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IMPLEMENTING DEMAND EQUILIBRIA AS STABLE STATES
OF A REVEALED DEMAND APPROACH

Wulf Albers, Bielefeld
James D. Laing, Philadelphia

Summary: The paper presents the a new approach to sequential bargaining in
n-person games. Considered are sequences of dominating states which are re-
stricted by demands revealed by the proposals and agreements reached in the
intermediate states of the process. Stable states are defined in a recursive
way, starting with states which by the restrictions of the revealed demands

do not permit any further dominance. Several theorems concerning the stable
states are given. The question is raised, under which conditions demand equi-
libria (ALBERS, 1974) can be implemented as stable initial states, i.e. as
states which players would enter immediately when the bargaining process starts,
and which they do not leave (by foresight). Examples show, that the new approach
explains experimental results which essentially deviate from the predictions of
traditional solution concepts.



1 THE IDEA OF DEMAND EQUILIBRIUM

The concept of demand equilibrium has been introduced by ALBERS (1974),

later independently reinvented by TURBAY (1977), WOODERS (1978) and BENNETT
(1979,1983). Different Variants of the model and relations to Kernel and other
concepts are given in ALBERS (1979) and ALBERS (1981).

Efforts to transfer the concept to spatial games have been made by ALBERS
(1979.a,1988.a), BENNETT/WINER (1983).

The basic idea of the concept is, that during the bargaining process the players
develop certain demands, in a way that they will only enter a coalition when it

fulfills the demands of all of its members. It is then the set of demands which

is required to be "in equilibrium".

2 NOTATIONS

A characteristic function game (N,v) is a set N = (1,2,... ,n) (the "players",
the subsets of N are called "coalitions"), and a worth-function v which assigns
a real number v(S) to any subset S of N. It is assumed that the emty set and

the one-player coalitions have worth zero.

A "demand vector”™ d4 = (d1,d2,.. ,dn) is a n-vector of reals (the "demands" of the
players). The corresponding feasible coalitions are F(d) := (S subset N, d(S)
not greater v(S)). The feasible coalitions of a player i in N are Fi(d) :=

($ in F(d), i in S).

2.1 DEFINITION: The "demand equilibrium”™ D(v) of a game (N,v) is the set of all
demand vectors d = (d1,d2,.. ,dn) which fulfill

(1) (no slack) d(S) not smaller v(S) for all S in N
(2) (feasibility) Fi(d) is not emty for all i in N
(3) (independence) Fi(d) strict subset of Fj(d) for no pair i,j in N

The idea behind this definition tries to capture properties of reasonable endpoints
of a dynamic process, which might lead to the demand equilibrium: A player who
has no feasible coalition is supposed to reduce his demand (see (1)). If the sum
of demans of a coalition are less than the worth of the coalition, then at least
some members of the coalition can inrease their demands (see (2)). If Fi(d) is a
strict subset of Fj(d) then plaver i "depends on player j" insofar that i cannot
enter a coalition without of j, while j can form a coalition without of i; this
means hat j can press (?) i1 to reduce his demand di by threatening him, otherwise
to form a coalition without of i; j can at the same time inrease his demand dj
(for instance for the same amount as i reduced his) and has still feasible
coalitions. (This is the idea behind (3).) Of course, by the described actions,
one condition can be reached to be fulfilled, but another one may become violated.
So that a corresponding demand adjustment process will usually need quite a lot

of steps to reach equilibrium. In fact additional conditions have to be given

to make it sure that the process is finite and leads to a demand equilibrium.

3 EXCURSION: DEMAND CORE AND EXISTENCE OF DEMAND EQUILIBRIA

A solution concept which is mathematically essentially easier to handle than the
set of demand equilibria is the demand core:
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3.1 DEFINITION: d=(dl,..,dn) is in the "demand core", if

(1) (no slack) d(S) not smaller v(S) for all S in N
(2) (minimal sum) d(N) is minimal subject to (1)

The following theorems are known for the demand core:

3.2 THEOREM: The demand core is notempty for all characteristic function games.
It is a cosed facet of the polyhedron of demand profiles fulfilling condi-
tion (1).

