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ABSTRACT

Homogeneous weighted majority games were already introduced by von
NEUMANN and MORGENSTERN [ 15]; they discussed uniqueness of the repre-
sentation and the "main simple solution" for constant—sum games. For the same
class of games PELEG [ 7,8] studied the kernel and the nucleolus. OSTMANN
[6] and ROSENMULLER [9] described the nature of representations of general
homogeneous weighted majority games; see also SUDHOLTER [ 14] . The present
paper starts out to close the gap: for the general homogeneous weighted majority
game "without steps", we discuss the least core, the nucleolus, and the kernel and
show their close relationship (coincidence) with the unique minimal representa-
tion.



SECTION 1 Introduction

Let N = {1,...,n} denote the set of players and let P = {S]|S ¢ N} denote the
system of coalitions. If v: P — {0,1} is a mapping such that v(§) = 0, v(N) = 1,

then the pair (N,v) is called a simple game ("in characteristic function form") or a
simple coalitional game.

We shall fix N and, somewhat sloppily, speak of a mapping v as of a game as well.

A representation of v is a pair (M,)) such that M > 0 is an additive function on P

and 0 < A < M(N), satisfying

0 M(S)<A
) (s) = [ (s¢B)

1 M(S) > A
We shall also write v = lei in order to indicate that (M,)) is a representation of

V.

An additive function M > 0 defined on P is said to be homogeneous w.r.t.

A€ (0,M(N)) (written M hom J}) if the following holds true:

(2) For every T € P with M(T) >
there is S C T such that M(S) = A.

A game v is said to be homogeneous if there exists a homogeneous representation,
i.e., a pair (M,)) such that v = v} and M hom .

The first to consider this type of characteristic function were vor NEUMANN-
MORGENSTERN [15]; they use the term "homogeneous weighted majority
game". In [15] it is proved that the representation of a homogeneous game is
unique up to multiplication by a constant, provided v is, in addition, a constant-
sum game (and dummies get zerc weight); in this case it is not hard to see that
(M,A) can be chosen to be integer.
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OSTMANN [6] was the first to prove that the constant—sum version is a rather
special case of a more general statement: a homogeneous game (no matter
whether constant—sum or not, superadditive or not) has a unique integer represen-
tation with minimal totel number of votes M(N). This representation is a homo-
geneous one and it respects types (i.e. attaches the same weight to players of
equal type). In addition, OSTMANN introduces the property of players to be
either step, sum, or dummy.

An alternative (recursive) definition of the minimal representation of a homo-
geneous game was given by ROSENMULLER [9], see also [10], [11]. The
approach provides also an alternative proof to the existence of the minimal repre-
sentation and in addition defines characters (called steps, sums, and dummies)
which are, however, attached to fypes of players. Essentially a sum is a type the
members of which in a certain minimal winning coalition can be replaced by
smaller players and the weight of which is hence a sum of weights of smaller
players. By contrast, a step is a type the members of which cannot be replaced in
minimal winning coalitions. And it turns out that "steps rule their followers"
(OSTMANN) in the sense that they must be members of any minimal winning
coalition in which any of the smaller followers appear.

Note that the minimal representation is the von NEUMANN-MORGENSTERN
representation in the zero-sum superadditive case (it attaches zero to dummies)
and, in addition, it is non—degenerate (in the sense of ROSENMULLER -
WEIDNER [12], see also [11] ), that is, the minimal representation is uniquely
defined by the system of minimal winning coalitions (via the appropriate system
of linear equations).

Von NEUMANN and MORGENSTERN introduced the homogeneity condition
not only as a structural tool but also in order to discuss a certain solution
concept: the vN—M-solution or stable sel. Indeed if, in the superadditive and
constant sum case we normalize the unique representation, say, by

(3) (m,0) = yrryy (M),

then m is an imputation of the game. The main simple solution as defined in | 15]
is obtained by restricting M to all minimal winning coalitions and normalizing;
this way one obtains a set of imputations (i.e. individually rational and Pareto
efficient payoff vectors) which are then verified to constitute a stable set.
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The first one to link the normalized representation (m,a) in the constant sum
super additive case to a different solution concept was PELEG [ 7,8]. He proves
that in this context m is indeed the nucleolus and discusses the shape of the
kernel given additional requirements.

