R1~s).
For fixed v obeying p{u,v) < 8, it is sufficient to show
/\/\lmvmv(x" ) 0 THx",M)]
v’ o.n -n
x €T J ] XY[v n Tyl X"

for an appropriate random-mechanism choosing Nv-e1ementary sets.

1> Pr{ N&v||Xﬂ\J = <1- ¢}

We may upperbound the probability by

o (<™ n 1 (x M|
E Pr{mv||mU]=Nv | <1 - ¢}
¥ ET J I m\, N TV(X ) ‘

Define Nv ¢ N such that
exp {n - (R1 +¢)}

N
v

[ A

| A

exp {n » (R1 + 2¢)}

and let us choose the elements of BXL_ independently according to uniformly

distributed random variables (Y, )k 1, Nv with values in oy
Then
Y, 0 Ty 0 T8
Pro R IIM =, vV c1-¢}
lm ﬂTv(x ) |
N, N,
= Pr { z 1 (V) < (l=¢) » =z 1 (YP)3
k=1 TV(X Y n Tﬁ(x ,Jn) k k=1 Tv(xn) k
N..
v 2 v 1 v
= I Pr {1 n (Yk) = 1lesk e, T .Z 1 5 (Y ) <1 -¢}
L=1 A c(l,...,N} Ty (") 1A TI( im
IAL = L
N
Vv
-Pr'{% 1 (V) < l-e | ¥} =1

1eA, Tv(x") n T?(x”,j")
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exp{n-e} v
<y £ Pr{l n(Yk)=1¢=»k€AL}
T A T, (")
+5 g oPrl_ (Y;(’)=1«=»k€AE
L>exp{n-c} AL TV(x )
1 v v v
- Pr {+/ 1 (Y)) < l-¢ | ¥y = 1}
t'leA T5(x",jn) k 1
L I
N
v
< Pr{z 1 n (YE) < exp {n « ¢}
k=1 T, (x")
L ; (zy)
+ ma {Pr {+ £ 1 Z4) <1 - ¢}3,
L ERERR U LN
L>exp{n-c}

where Z1 ,» I=1,...,L denote independent, uniformly distributed random
variables with values in TV(x") .

In order to upperbound

I, n Ty (x™ n T8, 5"
@ ST roeealing) - v, e AN AL
ST g L 0 T,

we apply the lemmata 2.1 and 2.3 to the last expression of the preceding
chain of inequalities. We obtain as a strict upperbound

[T 1« (exp {n-Tog|d| - ;-exp {nee}} + exp {n+ log{Jd| - exp {n-s}-ﬁ)}

v

< 2exp {n (Tog {X| + log|d]) - 5 exp {n-€}}

For sufficiently large n, depending on |[X¥ |, |J] and e this expression
may be bounded by 1.
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The above theorem ensures the existence of a set of codewords 8%11 (H?LJ)
for each encoder such that for sequences X" e Tﬁ and arbitrary med"
(in € In) chosen by the opponent, most of the potential codewords for X" -

i.e. the sequences i e lel n Tvl(x") (jn € EYLJ n Tvz(x")) - have the
product-distribution as the common distribution of (in,jn) .

Since the controls are not chosen by the encoders but by the decoders, we have
to transmit the information concerning the sequences of states to the latter.
Thus we are enforced to prove an information transmission theorem, the channel
coding theorem used herein will be formulated for the sake of completeness.

Let %g und 3 be finite sets, W | lg = 3 a discrete, memoryless

channel with capacity denoted by C (= max {I(P,W}}).
PEP (7))

3.5 Theorem:

For all e >0, 0 < <1 there exists nj (Vﬂ [,Ig |se5 A) such that for

all n 2 ng there exists a code denoted by
(UesD) T ReLoeesN u e D c 30 D Dy =0 for k£

such that

Ao mﬁx {Nn(DE] ult s

N >exp {n- (C-¢g)}

For vy e W'(I1x), vV, € W(J|X )

we define
dvl (x,3) = ? V,(ilx) a§j ,
(5)
. . X
dv2 (%,i) = § V2(3|x) aj;
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and
d

zd

(x",iM
Vy t

Vl(xt,Jt)

dy (x",i") = £ d, (x,,i,).
v, £ Ve

In a well-known manner the source-coding theorem and the channel-coding
theorem are cltung together to yield the information transmission theorem.

3.6 Theorem

For e* >0 and ¢ = e(e*), &= §(e) sufficiently small there exists

(Ixs11,191, |7gllgl 19 ol | 3 1) S ol»> €*,e,8) such that for n > n
v1 e U 1(Cy-3¢) and V, € Wh(Cy=3¢) there exist

0!

m =

|:x:”——=ﬂg?

P

2 =

(5) such that

n
A /\ 1 A Pe(y]1x™) = Wiyl - a;'x
D

X eT6 jn yl zT

and there exist
n n
2 . n n

(6) such that

N
//\\//\\n 1 z p2 (yzlx ) z W (22|y2 . a% "

n.+8 .n i P (z )
X eT]i i yz 22 : 2

nt dV (x",i") + e
2



- 20 -

where Cl, 62 denote the capacities of the channels wl and W,, respectively.