{In fact the demand core can be obtained by a linear program.)

3.3 REMARK: 1If a characteristic function game has a nonempty core, then the
demand core is the core.

3.4 THEOREM: A demand vector d is in the demand core iff its set of feasible
coalitions, F(d), is weakly balanced. It is in the relative interior of the
demand core iff F(d) is strictly balanced.

3.5 COROLLARY: For homogeneous weighted majority games the demand core contains
one demand profile, namely the vector of weights.

3.6 THEOREM: The demand equilibrium contains the relative interior of the
demand core.

From this follows immediately:

3.7 THEOREM: The demand equilibrium is notempty for all characteristic function
games.

4 STATES AND DOMINANCE

Approaching a model which is nearer to the explicit dynamics of a demand adjust-
ment process, we consider states and dominance. A traditional approach will
define states and dominance as follows:

4.1 DEFINITION (traditiomal): A "state" (x,S) is a coalition S (subset S of N),
and a real-valued n-vector x such that (xi=0 if i not in S) and x(S8)=v(S). -
A state (y,T) “dominates"™ a state (x,S) (notation (y,T)<--(x,S8)), if yi’>xi
for all i in T.

The model here is more explicit about the process of domination, i.e. the process
of changing from one coalition to another. Here it is assumed that the players
can and do agree to a new state in a certain order. Therefore we assume that a
state does not only give a coalition S and a payoff distribution (within S),

but also an order of S describing the sequence in which the players "are asked to
agree to the state". So a state will be given by (x,S1,.. ,Sr), where § =

(si,.. ,Sr), and the indices give the order of S. (In abuse of language we will
nevertheless write (x,S) instead, considering S as an ordered set.) In this new
model state and dominance are given by

4.2 DEFINITION: A "state" (x,S) is a ordered subset S of N, and a real-valued
n-vector x such that (xi=0 if i not in S8) and x(S)=v(S) (?). - A state
(y,T) "dominates" a state (x,S) (notation (y,T)<--(x,S)) if yi>xi for all
players in T who are not after piv(T¢--S). (Where piv(T«--S) denotes the
first player of T who is also in S.)



Note that in this new approach a dominance from (x,S) to (y,T) is "performed"
when the dominance has been agreed to by the first player of T who is also in S.

5 REVEALED DEMANDS

Experimetal results indicate that during a bargaining process the players develop
ideas of adequate demands. This will be modelled by assuming that states are not
only given by coalition and payoff distribution, but also by assumed or observed
demands of the players. It seems that the following model of revealed demands
captures the central aspects of the development of demans during a specific
negotiation.

The basic idea is that the a player who supports a dominance (y,T)¢--(x,S) indi-
cates that he is incontent with his payoff xi and wants to get more than xi.
I.e. his (exclusive) lower boundary of demand is from then on given by xi, and
it is assumed that he will thereafter enter no state, in which he does not get
more than xi. (In fact it is behaviorally unimportant, if he really has this
minimum demand or not. It is only necessary that the other players think this,
and therefore do not enter a coalition with him, where he gets less than his
demand, assuming that he will break coalitions which do not fulfill his demand.)
The corresponding model is as follows:

5.1 DEFINITION: A "state" (x,S,d) is an ordered coalition S and an n-vector X
(as in the preceding definition), and a real-valued n-vector d (the "revealed
demands" of the players). - A “domination" (y,T,e)<--(x,S,d) is given, if

(1) (y,.T)<-—(x,8)

(2) yi>di for all i in T
(3) ei=max(xi,di) for i = piv(T¢--S)
(4) ei=di for all i in T, i notequal piv(T:--§)

and for all i in N-T

This definition extends the old definition (see (1)). It says that a player

can enter a new state (y,T) only when it fulfills his revealed demand (see (2)).
And it informs about the way how demands are revealed: A player who "actively"
changes from one state to another thereby indicates that he is incontent with
his outcome in the preceding state, i.e. that his (exclusive) lower boundary of
demand is at least at the preceding outcome (see (3)). A player who is not
“"actively" involved in the new decision keeps his preceding level of demand

(see (4)). The alternative di in the maximum-condition of (3) makes sure that
the demand of the active player piv(T¢--S) does not decrease.