In view of the results that insure the existence of a unique representation it is
natural to ask for the connection between the nucleolus and the unique represen-
tation in more general cases involving genmeral homogeneous games. As
OSTMANN has proved in a zero—sum game there is only one step present: the
smallest nondummy. Also, it is easily seen that, whenever the smallest non-
dummy is the only step (he is always a step) ther the representation is unique up
to a multiple constant. A game in which the smallest nondummy is the only step
will conveniently be called a game "without steps”. It would seem that the class of
homogeneous games without steps is a first candidate for further tackling the
question of relations between the unique representation and a solution concept
like the nucleolus. Our results are as follows.

In Section 2 we shortly discuss the graphical method which leads to characterizing
games with two types only (and no steps) such that the nucleolus and the unique
representation (normalized) coincide. In Section 3 we discuss the least core that
was introduced by MASCHLER, PELEG, AND SHAPLEY [ 5] and we show that
for homogeneous games (without dummies) the system of minimal winning coali-
tions is weakly balanced if some homogenous representation is an element of the
least core. On the other hand, if the system of minimal winning coalitions is
weakly balanced then any normalized homogeneous representation of a homo-
geneous game (without dummies) is an element of the least core. In Section 4 we
discuss the nucleolus. For games without steps it turns out that the unique repre-
sentation (normalized) is equal to the nucleolus if and only if the system of mini-
mal winning coalitions is balanced. In Section 5 we prove that for games without
steps the unique representation (normalized) is always an element of the kernel.
Finally, Section 6 connects the results of Section 2 and further Sections and pro-
duces some additional insight w.r.t. games that may have steps. Thus, this paper
essentially clears the connection between balancedness of the system of minimal
winning coalitions and the coincidence of the nucleolus and the unique representa-
tion for games "without steps".

We shall use the notation
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(4) H={v|v:P— R,, v(6) = 0, v is homogeneous, v has no dummies}
and
(5) Hy,= {v | v €M, v has "no steps"}

\Em denotes the system of minimal winning coalitions of a given function v. An
additive function defined on P,sayx: P —R 4 Can, of course, be identified with

a vector x = (xl,...,xn) via the usual convention

(6) x(8)= X%

2 X, (SeP).

In this context for § € P and any imputation (i.e., x € IR_I:_, x(N) = 1) x the ezcess

of S w.r.t. x is given by

(7) e(S8,x) = v(8) -x(S) (S€PR).
In particular
(8) 6 (x) = rsngﬁ (v(8) - x(85))

denotes the maximal excess of an imputation x (it is sufficient to consider mini-
mal winning coalitions!).

We shall always assume that large players (and types) have small indices, that is,
ifv= vl\f has a representation (M,A) then we assume that

(9) M
We shall also assume that "M respects types". That is
(10) M, =M i if i and j belong to the same type.

The decomposition of the set of players N into sets of players of equal type opens
the road to a more condensed representation of games by turning to types instead
of players and "profiles" instead of coalitions.
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Indeed, given some game v let K...K, denote the sets of different types of

players. That is, we have a decomposition

by
(11) N=p£1KP (K,NK, =8 0#0)

of N, and if k; = |K,},...k = [K_| denotes the numbers of players of each type
then k, +...+ k. =n.

If (M,}) is a representation of v respecting the types then M has equal weight for

all players of a type, say M, = 8, (ieK ,p=1,.,) The weights can be collec-

p
ted in a vector g = (gl,...,gr) and the pair (g,k) essentially describes the additive

function M via

(12) M(S) = 3 | SNK, | g

p=1 2

We shall use this notation in particular if M is integer. Thus, type respecting
additive functions M and pairs of integer vectors (g,k) can be identified and if no
confusion can arise we shall indeed use the letter M also to denote the pair (g,k).