Proof:

Define €,)» such that

A+ max {1a?j[} < £,
Xs1,J

/\_(I—A) (1-¢) dy (x,J) - e (max {Ia I}+1) > dvl(x,J') - g*

Xy ] 1 Xel,]

(6) and

//\5 (1-2) (1-¢) dvz(x,i) + e (max {]aﬁjl} + 1) j_dvz(xai) + ¥,

X1 Xy14]

then, using symmetry, it is sufficient to prove

/A\ /\\ z PE(yllx ) E W (21|y1 . ax:

s ' P .
SN 2] D(2}),3"

> (1-2) (1-¢) n~! dV (xn,jn) ~ e« (max {]a?.|} + 1).
1 Xs1.J J

(7) Lef & be such that

[a?J’} < €
Xy 1,:]

Define Ry = Cy - 3¢ and Tet Y := ?Xq be chosen according to theorem 2.4.

Let
f :hxl,n*———fy{uk | k = 1,...,N}

be any injective function, the existence being ensured since

| ¥ |

A

exp {n . (R1 + 2g)1

exp {n - (C1 - e )} .
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Further, define the encoding rule by

1
[ M Tvl(xn)l

0 otherwise , N e TS R

it D) e n Tvl(xn)
1

n, n
PE(yllx ) =

and the decoding rule by
Pé(z?) =y, if and only if z? € Dk .

Observe for i" ¢ TG(Xn,Jn)

1
n
(8) n-l axn n > n_l dv (anjn) T E
i,J 1
since
n
-1 X -1 n .n
in" " a -n - d, (x,.3)]
1.njn V1
LT (ORI TP L L WL S e T I LI LB dy_(x>3)]
X’i,j J X,.]) 1
R R R R PR LI LW af - n L vlx) - Nx, 31X 5" al
xs1s.] ’
. X
< X0l lgle 6 - max {|aij|}
Kela]J
< g ,

the last inequality being due to (7).
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SECTION IV : _ The Converse

The proof of a coding theorem only provides a lTower bound to the power

of all implementable coding procedures. To obtain a true description of
the payoff induced by the given model a converse is to be proven. It gives
those bounds which cannot be transgressed by any technical system.

For the model described in section I it is used to ensure that the reacting
player - evaluating maxmin and minmax of the payoff - cannot avoid certain
payoffs.

Since this impossibility result has to be applied for player I and player II
as the reacting players, the “"converse" to be given below will consist of two
parts (just as the information-transmission theorem derived within the pre-
ceding section).

For we D),
d : XX&———-————? R
define
d )
_Ru(-)-R—“'*R

d
DY(.)} : R—=R b
_u() y

d o
<EM(D) = vzn {I(u,V)}
Eu’v[d]iD
(1) and
d s
QM(R) := $: {Eu,V[d]} s
I(U_’V)iR

where I{u,V) 1is the mutual information function and

E;J yldT = £ u(x) £ V(x|x) dy(x,%) denotes the expected distortion.
? X

z
X
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Bﬁ(-) and Qé(-) are the well-known rate-distortion- and distortion-rate-
functions with respect to the discrete, memoryless source {3, u} and the
fidelity criterion d. According to section II B#(-) and g?

inverse to each other on the domain where the inverse exists.

(«) are

Additionally we define

RI(D) := min {1{u,V)}
H V:
Eu’v[d]zD
59(R) := ma {E ,[d1}
H ' V: WV
I(1,V)<R

These functions are inverse to each other too (see section II),

Let {X, u} be a discrete, memoryless source, f% g finite set and

d: Jx& —>R a single-letter fidelity criterion. Let W |’UJ@3
denote a discrete, memoryless channel. For this setup the converse to the
information-transmission theorem is given as follows:

4.1 Theorem

For every ne N, encoding- and decoding rules
n
Py | 3“===¢i";

-1 N . _
O A A LD IR G I N CUPD TR I 1
xn yn Zn )-(n _
and
@ oM pgy" N = WYY 5 Ry(E"2") xR 5 o8 (o)
Xn yn zn ﬁn

where C = max {I{P,W)} 4s the capacity of the channel W.
P
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Proof:

For the first inequality a proof can be given which follows the lines of
a we]] -known proof for the second (see {2 ], pp.70-71).. Isotonicity of

R ( ) instead of the antitonicity of the rate-distortion function R ( )
1s to be used.

4.2 Corollary:

Under the assumptions of theorem 4.1:

-1 -
DU Pe Xy = WY e (Rt d(x", 2
< ﬁj (C) + ¢
and
) u(x") z Pey X" = WY 5 py(RM2") d(x™, &M
(4) X eT y 2" b
>0ty - ..
Proof:

The corollary is an immediate consequence of theorem 4.1 and of (4 )
section II.