6 STABLE STATES IN THE REVEALED DEMAND MODEL

There is no doubt that a state should be defined to be stable when it cannot be
dominated. Such states can be comparatively easily recognized. - But further
conclusions are possible. A player who knows these stable states and has some
foresight will probably not enter a new state (i.e. will not agree to perform a
dominance (y,T,e)<--(x,S,d)), if thereafter the process moves to a next state
which is stable and gives him less than in the first state (x,S,d). - Assuming
this foresight behavior additional states can be recognized to be stable. And
so forth. - This idea is captured in the following recursive definition:



6.1 DEFINITION:
(1) (start of recursion)
A state (x,S,d) 1is "stable", if there is no state (y,T,e)--(x,S,d).
(2) (step of recursion)
Let certain states be recognised as stable.
A state (x,S,d) 1is "stable", if
for any state (y,T,e)<--(x,5,d) there is
a stable state (z,U,f)<--(y,T,e) such that =zi¢xi for i=piv(T¢--§)

6.2 THEOREM: The set of stable states increases with every step of recursion.

PROOF: Let S(0), S(1), S(2),.. be the sets being recognized as stable in the
beginning, in iteration 1,2,... of the procedure. Let (x,S,d) a counterexample
with minimal iteration. I.e. (a) (x,$,d) in S(t) but not in S(t+1), and (b) for
all s<t ((y,T,e) in S(s)) ==> (y,T,e) in S(s+1).

Since (x,S8,d) is not in S(t+1), there is (y,T,e)¢--(x,S5,d) with no (z,U,f) in
S(t) with (z,U,f)<--(y,T,e) which fulfills (2). However, since (x,S,d) in S(t),
such an (z,U,f) exists in S(t-1). From the minimality of the counterexample
follows that (z,U,f) is in S(t). This is a contradiction. //

6.3 COROLLARY: Let - in addition to the above procedure - within every step
(2) a state (x,S,d) be defined to be "definitely unstable", when there is
a stable state (y,T,e)¢--(x,S,d). _
Then the set of definitely unstable states increases with every step of
recursion.

PROOF: Let U(1l), U(2), .. be the sets of definitely unstable states recognized
at iteration 1,2,.. of the procedure. And let (x,S,d) a counterexample, i.e.
(x,5,d4) in U(t), but not in U(t+1).

Since (x,S,d) is in U(t), there is (y,T,e) in S(t-1) with (y,T,e)<—-(x,5,d).
From the preceding theorem follows, that (y,T,e) is in S(t). So (x,S5,d) is

in S(t+1). //

Note that the definition of stability has some similarity with characterization
of MC KELVEY, ORDESHOOK's competitive solution (see MC KELVEY ORDESHOOK and
WINER, 1978) by FORMAN and LAING (1982). They require a solution to be a set of
proposals, which is internally and externally stable. Internal stability means,
that no two states of the solution set dominate each other (this is reached
here by condition (2)). External stability means, that for any dominance via

an alternative outside the solution set there is an alternative inside the
solution set which dominates it (this follows immediately from (2)):

6.4 LEMMA: The set of stable states of a given game has the properties
(1) No stable state dominates another stable state.
(2) 1I1f a (nonstable) state (y,T,e) dominates a stable state (x,S,d), then
there is a stable state (z,U,f) which dominates (v,T,e).