In this context, a profile is a vector s = (sl,...,sr) € !NS , the coordinates of which

are natural numbers or zero, such that

(13) s ¢k (p=1,.,1),

or, for short s < k. Obviously, profiles identify coalitions up to permutations of
players of equal type and, if an integer additive function M is identified with (g,k)
then it is convenient to use the notation

I
(14) M) = 3 s,
such that M gives rise to a linear function defined on profiles. Let gm denote the

system of minimal winning profiles, given v. The lexicographic ordering on
profiles is denoted by L
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The reader may now want to familiarize himself with the precise definition of
steps, sums, and dummies in the context of the representation theory of

homogeneous games. |As we use tly /t‘hﬂ notation offered in [ 10] we doJ
rnot want 4o Tepeat thp-definitjor§ explicitly, thus!we refer to [10] Section 1 for
the BASIC LEMMA, the recursive dehnition of the satellite measures and for the

definition of characters. Of course the discussion in [10] starts out with an
arbitrary homogeneous representation of some v. In our context we shall always

assume that we have representations respecting types and, frequently we shall
assume that we are dealing with the unique minimal representation. In case of
VE I}IE , this is actually no severe restriction as, up to a multiple constant, there is

only one homogeneous representation.
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SECTION 2: Graphical solution of games with two types

Consider v = vlt\l (-:[HE such that there are exactly two types of players. As the

"larger" type is necessarily a sum, M has the shape
(1) M= (t,.., t, 1,..,1) LEN t>1,ky 2t
S
kK

while the majority level A admits of two cases

(2) CASEA: A=ct 1<¢cgky
(3) CASEB: A=k t+c 1< e kyt

The normalized representation is

with
R

where M(N) = tk, + ko denotes the total mass of M.

Note that the min win profiles

{s = (5,55) E[Ng | s < k}

for games described by (1), (2), (3) are listed at once:

P

CASE A: (c,0) {¢-1,t),...,(¢1, 1t) where ]l = min [[ t_2 ] , €

[ k,—<
CASE B: (k.c) (ky=Lt+c),...,(k;-1, It+¢) where ] = min [2_t]’ kl]

([ #] is the largest integer not exceeding p € R). In the above list, profiles appear in
lexicographic order.
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As we want to study the relationship between the representation and the nucleo-
lus, it is sufficient to consider symmetric imputations of the form

x= (£rmys Egronby)

k k

1 2

In particular, 4 = M%N] (t,---,t,1,...,1) denotes the normalized weights and

V= (ul,...,vl, V2,...,u2) denotes the nucleolus.

Next, introduce

- 2
(5) 5={X=(51:52)Em+lk1 §1+k2£2=1}:
this is a one—dimensional simplex with extreme points

¢L=(?r1,0),¢“=(o,?r2)

Note that

™t
Il
%H
~—
o+
—
L

and

=
|
—
=
=
M‘:
—

are elements of =.

For any profile § = (sl,sz)emg, s < k, consider the ("symmetrized") ezcess
function

e(s,- ) =2 —R
(6)

e(s,£) = 1-8; &; —s, &, = 18§

e is a linear function on Z, depicted in Fig. 1.
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1
Fig.1
Lemma 2.1 1. For every s € gm, e(s,i) = 1
2. Let § denote the lexicographically last min-win profile. Then
v=puif
4 - R
(7) o8, &) > e(s, £Y).
Proof: Since v is homogeneous, we have for any s € gm

e(s,)=1-fs=1-pS)=1-a

(where S € V__Vm has profile s). This proves our first statement.

Next, observe that for two profiles s, 5’ € gm such that s >, & it follows that

e(s, §L) < e(s, .fL), e(s, ER) > e(s, §R) .

From this it follows that the family of lines representing the graphs of functions
e(s,r) (s€ gm) is ordered by »; in such a way that all lines pass through (i, 1-e)

E x (0,1) and lexicographically smaller s induce smaller slopes of e(s, ); see

Fig.2.
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Fig.2

The maximal excess (in terms of profiles of gm)
@1 22— R

©,(§) = max efs,()
sEW

is geometrically represented by the upper envelope of the graphs e(s,: ), s € Em_