SECTION V: The value and its computability

In sections III and IV the information-theoretical basis for the determination
of the value of the game defined in section I was given. In this section the
information-transmission theorem and its converse will be combined to give a
computable formula for an upperbound to the asymptotics of minmax of the payoff
on one hand and a computable lower bound to the asymptotics of maxmin of the
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payoff on the other hand. Using the fact that maxmin never exceeds minmax,
in order to give a computable formula for the value, we only have to prove 7
the coincidence of the Tower and upper bounds. This will be done by applying
the minmax theorem after having shown that the functions over which maxmin
and minmax have to be formed are in fact identical.

5.1 Theorem:

For any e* >0 and e = (e*), &

UX L1130 Y 1] Balal 3,41,

§(e) & suff1c1ent1y small there exists
l

» €%, €, 6) such that for n>n,:

sup inf {1z u(x"){ z PE(yllx ) z W) (zllyl) z P (i ]z

( D) E D) x" .V1 z" if
(1) N
. (E P .Vzlx ) wz(zzl.Vz) ZP (J 122)) . 31 Jn}
.VZ 22 J
> max { D (Ch)} - 3ex

Ve ]r (C;-3e)
and

inf  sup { z u(x")(z p} £(y71x™) W 17y P (1"|z§'))

2 b2y (pl pl .

(PE.Pp) (Pe,Pp) X" v 2] if
(2} , ) n

n n,_ n, n Ny_nN X
- (2 PRvplx") zU3(plyp) 1 (i) X )
n n -N 13
Yo Z, J
_dvz
< min 0D, 7 (CIT + 3ex

V, € ]}E(C2-3s)
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Proof:
For symmetry it is sufficient to prove (1).

Assuming player I uses a strategy as being given in the information-trans-
mission theorem we may start calculating

-1 .
n sup 1nf ¢ zu(x") (2 PE(Y?IXH) Z W?(ZQIY?) b P%(THIZQ)
( D) ( E’PD) Xn Y? Z? in
2, n.n
(zn Pe(yo|x7) ¢ wz(zzlyz) z PD(J ]zz)) a1 Jn
y2 22 J
2 s inf ) PE(yp X"y = W(2ly)) = PE("2D))
Pe (PE,P5) x"eTg Yy 2 j"
1. an _:n
PD. Bl—rI
-1 x"
I e(y11X") = Wp(zplyh) a* n]
vy 2 ("
+ 5 u(x)(z PE(yzlx ) A Wy(zylyp) z P (5"25))
xn£T5 yg z2 3"
e (z ( 1x") g w 0 n'1 min {axn 3}
n E yl 2 y2 n i"j"
Y1 2 i
> sup inf{ £ uw(xMz E(yzlx ) T, w 2|y2
vV, € 2 52y N -8 n
1 (PE,PD) x T Yo 2
Wp(Cq-3€) H
2,. .
oz Pp(3"129)) (dy (x",3") - e%)
.Nn D 2 V1
J
- u(x™ n"l max {laf |3}

anTﬁ URL ivj
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dy

> sup { D
vy € e

L eg) - 3ex,

1(C1-3¢)

The second inequality is due to inequality (5) of the information transmission
theorem whereas the last is derived by the application of the corollary to the
converse of the information transmission theorem.

According to this theorem the value of the asymptotic game - we shall denote
it by val r° (us Wl, WZ, A) when it is proven to exist - is lower-bounded by

d

v
sup sup  { D ! (Ch)Y - e
e¥,e(e*)>0 Vi € H
?7?(01*6)
and upper-bounded by
ﬁdvz
inf inf o { D " (C) +ex
e*,e(e*)>0 V, € H

?TS(CQ'E)

Recalling the definitions we observe that Q;(C) and 5;(C) are continuous
functions, with respect to the fidelity criterion. Additionally remembering
that U‘?(-) and ]}3(-) are defined by means of the mutual information

function I(u,V) which itself is continuous in the conditional probability
distribution, we infer that the above bounds are equal to
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dV d

sup {D 1 (C,)1 = max {D Vl (Cy)1
—u 2t T ~y 2
’U-lf(cl) I(Usvl)_f,cl
and
-, -,
inf {Du (CI)} = min { Du (CI)}
V2 € VZ:
VHcy) HVa)<Cy
5.2 Corollary
dV
© _ 1
val (1 (u, Wy, Wy, A)) = vix: B, = (¢
dV2
= min {D (C,)}
v, : u
2

Proof:

In view of theorem 5.1 and the preceding remarks there remains to show the
d d

second equality. Substituting the definitions of D, and ﬁu it is to be
shown:
R S T R
I(m V)G TuVy)<C, T{uaVp)<Cy T(u,Vq)<C,
Now
vy ldyyd = 2 0 2 (30 (2 V() - a?j) Sy, 1)
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Obviously, E11 [dV ] is convex and concave in both, V, and VY, .

VN

Further, according to the convexity of I(u,+) in V , both )}?(C) and
1}5(0) are convex sets for all C > 0 . Thus the minmax theorem shows the
identity of minmax and maxmin and thereby the existence of the value for
the asymptotic game.
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