PROOF: 6.4.(1): Let (y,T,e)<--(x,S,d), and both states be stable. Assume that
this is a counterexample, for which the repetition, in which the’ dominator (here
(y,T,e)) has been recognized to be stable for the first time, is minimal. Since
(x,8,d) is stable, it follows from 6.1.(2) that there is a stable state (z,U,f)
¢(--(y,T,e). This alternative (z,U,f) must have been included in the set of stable
states S(t) of repetition t. Since by 6.2 the set S(t) of states that are recogn-
ized to be stable increases with t, and (z,U,f) is stable and dominates (y,T,e),
(z,U,f) cannot have entered any set S(r) with r>=t. So (y,T,e) must have entered
the set of stable states for the first time in some S(r) with r-t. This must have
been before (z,U,f) has been for the first time recognized to be stable, which



may have been in S(s), where r¢=s<t. At the iteration S(r), when (y,T,e) has been
first recognized to be stable there must (by 6.1.(2), since (y,T,e) is not undomi-
nated) have been a stable state (z',U',f')¢--(z,U,f) which fulfills the conditions
of 6.1.(2) as a counter to (z,U,f)<--(y,T,e). I.e. (z',U',f') has been recognized
to be stable in S(r-1). So there are two stable states (2',y',f')<¢--(z,U,f), where
the dominating state (z',U',f') was in the set of stable, &tates S(r-1), with r-1<t.
This contradicts the selection of (y,T,e)<--(x,S,d) with finimal repetition in
which the dominator was recognized to be stable for the first time.

6.4.(2): Let (y,T,e)¢<--(x,8,d), and (x,S,d) stable. By 6.1.(2) there has been

a stable state (z,U,f)<--(y,T,e) at the repetition, when (x,S,d) entered the

set of stable states. From 6.2 follows, that-(z,U,f) remains stable. //

There is also some similarity to AUMANN's and MASCHLER's bargaining set using
arquments and counterarguments. However the criterion of a counterargument to

be an adequate candidate for a solution is in that approach only given by the
"demands" implicitly "revealed" by the original alternative. - By this shortcut
they do restrict their considerations to "bargaining sequences" with not more
than 3 states, while in the approach here also longer bargaining sequences are
considered. The examples below show, that this approach gives essentially longer
bargaining sequences. Moreover example 9.3 shows that bargaining sequences can
drift away from initial states, although the bargaining set recognizes stability.
(The different approaches to domination seem to be in this context less impor-
tant, since both models could be easily modified in this respect.)

The following theorem permits to solve the decision, if a state is stable or not
by a two-person game. This game is defined in advance:

6.5 DEFINITION: Let (x,S,d) a state of a game (N,v). The two-person "stability
game of (x,S,d)" is as follows:
Both players alternatingly select states of (N,v), of which each dominates
the preceding one. Player 1 moves first by giving (x,S,d). That player wins
the game, who moves last.

6.6 THEOREM: A state (x,S,d) is stable, iff player 1 wins the stability game
of (x,5,d).

PROOF: case 1: If (x,S,d) is stable, then plaver 1 must be able

to find for any dominating state (y,T,e)<--(x,S,d) a stable state (z,U,f)<--

(y,T,e) (by definition of stability. Moreover it follows from the stability of
(x,5,d4), that it is reached in finitely manv applications of 6.1.(2). So player

1 can reach the set of undominated states in finitely many steps.

case 2: If (x,S,d) is unstable, then player 2 can react on any dominating state (that
player 1 selects) with a stable state. The rest of the proof is as in case 1.

(Note that it can happen, that no plaver wins the stability game. this is the
case when the state permits only dominations for which the counterdominations
which avoid unstable states improve the outcome of the pivot-player of the first
domination. (Compare example 9.3.))

This theorem permits to illustrate the stability of states by showing the paths
of corresponding optimal strategies.



7 STABLE INITIAL STATES

We now assume that a bargaining sequence starts with the proposal of a player
and follows the rules of domination, including the rules of revealed demands.