Clearly, if the slope of the lexicographically last graph, i.e., of e(5,: ) is negative,
then

win€(6) =) = 1-a

and i is the unique minimizer, thus 4 is the unique symmetric imputation mini-
mizing maximal excess. Le., p = v if e(3, ) is represented by a line with negative
slope — which is equivalent to (7). q.ed.
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Corollary 2.2 Let v = vl\f € Hy> and suppose M and A are specified as in (1), (2),
3). Let [p] be the largest integer not exceeding p €R. Then

g

v=pif

k
(8) in CASE A: i—;>ﬁ—;ll=min[[t—2],c}

k,- k,—
. ) 1t4c 1 R 2
(9) in CASE B; r)T- ] = min [[_l,kl]

2 1 ¢
Proof: In CASE A we have § = (c-, 1), hence condition (7) reads
c-1 1t
1- >1-r—.
7k

Accordingly, in CASE B where
§ = (k;, lt+c)

k
1-—

1

1 lt+c
1

>1- .
2

Note: 1 is the number of "blocks" of small players of exactly weight t that may
replace a big player. If we fix k1 and t (the characteristics of big players) then, for

k, > ct the right hand side in (8) equals zero. Hence, as ¢ ¢ ky, (8) will be

satisfied for "sufficiently many small players”.
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SECTION 3: The least—core

The graphical method discussed in SEC.2 provides a nice tool in order to compute
the min-max excess for coalitions (profiles) in V=Vm (gm). In some cases, this

yields the opportunity to compute the nucleolus.

However, the appropriate concept based on the min—max excess is the least—core
as defined by MASCHLER, PELEG and SHAPLEY [5]. Hence, we shall first
deal with this notion of a solution concept.

Moreover, the (number theoretical) conditions as obtained in (8) and (9) of SEC.2
(Corollary 2.2), although admitting of a nice interpretation (a "limit theorem":
"convergence" of v and u for a large set of players) at this stage slightly blur the
view on some more game theoretical criteria related to the coincidence of x and .

After all, what is the connection between our results in SEC.2 and PELEG’s [ 7]
result that 4 = v in the zero—sum case? As we know by OSTMANN’s {6] work,
the homogeneous zero—sum game shows "no steps" in its unique minimal repre-
sentation, hence zero—sum games form a subclass of ly

It turns out that balancedness of the system of min-win coalitions provides the
clue for linking the various aspects. This concept, introduced by SHAPLEY [13]
and used (among other applications) by KOHLBERG [ 4] is decisive: it is related
to the coincidence of x and v and may be expressed in number—theoretical terms.

We shall first exhibit this fact by discussing the least—core concept.

Let us repeat the definition as provided in [ 5] .

Definition 3.1 Letv:P —R 4 Present a game and denote
(1) F= 5(v) = {xeR? | x(N) ¢ v(N)} .

Also let

2 €y = €4(v) :=min max (v(S) - x(S))
) 07 0 ez sep

54#0,N
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The least—core of v is defined by
3) Av) = {x€ 5| x(5)2v(S)—¢, (SER;S#EN)}.
Now we have

Theorem 3.2  Let v €[ and let (m,e) be any homogeneous representation which
is normalized (i.e. m(N) = 1).

Hm e ¢, then W™ is weakly balanced.
Proof: We may assume a < 1, for otherwise \é’m = {N} is even balanced.
Consider the linear programming problem designed in variables

(x,8) = (%% ,0) €R" x R and indicated by

mjn{ﬁ| (x,8) €R® x B

x(S)+ B21 (Sew™)
(P) -

x(N) =1

X; >0 (i=1,...,n)}

(the "primal program").

It is seen that €, = min {B | ...} is the value of this program and .# is the projec-

tion on R™ of the set of optimal solutions of (P).

By assumption the representing measure m satisfies m € .#. Because of homoge-
neity, we have m(S) = a (S ¢ \=?Vm), thus it follows at once that

(4) e=1-m(S)=1-a>0 (SEW™).

Next we consider the dual program corresponding to (P). This is an LP in

variables
c , C
( S)SE‘_/\__’m N

indicated by
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(D) 5 €wh

1 is the indicator function of S C N, defined on N).
S

Now, be an optimal solution of (D). By the duality theorem

let (T
Ysew™ U {N}

of LP-theory we know that

ie.