We are interested in those states, which an initiator could be recommended to
make in the initial state, i.e. in a state when not any demands are revealed.
Candidates for this selection are those states, which are stable when no demands
are revealed:

7.1 DEFINITION: A state (x,S,d) with di=0 for all i in N 1is called a
"stable initial state".

(In the following the demand vector with all zero entries is denoted by 0. Stable
initial states are denoted by (x,S5,0).)

The question is, under which conditions stable initial states exist, and how
these can be characterized. It seems that stable initial states are sometimes
related to demand equilibria in the following way:

7.2 DEFINITION: A demand equilibrium d* is called "implementable" for a coalition
S* in F(d*), if the initial state (d*/S*,5*%,0) 1is stable.
(Where (d*/S*)i:= d*i (if i in S*) and (d%*/S*)i:= 0 (if i in N-§*))

This gives the more specified question: Under which conditions is a demand
equilibrium implementable for all/some of its feasible coalitions ?

The next lemma addresses states with "thin" feasible sets:

7.3 DEFINITION: A set F of coalitions is called "thin", if the intersection of
any two coalitions §S,T of F contains exactly one element.

(The definition could be modified in a way that it permits the intersection to
be empty. However, this would permit additional cases with disjoint (feasible)
coalitions, which we are not interested in for now.)

7.4 LEMMA: Let d* a demand equilibrium with feasible set F(d*).
If F(d*) is thin, then the proof of implementability or non-implementabi-
lity can be restricted to sequences of dominations in which the pivotal
plaver piv(T¢--S) changes in every step.
(I.e. for any three subseding states (z,U,f)--(y,T,e)--(x,S,d) player
piv(U<--T) is different from piv(T¢--S).)

PROOF: The proof that a given state (x,S,d) (which is not undominated, and
therefore obviously stable) is stable can only be done by showing, that every
dominating state (y,T,e) is redominated by a state (z,U,f) with disimprovement
zi«xi for the pivot piv(T¢--S) of the first dominance. This is not possible

when piv(T<--S8) = piv(U<--8), since then zi>yi>xi.

The other type of error is made, when a state (x,S,d) is recognized as stable
under the restriction of dominance, but in fact is not. The situation would

then be as follows: (y,T,e)<--(x,S,d)<--(w,R,c) where the dominance to the
stable state (y,T,e) is not captured in the analysis, since piv(T¢--8)=
piv(S<--R)=:i. We distinguish two cases:

case 1: R notequal T: since the revealed demands ej=dj=cj for all j in N-(i),
and since yi>xi>wi, we get that (y,T,e)<--(w,R,c), what immediately shows that
(w,R,c) is unstable. So the restriction of the analysis does only fail in recog-
nizing a state (here (x,S5,d)) wrongly as stable and thereby identifying another
state (here (w,R,c)) as unstable, which under complete analysis is unstable too.



-7 -

So no error has been made in this case.

case 2: R=T: again ej=dj=cj for all j in N-(i), and yi’xi>wi. Assume (w,R,c) is
not the first state of the chain, and let (w',R',c') the state before. Then the
dominance (x,S,d)<--(w,R,c)<--(w',R',c') with the wrong assumption, that (x,S,d)
is stable can only be used, to show, that (w',R',c') is stable. However this is
anyway not true, since (y,T,e)<--(w',R',c') and (y,T,e) is.stable. This will be
recognized in the approach with alternating pivots as well, since piv(T<--R')=
piv(T<--R) and the dominance via piv(T<--R) was permitted.

case 3: R=T and (w,R,c) the initial state of the chain: In this case the result
of the restricted analysis is that (w,R,c) is not stable since (x,§,d) is wrongly
recognized to be stable. But (w,R,c) is also ‘not stable under complete analysis,
since the domination (vy,T,e)<--(x,S,d), which is missing in the restricted ana-
lysis, does not counter the dominance (x,S,d)<--(w,R,c) in the sense of 6.1.(2)
since vivci. //

(Note that the examples 9.1 and 9.2, below, give thin games, so that the
analysis of stability can be restricted to bargaining sequences with alter-
nating pivots.)

8 LOCAL IMPLEMENTABILITY OF DEMAND EQUILIBRIA

The property of a demand profile d* to be a demand equilibrium can be inter-
preted as "local", since it is completely given by local shape of the polvhedron
A(v) := (x in Rn, x(S)>=v(S) for all § in N) in a neighbourhood of d*.

8.1 COROLLARY: Let d* a demand equilibrium of (N,v). Let (N,w) such that
A(v) = A(w) 1in a neighbourhood of d*. Then d* is a demand equilibrium
of (N,w). ‘

The PROOF follows immediately from

8.2 LEMMA: Let d* a demand equilibrium of (N,v). Let (N,w) such that
cone (d*,v)=cone(d*,w), then d* is a demand equilibrium of (N,w).
(Where cone(d*,v):=(a*1S, S in F(d*), a real, a>0.)

Another way of expressing this local property is given by the following defi-
nition and remark:

8.3 DEFINITION: Let F a set of subsets of N. The "characteristic game of F"
is the game (N,v) with
v(S)=1 if there is a set R in F which is contained in S. (admitting equality)
v(S)=0 otherwvise.

8.4 REMARK: Let d* a demand profile, F(d*) the corresponding set of feasible
coalitions, and (N,w) the characteristic game of F(d*). Then d* is a
demand equilibrium, iff d* is a demand equilibrium of (N,w).

We now come back to the problem of implementability:

8.5 DEFINITION: Let d* a demand equilibrium, S$* in F(d*). d* is called "local-
1y implementable for S*", if for any e>0 there is a pair of (perfect)
equilibrium-strategies of the corresponding stability game, of which any
(selected) state (x,5,d) fulfills

(1) abs(xi-d*i)‘e for all i1 in § .
(2) di=0 or abs(di-d*i)<e for all i in N



8.6 THEOREM: Let d* a demand profile, S* in F(d*), and (N,w) the characte-
ristic game of F(d*). Then d* is implementable for S* iff it is locally
implementable for S*.

The proof uses the following contraction:
8.7 NOTATION: Let d* a real-valued n-vector.

For any real number e let f«d*,e> the function which maps any state
(x,5,d) to f«d*,e>(x,S,d) such that

fdd*,e>(x1):=0 (for all i in N with xi=0)
f«d*,e> (xi) :=d*i+(xi-d*i)*e (for all i in N with xi>0)
fad*,e> (di) :=0 (for all i in N with di=0)
f<d*,e>(di) :=d*i+(di-d*i)*e (for all i in N with di>0)

f«d*,e>(S):=S
We call f¢d*,e> "the contraction to d* by factor e".

8.8 REMARK: f<d*,e> maps a state (x,S,d) to a state iff d*(S)=v(S).

The PROOF of 8.6 is obtained by applying the contraction above. (Note that the
set of demand profiles involved in the equilibrium strategies of the players is
bounded.)

Our central question of further investigation is, whether implementability and
local implementability are generally equivalent. If this were the case, then
the next question would be, whether a demand equilibrium d* can be implemented
iff it can be implemented in the characteristic game of F(d*).

9 EXAMPLES

The following example shows, that the revealed demand approach can leed to
results implemented by the demand equilibria.

9.1 EXAMPLE: consider a 3-person quota game (N,v) with N=(1,2,3),
v(8)=120 if S contains at least two elements
v(S)=0 otherwise
The bargaining equilibrium of this game is d*=(40,40,40), the corresponding
feasible coalditions are F(d*)=(12,13,23).

For this game the following chains may be given, in which every state dominates
the preceding one in the sense of the revealed demands approach:

x1 X2 X3 dl d2 d3
40 40 e e = -=
40+a -- 40-a 40 -- -
e 40 40 40 - 40-a

This sequence illustrates, that ((40,40,0),(1,2),(0,0,0)) is an initial stable
state of this game.