Moreover, since m > 0 and (m, 1-a) is a solution of (P) we conclude that

(6) 2 Gele=—~Cy ly=aly.
X V=Vm S-S N°N N_
Thus, V=Vm 1s weakly balanced. q.e.d.

Theorem 3.3  Let v €M and let (m,a) be a homogeneous representation which is
normalized.

If W™ is weakly balanced, then m € %,

Proof: We may assume a < 1, for otherwise the least core equals the set of
imputations.
Ifm ¢ %, then for some S € wH

a=m(SO)<v(S)—50=1-fo.
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Hence x € .¢ satisfies

(7) x(8)21-¢;>a=m(S) (SeW™.

As V__Ym is weakly balanced, we conclude that, for a suitable set of weights

(c ,
S)Se‘gm

1=x(N) = S;Wm ¢g x(5)

> sgwm cg m(S) = m(N) = 1;

the inequality following from (7). This contradiction verifies m € .%. q.e.d.

Remark 3.4 Consider the situation discussed in SEC.2, i.e., v = v5) € Hy with two

types only.

Using our notation as previously, assume that the lexicographically last min—win
profile § satisfies

(8) o3, &) =e (3, €Y.

This means that the slope of e(8, ) is zero — and by inspecting Fig.3 it is seen
that in this case the "intervall" [ ¢ L ]
the least core, say

constitutes the symmetric imputations of

(9) =1¢¥ i

symm

(with a suitable interpretation of the interval).
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e(s,) i

!

|

|

|

|

|

Lom™
1 1

L . R _
E- =(5~—-,0 fi g =(C,v—-
Rl I—<8
Fig.3

In this case the nucleolus ¥ does not necessarily equal f.

Remark 2.3 The graphical method may also be used to provide counter examples.

Consider the case g = (4,1), k = (5,7), A = 16 which is conventional-
ly written

[16;4,4,44,4,1,1,1,111,1]
Hence t = g; = 4,1 =1 ("one block") and

1t _ 4 ¢l
BT

Ei- .

e
I

Thus, the slope of the line corresponding to e(8, ) is positive, from which it

follows that v = (3,3,3,3,5,0,0,0,0,0,0,0) #m .
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SECTION 4: The nucleolus

Theorem 4.1  Let v € H. Suppose there is @ € (0,1) such that (v,a) is a homoge-
neous representation of v. Then V__Ym is balanced.

Proof: Let

(1) e =max e(Sv)
Sep
S#0,N

be the maximal excess at v. As v is a homogeneous representation, the excess for
any SEW™ at vis

eSy)=1-S)=1-a

and as v has no dummies the excess for any other coalition at v is smaller. Thus
€ = 1 - and the system of coalitions of maximal excess at v is \_]:Vm.

By a theorem of KOHLBERG [4], W™ is balanced. g.ed.
Theorem 4.2 Letve [HE’ i.e., assume that v has "no steps".

If \=Vm is balanced then there is a € (0,1] such that (v,a) is a

representation of v (the unique representation of v!).

Proof: The case V=Vm = {N} (and hence a = 1) again is trivial. Let us
assume that \__?Ym # {N} holds true. In this case, as v has no steps,

the minimal representation (M,\) has the property that M is

nondegenerate with respect to A (see ROSENMULLER — WEIDNER

[12] for this notion), and the normalized version M%M(M,A) =

(m,a) has the same property. Nondegeneracy means that the system

Q,={S€R | m(S) =}
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determines m uniguely in the sense that the linear system of equations in variables

XyyeenXp

iESxi:a (5eQ,)

has the unigque solution m.

Hence, nondegeneracy implies the unigueness of the representation (normalized);
for the fact that m n.d. a see OSTMANN [6] (Remark 5.5). Compare also
ROSENMULLER {9}, Theorem 4.2, [10], Remark 1.2, and the discussion in

[11], Section 2 and Section 3.

Of course, if v €H, then

3) Q,=Wm
Next, consider the set
(4) Y=bmmi|4Ny=Lq$gm@) (Sew™)}.

By definition of v it is seen at once that v €Y. As V=Vm is balanced we have, with

suitable coefficients (c_) ,

Sew™
(5) > S?V=V cg m(S)
=m(N)=1

Hence, all inequalities used in (5) must be equations. This means

1(S) = m(S) SeW" =0,

By nondegeneracy of m w.r.t. ait follows that v = m, g.ed.
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Remark 5.4 Let v €l be homogeneous with steps (other than the smallest non-
dummy, that is). There are profiles in which steps appear without
their satellites (Remark 5.5 in ROSENMULLER [9], see also
Lemma 4.1). On the other hand "steps rule their followers" (Lemma
4.8 in OSTMANN [ 6] ), hence smaller players cannot enter min-win
coalitions without all the preceding steps. From this it can be
inferred that W™ cannot be balanced.

By KOHLBERG [ 4] we know that the system of coalitions of maximal excess "at
v" must be balanced. Thus, v cannot be equal to any normalized representation of

V.
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SECTION 5: The kernel

Lemma 5.1 Let v €My, If W™ # {N}, then W' is completely separating, i.e., for
any two players i,j € N there exist coalitions S, T E‘gm such that
i€S,jéSand jeT,i¢T.

Proof: Let (m,a) be the unique normalized representation, then
m, > m, 2.2 m . Consequently, it is sufficient to prove that if

1<i< n-1 then there exists S € \gm such that n €S and i ¢ S. Thus

let i < n. By assumption i is a sum. Hence, by Definition 4.6 of
OSTMANN [ 6], there exist coalitions T and §; such that

{1,.,i-1} N8, = {1,.i-1}NT, §,TeW™

and i €T-5;. Let j = max {k | keS8} If j=n the proof is

complete. Otherwise, j > i and j is a sum. Therefore, we may replace
j by "smaller" players, that is, by a set A C {j+1,...,n}. If nESz,

where S, = (5; - {iHUAce€ V=Vm, then the proof is complete. Other-

wise, we continue the replacement process until we obtain the
desired coalition S. q.ed.

Theorem 5.2  Let v €Hy, and let (m,a) be its unique homogeneous representa-

tion. Then m € K(v), i.e., the unique representation is an element
of the kernel of v.

Proof: This is a direct consequence of Lemma 5.1.
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SECTION 6: Balancedness, profiles and number theory

ILet N= U Kp denote a decomposition of N into disjoint subsets Kp CN
p=1

(p = 1,...,n) representing "types of players" and let P : R™ — R be defined by

S .

1) (Px), =

P is a linear mapping and maps indicators 1g (S € P) into profiles s, that is

P(ls)=s,sp= |SﬂKp| (p = 1,...,1).

Therefore any symmetric decomposition of the unit

2 cslsle

S ewn™
provides a decomposition of k = (|X,|,...,|K_|) via
Sew" sew” SewW™
= Z Cg Z 1 = 2 n c.s
g € _w_rm S € V=Vm s € gm

withn = [{§ | P(1g) = sH, ¢, = g (P(lg) = 8).

Thus, we call a system of profiles s (weakly) balanced if there are (nonnegative)

positive coefficients d_ (s€ 8 ) such that ¥ d s =k
- BES

Now, let us return to our class of examples in SEC.2.
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Remark 6.1 In SEC.2, CASE A yields the min—win profiles
(3) (¢, 0), (c-1, t),..., (c-1, 1t).

The system w as described by (3) is balanced if there exist positive numbers dy
dl,...,dl such that

dy(c, 0) + d;(c-1, t) +..4 dy(c-1, 1t) =k

i.e.
(1 )- 1 ; ]
T d. id =k, t B id =k
i=0 i=1l L
or
" i “1+-:2 1 k,
4 i+ T d=—>=t T id=-2.
0 i=1 1 [ i=1 1 1

Now, the system (4) has solutions d € IR1+1, d > 0 if and only if

k
ky + 2

1 1 k
(5) m.in{EdldE[RldM) Eld_—f}<_FL
i=1 1

holds true. The minimum on the left side in (5), however, is attained at
k k
d:= (o,...,0, 1% ) and equals 1% . Hence, w is balanced if and only if

k
kk+2

©) B e fh (L,

which is formula (8) in Corollary 2.2.
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