The next example shows, that the revealed demand approach is able to select
specific feasible coalitions of a demand equilibrium:



9.2 EXAMPLE: consider the 5-person Apex Game, i.e. (N,v) with N=(1,2,3,4,5)
v(S8)=100 if 1 in S and S has at least to members
v(s)=100 if s=(2,3,4,5)
v(8)=0 otherwise
The demand equilibrium is d*=(75,25,25,25,25), F(d*)=(12,13,14,15,2345).

For this game the following two chains may be given, in which every state dominates
the preceding one in the sense of the revealed demands approach:

x1 x2 X3 x4 x5 dl d2 d3 d4 db5
75 25 e B e - - = e -

25+a 25-b 25-b 25-b s 25 —— —— —— (a=3b)
75 25 o 25 25-b -- ——
T5+c 25-¢ 75 25 25 - —

25+d 25-e 25-f 25-f 75 25 25-b 25-c¢ -- (d=e+2f,e<b,e¢=f,f<C)
75+qg 25-g 75 25 25-b 25-c¢ 25-g (g<f)
75+h 25-h 15+g 25 25-b (h>b,h>f)
x1 X2 x3 x4 x5 dl d2 d3 d4 d5
75 25 - -- s - = - - e
75+a -~ 25~ == e 15 = e g i

25 25 25 25 75 e i s 3

In both chains every uneven state has been selected in (conscious) response to
the preceding one. Every even response (except for the respective second) has
been selected for the coalition, which might cause the preceding deviator from
switching. The result shows, that the state ((75,25,0,0,0),(1,2),(0,0,0,0,0))
is a stable initial state.

x1 X2 X3 x4 x5 dl d2 d3 d4 ds

ZoE 25 25 25 25 -- s - - e

75-a 25+a -- i - - 25 -- o —=

15 - 25 - -- 75-a 25 -- -- -

- 25+b 25+c 25-d 25-d T75-a 25 25 —= = (b+c=24d)
15 - == 25 - 75-a 25 25 25-d --

75+e -—- - == 25-e 75 25 5 25-d --

i 25+f 25+f 25-f 25-f 75 25 25 25-d 25-e (f<e)
15+ -- e 25-g -- 75 25 25 25-f 25-e (g<f)
15+f -- B = 25-f 15 25 25 25-f 25-e

- 25+h 25+h 25-h 25-h 75 25 25 25-f 25-f (h<g)

This sequence illustrates that ((0,25,25,25,25),(2,3,4,5),(0,0,0,0,0)) is not a
stable initial state of this game.
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The following example illustrates, that bargaining chains do not necessarily
need to end near a quota solution:

9.3 EXAMPLE: Let (N,v) be the 4-person game, where three of four win, i.e.
N=(1,2,3,4), and
v(S)=120 if S has at least three members

v(S)=0 otherwise
x1 x2 x3 x4 dl  d2 d3 d4
40 40 40 -- — = = -
40+a 40+a —- 40-b 40 40 -- - (b=2a)
40+c 40+c 40-d -- 40+a 40+a - -- (d=2c)

This chain does not stop and can be completed in a way that it converges to
(60,60,0,0). - On the other hand the players 3,4 cannot break this sequence,
since none of them can leave the "block™ (1,2) without of being excluded "for
ever" in the subsequent move:

x1  x2 x3 x4 dl d2 43 d4

40+f 40+f 40-g -- 40+e 40+e -- -- (d=2c)

40+h --  40-i 40-i 40+f 40+e 40-g (h=2i,i7q,h>f)
s 40+f 40-j 40-j 40+f 40+e 40-i 40-i (j<i since h>f)

This shows that the intuitive prediction, namely that one of the minimal winning
three-person coalitions will be formed with an equal split to each member, is

not at all obvious. Experimental results uniquely support, that under free commu-
nication condition two plavers "block up" in just the way as players 1 and 2 in
the example of the bargaining sequence above. This is a strong evidence which
indicates that the revealed demand approach captures essential aspects of bargain-
ing sequences which are not contained in the traditional models.
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